Advertisement

Caenorhabditis elegans: a model to understand host–microbe interactions

  • Arun Kumar
  • Aiswarya Baruah
  • Masahiro Tomioka
  • Yuichi Iino
  • Mohan C. Kalita
  • Mojibur KhanEmail author
Review

Abstract

Host–microbe interactions within the gut are fundamental to all higher organisms. Caenorhabditis elegans has been in use as a surrogate model to understand the conserved mechanisms in host–microbe interactions. Morphological and functional similarities of C. elegans gut with the human have allowed the mechanistic investigation of gut microbes and their effects on metabolism, development, reproduction, behavior, pathogenesis, immune responses and lifespan. Recent reports suggest their suitability for functional investigations of human gut bacteria, such as gut microbiota of healthy and diseased individuals. Our knowledge on the gut microbial diversity of C. elegans in their natural environment and the effect of host genetics on their core gut microbiota is important. Caenorhabditis elegans, as a model, is continuously bridging the gap in our understanding the role of genetics, environment, and dietary factors on physiology of the host.

Keywords

Commensal Probiotics Longevity Dysbiosis Pathogen 

Notes

Acknowledgements

The author AK is a recipient of junior research fellowship (DBT/JRF/BET-16/I/2016/AL/143) from Department of Biotechnology (DBT), Government of India. Caenorhabditis elegans has been established at the Institute of Advanced Study in Science and Technology (IASST) with the Grant from DBT under Unit of excellence project (BT/NE/550/U-EXCEL). We thank Dr. Atanu Adak for his useful comments on the manuscript. We are also thankful to Mr. William Barbeau (Lab Technician, School of Medicine, University of Utah, Salt Lake City, UT 84112, United States of America) for helping us in improving the English grammar of the manuscript.

Compliance with ethical standards

Conflict of interest

We hereby declare no conflict of interest.

References

  1. 1.
    Lynch SV, Pedersen O (2016) The human intestinal microbiome in health and disease. N Engl J Med 375(24):2369–2379PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Levy M et al (2017) Dysbiosis and the immune system. Nat Rev Immunol 17(4):219PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Sonnenburg JL, Bäckhed F (2016) Diet–microbiota interactions as moderators of human metabolism. Nature 535(7610):56PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Belkaid Y, Hand TW (2014) Role of the microbiota in immunity and inflammation. Cell 157(1):121–141PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Lu J et al (2018) Effects of intestinal microbiota on brain development in humanized gnotobiotic mice. Sci Rep 8(1):5443PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Kers JG et al (2018) Host and environmental factors affecting the intestinal microbiota in chickens. Front Microbiol 9:235PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Schloissnig S et al (2013) Genomic variation landscape of the human gut microbiome. Nature 493(7430):45PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Arumugam M et al (2011) Enterotypes of the human gut microbiome. Nature 473(7346):174PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Gill SR et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312(5778):1355–1359PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Fritz JV et al (2013) From meta-omics to causality: experimental models for human microbiome research. Microbiome 1(1):14PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Sommer F, Bäckhed F (2013) The gut microbiota—masters of host development and physiology. Nat Rev Microbiol 11(4):227PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Frézal L, Félix MA (2015) The natural history of model organisms: C. elegans outside the Petri dish. Elife 4:e05849PubMedCentralCrossRefGoogle Scholar
  13. 13.
    Hodgkin J (1987) Primary sex determination in the nematode C. elegans. Development 101(Supplement):5–16PubMedPubMedCentralGoogle Scholar
  14. 14.
    Kimble J, Ward S (1988) 7 Germ-line development and fertilization. Cold Spring Harb Monogr Arch 17:191–213Google Scholar
  15. 15.
    Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94PubMedPubMedCentralGoogle Scholar
  16. 16.
    Stiernagle T (2006) Maintenance of C. elegans (February 11, 2006), WormBook, ed. The C. elegans research community, WormBook,  https://doi.org/10.1895/wormbook. 1.101. 1
  17. 17.
    Mylonakis E et al (2002) Killing of Caenorhabditis elegans by Cryptococcus neoformans as a model of yeast pathogenesis. Proc Natl Acad Sci 99(24):15675–15680PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    McGhee JD (2013) The Caenorhabditis elegans intestine. Wiley Interdiscip Rev Dev Biol 2(3):347–367PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Rezzoagli C, Granato E, Kuemmerli R (2019) In vivo microscopy reveals the impact of Pseudomonas aeruginosa social interactions on host colonization. ISME J 13:2403–2414PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Gomez F et al (2012) Delayed accumulation of intestinal coliform bacteria enhances life span and stress resistance in Caenorhabditis elegans fed respiratory deficient E. coli. BMC Microbiol 12(1):300PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Thompson O et al (2013) The million mutation project: a new approach to genetics in Caenorhabditis elegans. Genome Res 23(10):1749–1762PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Dickinson DJ et al (2013) Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods 10(10):1028PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Dickinson DJ, Goldstein B (2016) CRISPR-based methods for Caenorhabditis elegans genome engineering. Genetics 202(3):885–901PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Samuel BS et al (2016) Caenorhabditis elegans responses to bacteria from its natural habitats. Proc Natl Acad Sci 113(27):E3941–E3949PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Dirksen P et al (2016) The native microbiome of the nematode Caenorhabditis elegans: gateway to a new host–microbiome model. BMC Biol 14(1):38PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    JebaMercy G, Balamurugan K (2012) Effects of sequential infections of Caenorhabditis elegans with Staphylococcus aureus and Proteus mirabilis. Microbiol Immunol 56(12):825–835PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Pukkila-Worley R, Ausubel FM, Mylonakis E (2011) Candida albicans infection of Caenorhabditis elegans induces antifungal immune defenses. PLoS Pathog 7(6):e1002074PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Liu W-H et al (2006) Restriction of vaccinia virus replication by a ced-3 and ced-4-dependent pathway in Caenorhabditis elegans. Proc Natl Acad Sci USA 103(11):4174–4179PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Zanni E et al (2015) Impact of a complex food microbiota on energy metabolism in the model organism Caenorhabditis elegans. BioMed Res Int 2015:12Google Scholar
  30. 30.
    Park MR et al (2015) Bacillus licheniformis isolated from traditional Korean food resources enhances the longevity of Caenorhabditis elegans through serotonin signaling. J Agric Food Chem 63(47):10227–10233PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Montalvo-Katz S et al (2013) Association with soil bacteria enhances p38-dependent infection resistance in Caenorhabditis elegans. Infect Immun 81(2):514–520PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Komura T et al (2013) Mechanism underlying prolongevity induced by bifidobacteria in Caenorhabditis elegans. Biogerontology 14(1):73–87PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Iatsenko I et al (2014) B. subtilis GS67 protects C. áelegans from Gram-positive pathogens via fengycin-mediated microbial antagonism. Curr Biol 24(22):2720–2727PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Berg M, Zhou XY, Shapira M (2016) Host-specific functional significance of Caenorhabditis gut commensals. Front Microbiol 7:1622PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Pujol N et al (2008) Distinct innate immune responses to infection and wounding in the C. elegans epidermis. Curr Biol 18(7):481–489PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Dierking K, Yang W, Schulenburg H (2016) Antimicrobial effectors in the nematode Caenorhabditis elegans: an outgroup to the Arthropoda. Philos Trans R Soc B 371(1695):20150299CrossRefGoogle Scholar
  37. 37.
    Buchmann K (2014) Evolution of innate immunity: clues from invertebrates via fish to mammals. Front Immunol 5:459PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Waterfield NR, Wren BW (2004) Invertebrates as a source of emerging human pathogens. Nat Rev Microbiol 2(10):833PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Berg M et al (2016) Assembly of the Caenorhabditis elegans gut microbiota from diverse soil microbial environments. ISME J 10(8):1998PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Shapira M (2017) Host–microbiota interactions in Caenorhabditis elegans and their significance. Curr Opin Microbiol 38:142–147PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Dehingia M et al (2015) Gut bacterial diversity of the tribes of India and comparison with the worldwide data. Sci Rep 5:18563PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Lloyd-Price J, Abu-Ali G, Huttenhower C (2016) The healthy human microbiome. Genome Med 8(1):51PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Adak A, Khan MR (2019) An insight into gut microbiota and its functionalities. Cell Mol Life Sci 76(3):473–493PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Goodrich JK et al (2014) Human genetics shape the gut microbiome. Cell 159(4):789–799PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Carmody RN et al (2015) Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe 17(1):72–84PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Boulin T, Hobert O (2012) From genes to function: the C. elegans genetic toolbox. Wiley Interdiscip Rev Dev Biol 1(1):114–137PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Kamath RS et al (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421(6920):231PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Zugasti O et al (2016) A quantitative genome-wide RNAi screen in C. elegans for antifungal innate immunity genes. BMC Biol 14(1):35PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Tan MW et al (1999) Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc Natl Acad Sci 96(5):2408–2413PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Mohr S, Bakal C, Perrimon N (2010) Genomic screening with RNAi: results and challenges. Annu Rev Biochem 79:37–64PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Tan M-W, Mahajan-Miklos S, Ausubel FM (1999) Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci 96(2):715–720PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Shapira M et al (2006) A conserved role for a GATA transcription factor in regulating epithelial innate immune responses. Proc Natl Acad Sci 103(38):14086–14091PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Alegado RA, Tan MW (2008) Resistance to antimicrobial peptides contributes to persistence of Salmonella typhimurium in the C. elegans intestine. Cell Microbiol 10(6):1259–1273PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Irazoqui JE et al (2010) Distinct pathogenesis and host responses during infection of C. elegans by P. aeruginosa and S. aureus. PLoS Pathog 6(7):e1000982PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Irazoqui JE, Urbach JM, Ausubel FM (2010) Evolution of host innate defence: insights from Caenorhabditis elegans and primitive invertebrates. Nat Rev Immunol 10(1):47PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Melo JA, Ruvkun G (2012) Inactivation of conserved genes induces microbial aversion, drug detoxification, and innate immunity in C. elegans. Cell 149(2):452PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Ashe A et al (2013) A deletion polymorphism in the Caenorhabditis elegans RIG-I homolog disables viral RNA dicing and antiviral immunity. Elife 2:e00994PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Sifri CD et al (2003) Caenorhabditis elegans as a model host for Staphylococcus aureus pathogenesis. Infect Immun 71(4):2208–2217PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Zhang R, Hou A (2013) Host–microbe interactions in Caenorhabditis elegans. ISRN MicrobiolGoogle Scholar
  60. 60.
    Pradel E et al (2007) Detection and avoidance of a natural product from the pathogenic bacterium Serratia marcescens by Caenorhabditis elegans. Proc Natl Acad Sci 104(7):2295–2300PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Hasshoff M et al (2007) The role of Caenorhabditis elegans insulin-like signaling in the behavioral avoidance of pathogenic Bacillus thuringiensis. FASEB J 21(8):1801–1812PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Labrousse A et al (2000) Caenorhabditis elegans is a model host for Salmonella typhimurium. Curr Biol 10(23):1543–1545PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Roeder T et al (2010) Caenopores are antimicrobial peptides in the nematode Caenorhabditis elegans instrumental in nutrition and immunity. Dev Comp Immunol 34(2):203–209PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Mallo GV et al (2002) Inducible antibacterial defense system in C. elegans. Curr Biol 12(14):1209–1214PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Van Der Hoeven R et al (2011) Ce-Duox1/BLI-3 generated reactive oxygen species trigger protective SKN-1 activity via p38 MAPK signaling during infection in C. elegans. PLoS Pathog 7(12):e1002453PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Evans EA, Chen WC, Tan MW (2008) The DAF-2 insulin-like signaling pathway independently regulates aging and immunity in C. elegans. Aging Cell 7(6):879–893PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Kim DH et al (2002) A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science 297(5581):623–626PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Aballay A, Ausubel FM (2001) Programmed cell death mediated by ced-3 and ced-4 protects Caenorhabditis elegans from Salmonella typhimurium-mediated killing. Proc Natl Acad Sci 98(5):2735–2739PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Zhang X, Zhang Y (2012) DBL-1, a TGF-β, is essential for Caenorhabditis elegans aversive olfactory learning. Proc Natl Acad Sci 109(42):17081–17086PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Gammon DB et al (2017) The antiviral RNA interference response provides resistance to lethal arbovirus infection and vertical transmission in Caenorhabditis elegans. Curr Biol 27(6):795–806PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Wei J-Z et al (2003) Bacillus thuringiensis crystal proteins that target nematodes. Proc Natl Acad Sci 100(5):2760–2765PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Los FC et al (2011) RAB-5-and RAB-11-dependent vesicle-trafficking pathways are required for plasma membrane repair after attack by bacterial pore-forming toxin. Cell Host Microbe 9(2):147–157PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Garsin DA et al (2001) A simple model host for identifying Gram-positive virulence factors. Proc Natl Acad Sci 98(19):10892–10897PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Bae T et al (2004) Staphylococcus aureus virulence genes identified by bursa aurealis mutagenesis and nematode killing. Proc Natl Acad Sci 101(33):12312–12317PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Thomsen LE et al (2006) Caenorhabditis elegans is a model host for Listeria monocytogenes. Appl Environ Microbiol 72(2):1700–1701PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Huffman DL et al (2004) Mitogen-activated protein kinase pathways defend against bacterial pore-forming toxins. Proc Natl Acad Sci 101(30):10995–11000PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Bolz DD, Tenor JL, Aballay A (2010) A conserved PMK-1/p38 MAPK is required in Caenorhabditis elegans tissue-specific immune response to Yersinia pestis infection. J Biol Chem 285(14):10832–10840PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Evans EA, Kawli T, Tan M-W (2008) Pseudomonas aeruginosa suppresses host immunity by activating the DAF-2 insulin-like signaling pathway in Caenorhabditis elegans. PLoS Pathog 4(10):e1000175PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Estes KA et al (2010) bZIP transcription factor zip-2 mediates an early response to Pseudomonas aeruginosa infection in Caenorhabditis elegans. Proc Natl Acad Sci 107(5):2153–2158PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Pellegrino MW et al (2014) Mitochondrial UPR-regulated innate immunity provides resistance to pathogen infection. Nature 516(7531):414PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Singh V, Aballay A (2009) Regulation of DAF-16-mediated innate immunity in Caenorhabditis elegans. J Biol Chem 284(51):35580–35587PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Visvikis O et al (2014) Innate host defense requires TFEB-mediated transcription of cytoprotective and antimicrobial genes. Immunity 40(6):896–909PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Zugasti O et al (2014) Activation of a G protein–coupled receptor by its endogenous ligand triggers the innate immune response of Caenorhabditis elegans. Nat Immunol 15(9):833PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Jansson H-B (1994) Adhesion of conidia of Drechmeria coniospora to Caenorhabditis elegans wild type and mutants. J Nematol 26(4):430PubMedPubMedCentralGoogle Scholar
  85. 85.
    Félix M-A et al (2011) Natural and experimental infection of Caenorhabditis nematodes by novel viruses related to nodaviruses. PLoS Biol 9(1):e1000586PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Guo X et al (2013) Homologous RIG-I–like helicase proteins direct RNAi-mediated antiviral immunity in C. elegans by distinct mechanisms. Proc Natl Acad Sci 110(40):16085–16090PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Guo Y et al (2017) The shift of the intestinal microbiome in the innate immunity-deficient mutant rde-1 strain of C. elegans upon Orsay virus infection. Front Microbiol 8:933PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    King KC et al (2016) Rapid evolution of microbe-mediated protection against pathogens in a worm host. ISME J 10(8):1915PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Martín R et al (2013) Role of commensal and probiotic bacteria in human health: a focus on inflammatory bowel disease. Microb Cell Fact 12(1):71PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Mazmanian SK et al (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122(1):107–118PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Watson E et al (2014) Interspecies systems biology uncovers metabolites affecting C. elegans gene expression and life history traits. Cell 156(4):759–770PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Mellies JL et al (2006) The global regulator Ler is necessary for enteropathogenic Escherichia coli colonization of Caenorhabditis elegans. Infect Immun 74(1):64–72PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Qi B, Han M (2018) Microbial siderophore enterobactin promotes mitochondrial iron uptake and development of the host via interaction with ATP synthase. Cell 175(2):571–582PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Zhou M et al (2014) Lactobacillus zeae protects Caenorhabditis elegans from enterotoxigenic Escherichia coli-caused death by inhibiting enterotoxin gene expression of the pathogen. PLoS One 9(2):e89004PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Niu Q et al (2016) Changes in intestinal microflora of Caenorhabditis elegans following Bacillus nematocida B16 infection. Sci Rep 6:20178PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Metchnikoff E, Metchnikoff I (1908) The prolongation of life. GP Putnam’s Sons, New York, pp 234–301Google Scholar
  97. 97.
    Ganguly N et al (2011) ICMR-DBT guidelines for evaluation of probiotics in food. Indian J Med Res 134(1):22PubMedCentralGoogle Scholar
  98. 98.
    Pineiro M, Stanton C (2007) Probiotic bacteria: legislative framework—requirements to evidence basis. J Nutr 137(3):850S–853SPubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Morelli L, Capurso L (2012) FAO/WHO guidelines on probiotics: 10 years later. J Clin Gastroenterol 46:S1–S2PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Hill C et al (2014) Expert consensus document: the International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11(8):506PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Rauch M, Lynch S (2012) The potential for probiotic manipulation of the gastrointestinal microbiome. Curr Opin Biotechnol 23(2):192–201PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Fijan S, Šulc D, Steyer A (2018) Study of the in vitro antagonistic activity of various single-strain and multi-strain probiotics against Escherichia coli. Int J Environ Res Public Health 15(7):1539PubMedCentralCrossRefGoogle Scholar
  103. 103.
    Kim Y, Mylonakis E (2012) Caenorhabditis elegans immune conditioning with the probiotic bacterium Lactobacillus acidophilus strain NCFM enhances Gram-positive immune responses. Infect Immun 80(7):2500–2508PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Kamaladevi A, Balamurugan K (2016) Lactobacillus casei triggers a TLR mediated RACK-1 dependent p38 MAPK pathway in Caenorhabditis elegans to resist Klebsiella pneumoniae infection. Food Funct 7(7):3211–3223PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Zhou M et al (2014) Investigation into in vitro and in vivo models using intestinal epithelial IPEC-J2 cells and Caenorhabditis elegans for selecting probiotic candidates to control porcine enterotoxigenic Escherichia coli. J Appl Microbiol 117(1):217–226PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Lee J et al (2015) Heat-killed Lactobacillus spp. cells enhance survivals of Caenorhabditis elegans against Salmonella and Yersinia infections. Lett Appl Microbiol 61(6):523–530PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124(4):783–801CrossRefGoogle Scholar
  108. 108.
    Tenor JL, Aballay A (2008) A conserved Toll-like receptor is required for Caenorhabditis elegans innate immunity. EMBO Rep 9(1):103–109PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Pujol N et al (2008) Anti-fungal innate immunity in C. elegans is enhanced by evolutionary diversification of antimicrobial peptides. PLoS Pathog 4(7):e1000105PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Yusuke K et al (2002) abf-1 and abf-2, ASABF-type antimicrobial peptide genes in Caenorhabditis elegans. Biochem J 361(2):221–230CrossRefGoogle Scholar
  111. 111.
    Ray PD, Huang B-W, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24(5):981–990PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Roos D, van Bruggen R, Meischl C (2003) Oxidative killing of microbes by neutrophils. Microbes Infect 5(14):1307–1315PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Chávez V et al (2007) Oxidative stress enzymes are required for DAF-16-mediated immunity due to generation of reactive oxygen species by Caenorhabditis elegans. Genetics 176(3):1567–1577PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Inoue H et al (2005) The C. elegans p38 MAPK pathway regulates nuclear localization of the transcription factor SKN-1 in oxidative stress response. Genes Dev 19(19):2278–2283PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Zou C-G et al (2013) The DAF-16/FOXO transcription factor functions as a regulator of epidermal innate immunity. PLoS Pathog 9(10):e1003660PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Meitzler JL, de Montellano PRO (2009) Caenorhabditis elegans and human dual oxidase 1 (DUOX1)“Peroxidase” domains INSIGHTS INTO HEME BINDING AND CATALYTIC ACTIVITY. J Biol Chem 284(28):18634–18643PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Miltsch SM, Seeberger PH, Lepenies B (2014) The C-type lectin-like domain containing proteins Clec-39 and Clec-49 are crucial for Caenorhabditis elegans immunity against Serratia marcescens infection. Dev Comp Immunol 45(1):67–73PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Portal-Celhay C, Bradley ER, Blaser MJ (2012) Control of intestinal bacterial proliferation in regulation of lifespan in Caenorhabditis elegans. BMC Microbiol 12(1):49PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Broderick NA (2016) Friend, foe or food? Recognition and the role of antimicrobial peptides in gut immunity and Drosophila–microbe interactions. Philos Trans R Soc B Biol Sci 371(1695):20150295CrossRefGoogle Scholar
  120. 120.
    Wen L et al (2008) Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature 455(7216):1109PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Qin J et al (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490(7418):55PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Frank DN et al (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci 104(34):13780–13785PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Cani PD et al (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet—induced obesity and diabetes in mice. Diabetes 57(6):1470–1481CrossRefGoogle Scholar
  124. 124.
    Lin J, Hackam DJ (2011) Worms, flies and four-legged friends: the applicability of biological models to the understanding of intestinal inflammatory diseases. Dis Models Mech 4(4):447–456CrossRefGoogle Scholar
  125. 125.
    Walker AK et al (2011) A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans. Cell 147(4):840–852PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Chan JP et al (2019) Using bacterial transcriptomics to investigate targets of host–bacterial interactions in Caenorhabditis elegans. Sci Rep 9(1):5545PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Garigan D et al (2002) Genetic analysis of tissue aging in Caenorhabditis elegans: a role for heat-shock factor and bacterial proliferation. Genetics 161(3):1101–1112PubMedPubMedCentralGoogle Scholar
  128. 128.
    McGee MD et al (2011) Loss of intestinal nuclei and intestinal integrity in aging C. elegans. Aging Cell 10(4):699–710PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Youngman MJ, Rogers ZN, Kim DH (2011) A decline in p38 MAPK signaling underlies immunosenescence in Caenorhabditis elegans. PLoS Genet 7(5):e1002082PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Rae R et al (2012) The importance of being regular: Caenorhabditis elegans and Pristionchus pacificus defecation mutants are hypersusceptible to bacterial pathogens. Int J Parasitol 42(8):747–753PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Yilmaz LS, Walhout AJ (2014) Worms, bacteria, and micronutrients: an elegant model of our diet. Trends Genet 30(11):496–503PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Asrar FM, O’Connor DL (2005) Bacterially synthesized folate and supplemental folic acid are absorbed across the large intestine of piglets. J Nutr Biochem 16(10):587–593PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Lakoff A et al (2014) Folate is absorbed across the human colon: evidence by using enteric-coated caplets containing 13C-labeled [6S]-5-formyltetrahydrofolate. Am J Clin Nutr 100(5):1278–1286PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Scott JM (1999) Folate and vitamin B 12. Proc Nutr Soc 58(2):441–448PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Virk B et al (2012) Excessive folate synthesis limits lifespan in the C. elegans: E. coli aging model. BMC Biol 10(1):67PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Melo JA, Ruvkun G (2012) Inactivation of conserved C. elegans genes engages pathogen-and xenobiotic-associated defenses. Cell 149(2):452–466PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Zhang Y, Lu H, Bargmann CI (2005) Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans. Nature 438(7065):179PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Chen Z et al (2013) Two insulin-like peptides antagonistically regulate aversive olfactory learning in C. elegans. Neuron 77(3):572–585PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Hirotsu T, Iino Y (2005) Neural circuit-dependent odor adaptation in C. elegans is regulated by the Ras-MAPK pathway. Genes Cells 10(6):517–530PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Oda S, Tomioka M, Iino Y (2011) Neuronal plasticity regulated by the insulin-like signaling pathway underlies salt chemotaxis learning in Caenorhabditis elegans. J Neurophysiol 106(1):301–308PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Lee K, Mylonakis E (2017) An intestine-derived neuropeptide controls avoidance behavior in Caenorhabditis elegans. Cell Rep 20(10):2501–2512PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Bernstein IL (1999) Taste aversion learning: a contemporary perspective. Nutrition 15(3):229–234PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Klemme I, Karvonen A (1838) Learned parasite avoidance is driven by host personality and resistance to infection in a fish–trematode interaction. Proc R Soc B Biol Sci 2016(283):20161148Google Scholar
  144. 144.
    Carew TJ, Sahley CL (1986) Invertebrate learning and memory: from behavior to molecules. Annu Rev Neurosci 9(1):435–487PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Ward-Fear G et al (2017) Eliciting conditioned taste aversion in lizards: live toxic prey are more effective than scent and taste cues alone. Integr Zool 12(2):112–120PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Darmaillacq A-S et al (2004) Rapid taste aversion learning in adult cuttlefish, Sepia officinalis. Anim Behav 68(6):1291–1298CrossRefGoogle Scholar
  147. 147.
    Lee JH et al (2017) Indole-associated predator–prey interactions between the nematode Caenorhabditis elegans and bacteria. Environ Microbiol 19(5):1776–1790PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Zaltieri M et al (2015) α-Synuclein and synapsin III cooperatively regulate synaptic function in dopamine neurons. J Cell Sci 128(13):2231–2243PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Watkins AL et al (2016) The prevalence and distribution of neurodegenerative compound-producing soil Streptomyces spp. Sci Rep 6:22566PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Ray A et al (2014) Mitochondrial dysfunction, oxidative stress, and neurodegeneration elicited by a bacterial metabolite in a C. elegans Parkinson’s model. Cell Death Dis 5(1):e984PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Chen SG et al (2016) Exposure to the functional bacterial amyloid protein curli enhances alpha-synuclein aggregation in aged fischer 344 rats and Caenorhabditis elegans. Sci Rep 6:34477PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Brooks KK, Liang B, Watts JL (2009) The influence of bacterial diet on fat storage in C. elegans. PLoS One 4(10):e7545PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Haiser HJ, Turnbaugh PJ (2012) Is it time for a metagenomic basis of therapeutics? Science 336(6086):1253–1255PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Shin N-R et al (2014) An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63(5):727–735PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Smith DL Jr et al (2010) Metformin supplementation and life span in Fischer-344 rats. J Gerontol Ser A Biomed Sci Med Sci 65(5):468–474CrossRefGoogle Scholar
  156. 156.
    Cabreiro F et al (2013) Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 153(1):228–239PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Ubeda C, Pamer EG (2012) Antibiotics, microbiota, and immune defense. Trends Immunol 33(9):459–466PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Maurice CF, Haiser HJ, Turnbaugh PJ (2013) Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 152(1–2):39–50PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Swem LR et al (2009) A quorum-sensing antagonist targets both membrane-bound and cytoplasmic receptors and controls bacterial pathogenicity. Mol Cell 35(2):143–153PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Moy TI et al (2006) Identification of novel antimicrobials using a live-animal infection model. Proc Natl Acad Sci 103(27):10414–10419PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Moy TI et al (2009) High-throughput screen for novel antimicrobials using a whole animal infection model. ACS Chem Biol 4(7):527–533PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Biagi E et al (2010) Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One 5(5):e10667PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Jeffery IB, Lynch DB, O’toole PW (2016) Composition and temporal stability of the gut microbiota in older persons. ISME J 10(1):170PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Lenaerts I et al (2008) Dietary restriction of Caenorhabditis elegans by axenic culture reflects nutritional requirement for constituents provided by metabolically active microbes. J Gerontol Ser A Biol Sci Med Sci 63(3):242–252CrossRefGoogle Scholar
  165. 165.
    MacNeil LT et al (2013) Diet-induced developmental acceleration independent of TOR and insulin in C. elegans. Cell 153(1):240–252PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Han B et al (2017) Microbial genetic composition tunes host longevity. Cell 169(7):1249–1262PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Sonowal R et al (2017) Indoles from commensal bacteria extend healthspan. Proc Natl Acad Sci 114:E7506PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Donato V et al (2017) Bacillus subtilis biofilm extends Caenorhabditis elegans longevity through downregulation of the insulin-like signalling pathway. Nat Commun 8:14332PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Liu H et al (2012) Escherichia coli noncoding RNAs can affect gene expression and physiology of Caenorhabditis elegans. Nat Commun 3:1073PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Larsen PL, Clarke CF (2002) Extension of life-span in Caenorhabditis elegans by a diet lacking coenzyme Q. Science 295(5552):120–123PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Saiki R et al (2008) Altered bacterial metabolism, not coenzyme Q content, is responsible for the lifespan extension in Caenorhabditis elegans fed an Escherichia coli diet lacking coenzyme Q. Aging Cell 7(3):291–304PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Baruah A et al (2014) CEP-1, the Caenorhabditis elegans p53 homolog, mediates opposing longevity outcomes in mitochondrial electron transport chain mutants. PLoS Genet 10(2):e1004097PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Govindan JA et al (2015) Dialogue between E. coli free radical pathways and the mitochondria of C. elegans. Proc Natl Acad Sci 112(40):12456–12461PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Yang W, Hekimi S (2010) A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans. PLoS Biol 8(12):e1000556PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Van Raamsdonk JM, Hekimi S (2012) Superoxide dismutase is dispensable for normal animal lifespan. Proc Natl Acad Sci 109(15):5785–5790PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Portal-Celhay C, Blaser MJ (2012) Competition and resilience between founder and introduced bacteria in the Caenorhabditis elegans gut. Infect Immun 80(3):1288–1299PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Kwon G, Lee J, Lim Y-H (2016) Dairy Propionibacterium extends the mean lifespan of Caenorhabditis elegans via activation of the innate immune system. Sci Rep 6:31713PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Grompone G et al (2012) Anti-inflammatory Lactobacillus rhamnosus CNCM I-3690 strain protects against oxidative stress and increases lifespan in Caenorhabditis elegans. PLoS One 7(12):e52493PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Nakagawa H et al (2016) Effects and mechanisms of prolongevity induced by Lactobacillus gasseri SBT2055 in Caenorhabditis elegans. Aging Cell 15(2):227–236PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Blackwell TK et al (2015) SKN-1/Nrf, stress responses, and aging in Caenorhabditis elegans. Free Radic Biol Med 88:290–301PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Bishop NA, Guarente L (2007) Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature 447(7144):545CrossRefGoogle Scholar
  182. 182.
    Taguchi K, Motohashi H, Yamamoto M (2011) Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution. Genes Cells 16(2):123–140PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Gerbaba TK et al (2015) Giardia duodenalis-induced alterations of commensal bacteria kill Caenorhabditis elegans: a new model to study microbial–microbial interactions in the gut. Am J Physiol Gastrointest Liver Physiol 308(6):G550–G561PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Cruz MR et al (2013) Enterococcus faecalis inhibits hyphal morphogenesis and virulence of Candida albicans. Infect Immun 81(1):189–200PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Lai C-H et al (2000) Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome Res 10(5):703–713PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Johnson SC, Rabinovitch PS, Kaeberlein M (2013) mTOR is a key modulator of ageing and age-related disease. Nature 493(7432):338PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Greer EL et al (2007) An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr Biol 17(19):1646–1656PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Tóth ML et al (2008) Longevity pathways converge on autophagy genes to regulate life span in Caenorhabditis elegans. Autophagy 4(3):330–338PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Jesudason MV, Balaji V, Densibai S (2006) Toxigenicity testing of clinical isolates of non-typhoidal salmonellae in Vero cell culture and Caenorhabditis elegans model. Indian J Med Res 123(6):821PubMedPubMedCentralGoogle Scholar
  190. 190.
    Kirienko NV et al (2013) Pseudomonas aeruginosa disrupts Caenorhabditis elegans iron homeostasis, causing a hypoxic response and death. Cell Host Microbe 13(4):406–416PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Spanier B et al (2010) Yersinia enterocolitica infection and tcaA-dependent killing of Caenorhabditis elegans. Appl Environ Microbiol 76(18):6277–6285PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Darby C et al (2002) Caenorhabditis elegans: plague bacteria biofilm blocks food intake. Nature 417(6886):243PubMedCrossRefPubMedCentralGoogle Scholar
  193. 193.
    Burlinson P et al (2013) Pseudomonas fluorescens NZI7 repels grazing by C. elegans, a natural predator. ISME J 7(6):1126PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Sivamaruthi BS et al (2011) Caenorhabditis elegans as a model for studying Cronobacter sakazakii ATCC BAA-894 pathogenesis. J Basic Microbiol 51(5):540–549PubMedCrossRefPubMedCentralGoogle Scholar
  195. 195.
    Sivamaruthi BS, Prasanth MI, Balamurugan K (2015) Alterations in Caenorhabditis elegans and Cronobacter sakazakii lipopolysaccharide during interaction. Arch Microbiol 197(2):327–337PubMedCrossRefPubMedCentralGoogle Scholar
  196. 196.
    Kurz CL et al (2003) Virulence factors of the human opportunistic pathogen Serratia marcescens identified by in vivo screening. EMBO J 22(7):1451–1460PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Sifri CD et al (2002) Virulence effect of Enterococcus faecalis protease genes and the quorum-sensing locus fsr in Caenorhabditis elegans and mice. Infect Immun 70(10):5647–5650PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Sahu SN et al (2012) Genomic analysis of immune response against Vibrio cholerae hemolysin in Caenorhabditis elegans. PLoS One 7(5):e38200PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Kamaladevi A et al (2013) Lactobacillus casei protects malathion induced oxidative stress and macromolecular changes in Caenorhabditis elegans. Pestic Biochem Physiol 105(3):213–223CrossRefGoogle Scholar
  200. 200.
    Martorell P et al (2016) Probiotic strain Bifidobacterium animalis subsp. lactis CECT 8145 reduces fat content and modulates lipid metabolism and antioxidant response in Caenorhabditis elegans. J Agric Food Chem 64(17):3462–3472PubMedCrossRefPubMedCentralGoogle Scholar
  201. 201.
    Fasseas MK et al (2013) Effects of Lactobacillus salivarius, Lactobacillus reuteri, and Pediococcus acidilactici on the nematode Caenorhabditis elegans include possible antitumor activity. Appl Microbiol Biotechnol 97(5):2109–2118PubMedCrossRefPubMedCentralGoogle Scholar
  202. 202.
    Murphy CT et al (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424(6946):277CrossRefGoogle Scholar
  203. 203.
    Medini K et al (2015) Chemical synthesis of A pore-forming antimicrobial protein, caenopore-5, by using native chemical ligation at a Glu–Cys site. ChemBioChem 16(2):328–336PubMedCrossRefPubMedCentralGoogle Scholar
  204. 204.
    Couillault C et al (2004) TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM. Nat Immunol 5:488PubMedCrossRefPubMedCentralGoogle Scholar
  205. 205.
    Zugasti O, Ewbank JJ (2009) Neuroimmune regulation of antimicrobial peptide expression by a noncanonical TGF-β signaling pathway in Caenorhabditis elegans epidermis. Nat Immunol 10(3):249–256PubMedCrossRefPubMedCentralGoogle Scholar
  206. 206.
    Nathoo AN et al (2001) Identification of neuropeptide-like protein gene families in Caenorhabditis elegans and other species. Proc Natl Acad Sci 98(24):14000–14005PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Arun Kumar
    • 1
  • Aiswarya Baruah
    • 2
  • Masahiro Tomioka
    • 3
  • Yuichi Iino
    • 3
    • 4
  • Mohan C. Kalita
    • 5
  • Mojibur Khan
    • 1
    Email author
  1. 1.Molecular Biology and Microbial Biotechnology Laboratory, Division of Life SciencesInstitute of Advanced Study in Science and Technology (IASST)GuwahatiIndia
  2. 2.Department of Agricultural BiotechnologyAssam Agricultural UniversityJorhatIndia
  3. 3.Department of Biological Sciences, Graduate School of ScienceThe University of TokyoTokyoJapan
  4. 4.JST, CRESTKawaguchiJapan
  5. 5.Department of BiotechnologyGauhati UniversityGuwahatiIndia

Personalised recommendations