Skip to main content
Log in

Bacterial stress defense: the crucial role of ribosome speed

  • Visions and reflections
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

In nature, bacteria are constantly adapting to various stressful conditions. Timely activation of stress response programs is crucial for bacteria to smoothly survive under stressful conditions. Stress response, demanding the de novo synthesis of many defense proteins, is generally activated at the transcriptional level by specific regulators. However, the effect of the global protein translational status on stress response has been largely overlooked. The translational capacity is limited by the number of translating ribosomes and the translational elongation rate. Recent work has shown that certain environmental stressors (e.g. oxidative stress) could severely compromise the stress response progress of bacteria by causing either slow-down or even complete stalling of the translational elongation process. The maintenance of ribosome elongation rate, being crucial for timely synthesis of stress defense proteins, becomes the physiological bottleneck that limits the survival of bacteria in some stressful conditions. Here, we briefly summarize some recent progress on the translational status of bacteria under two distinct stress conditions, nutrient deprivation and oxidative stress. We further discuss several important open questions on the translational regulation of bacteria during stress. The ribosome translation should be investigated in parallel with traditional transcriptional regulation in order to gain a better understanding on bacterial stress defense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ron EZ (2006) Bacterial stress response. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The pro-karyotes. Springer, New York, pp 1012–1027

    Google Scholar 

  2. Battesti A, Majdalani N, Gottesman S (2011) The RpoS-mediated general stress response in Escherichia coli. Annu Rev Microbiol 65:189–213

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Henggearonis R (1993) Survival of hunger and stress: the role of rpoS in early stationary phase gene regulation in E. coli. Cell 72(2):165–168

    CAS  Google Scholar 

  4. Hengge-Aronis R (1993) The Role of rpoS in early stationary-phase gene regulation in Escherichia coli K12. In: Kjelleberg S (ed) Starvation in bacteria. Springer, Boston, pp 171–200

    Google Scholar 

  5. Guisbert E, Yura T, Rhodius VA, Gross CA (2008) Convergence of molecular, modeling, and systems approaches for an understanding of the Escherichia coli heat shock response. Microbiol Mol Biol Rev 72(3):545–554

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Cornforth DM, Foster KR (2013) Competition sensing: the social side of bacterial stress responses. Nat Rev Microbiol 11(4):285–293

    CAS  PubMed  Google Scholar 

  7. Christman MF, Morgan RW, Jacobson FS, Ames BN (1985) Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cell 41(3):753–762

    CAS  PubMed  Google Scholar 

  8. Greenberg JT, Monach P, Chou JH, Josephy PD, Demple B (1990) Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proc Natl Acad Sci USA 87(16):6181–6185

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ezraty B, Gennaris A, Barras F, Collet JF (2017) Oxidative stress, protein damage and repair in bacteria. Nat Rev Microbiol 15(7):385

    CAS  PubMed  Google Scholar 

  10. Imlay JA (2013) The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol 11(7):443–454

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Imlay JA (2015) Transcription factors that defend bacteria against reactive oxygen species. Annu Rev Microbiol 69(1):93–108

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Moll I, Engelberg-Kulka H (2012) Selective translation during stress in Escherichia coli. Trends Biochem Sci 37(11):493–498

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Reeve CA, Amy PS, Matin A (1984) Role of protein synthesis in the survival of carbon-starved Escherichia coli K-12. J Bacteriol 160(3):1041–1046

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Klumpp S, Scott M, Pedersen S, Hwa T (2013) Molecular crowding limits translation and cell growth. Proc Natl Acad Sci USA 110(42):16754–16759

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Basan M et al (2015) Inflating bacterial cells by increased protein synthesis. Mol Syst Biol 11(10):836

    PubMed  PubMed Central  Google Scholar 

  16. Zhu M, Dai X (2018) On the intrinsic constraint of bacterial growth rate: M. tuberculosis’s view of the protein translation capacity. Crit Rev Microbiol 44(4):455–464

    CAS  PubMed  Google Scholar 

  17. Bremer H, Dennis PP (1996) Modulation of chemical composition and other parameters of the cell at different exponential growth rates. In: Neidhardt FC (ed) Escherichia coli and Salmonella, 2nd edn. American Society for Microbiology, Washington, pp 1553–1569

    Google Scholar 

  18. Dai X et al (2018) Slowdown of translational elongation in Escherichia coli under hyperosmotic stress. mBio 9(1):02375-18

    Google Scholar 

  19. Dai X et al (2016) Reduction of translating ribosomes enables Escherichia coli to maintain elongation rates during slow growth. Nat Microbiol 2:16231

    PubMed  PubMed Central  Google Scholar 

  20. Li SH et al (2018) Escherichia coli translation strategies differ across carbon, nitrogen and phosphorus limitation conditions. Nat Microbiol 3(8):939–947

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Iyer S, Le D, Park BR, Kim M (2018) Distinct mechanisms coordinate transcription and translation under carbon and nitrogen starvation in Escherichia coli. Nat Microbiol 3(6):741

    CAS  PubMed  Google Scholar 

  22. Vogel U, Sorensen M, Pedersen S, Jensen KF, Kilstrup M (1992) Decreasing transcription elongation rate in Escherichia coli exposed to amino acid starvation. Mol Microbiol 6(15):2191–2200

    CAS  PubMed  Google Scholar 

  23. Zhu M, Dai X (2019) Maintenance of translational elongation rate underlies the survival of Escherichia coli during oxidative stress. Nucleic Acids Res gkz467 47(14):7592–7604

    Google Scholar 

  24. Zhu M, Dai X, Wang YP (2016) Real time determination of bacterial in vivo ribosome translation elongation speed based on LacZα complementation system. Nucleic Acids Res 44(20):e155

    PubMed  PubMed Central  Google Scholar 

  25. Kolter R, Siegele DA, Tormo A (1993) The stationary phase of bacteiral life cycles. Annu Rev Microbiol 47(1):855–874

    CAS  PubMed  Google Scholar 

  26. Nyström T (2004) Stationary-phase physiology. Annu Rev Microbiol 58(1):161–181

    PubMed  Google Scholar 

  27. Nystrom T, Flardh K, Kjelleberg S (1990) Responses to multiple-nutrient starvation in marine Vibrio sp. strain CCUG 15956. J Bacteriol 172(12):7085–7097

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Svenningsen SL, Kongstad M, Stenum TS, Muñoz-Gómez AJ, Sørensen MA (2017) Transfer RNA is highly unstable during early amino acid starvation in Escherichia coli. Nucleic Acids Res 45(2):793

    PubMed  Google Scholar 

  29. Potrykus K, Cashel M (2008) (p)ppGpp: still magical? Annu Rev Microbiol 62:35–51

    CAS  PubMed  Google Scholar 

  30. Prossliner T, Skovbo Winther K, Sorensen MA, Gerdes K (2018) Ribosome Hibernation. Annu Rev Genet 52:321–348

    CAS  PubMed  Google Scholar 

  31. Baracchini E, Bremer H (1988) Stringent and growth control of rRNA synthesis in Escherichia coli are both mediated by ppGpp. J Biol Chem 263(6):2597–2602

    CAS  PubMed  Google Scholar 

  32. Hauryliuk V, Atkinson GC, Murakami KS, Tenson T, Gerdes K (2015) Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nat Rev Microbiol 13(5):298–309

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhu M, Dai X (2019) Growth suppression by altered (p)ppGpp level results from non-optimal resource allocation in Escherichia coli. Nucleic Acids Res gkz211 47(9):4684–4693

    CAS  Google Scholar 

  34. Zhu M, Pan Y, Dai X (2019) (p)ppGpp: the magic governor of bacterial growth economy. Curr Genet 65(5):1121–1125

    CAS  PubMed  Google Scholar 

  35. Wada A (1998) Growth phase coupled modulation of Escherichia coli ribosomes. Genes Cells 3(4):203–208

    CAS  PubMed  Google Scholar 

  36. Milon P et al (2006) The nucleotide-binding site of bacterial translation initiation factor 2 (IF2) as a metabolic sensor. Proc Natl Acad Sci USA 103(38):13962–13967

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Mori M, Schink S, Erickson DW, Gerland U, Hwa T (2017) Quantifying the benefit of a proteome reserve in fluctuating environments. Nat Commun 8(1):1225

    PubMed  PubMed Central  Google Scholar 

  38. Aiso T, Yoshida H, Wada A, Ohki R (2005) Modulation of mRNA stability participates in stationary-phase-specific expression of ribosome modulation factor. J Bacteriol 187(6):1951–1958

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Burton NA et al (2014) Disparate impact of oxidative host defenses determines the fate of Salmonella during systemic infection in mice. Cell Host Microbe 15(1):72–83

    CAS  PubMed  Google Scholar 

  40. Zheng M et al (2001) DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J Bacteriol 183(15):4562–4570

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324(5924):218–223

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Brar GA, Weissman JS (2015) Ribosome profiling reveals the what, when, where and how of protein synthesis. Nat Rev Mol Cell Biol 16(11):651–664

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ingolia NT (2014) Ribosome profiling: new views of translation, from single codons to genome scale. Nat Rev Genet 15(3):205–213

    CAS  PubMed  Google Scholar 

  44. Li GW, Burkhardt D, Gross C, Weissman JS (2014) Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell 157(3):624–635

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Li GW (2015) How do bacteria tune translation efficiency? Curr Opin Microbiol 24:66–71

    PubMed  PubMed Central  Google Scholar 

  46. Pedersen S (1984) Escherichia coli ribosomes translate in vivo with variable rate. EMBO J 3(12):2895–2898

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Sorensen MA, Kurland CG, Pedersen S (1989) Codon usage determines translation rate in Escherichia coli. J Mol Biol 207(2):365–377

    CAS  PubMed  Google Scholar 

  48. Sorensen MA, Pedersen S (1991) Absolute in vivo translation rates of individual codons in Escherichia coli. The two glutamic acid codons GAA and GAG are translated with a threefold difference in rate. J Mol Biol 222(2):265–280

    CAS  PubMed  Google Scholar 

  49. Li GW, Oh E, Weissman JS (2012) The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria. Nature 484(7395):538–541

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gerashchenko MV, Lobanov AV, Gladyshev VN (2012) Genome-wide ribosome profiling reveals complex translational regulation in response to oxidative stress. Proc Natl Acad Sci USA 109(43):17394–17399

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu B, Han Y, Qian SB (2013) Cotranslational response to proteotoxic stress by elongation pausing of ribosomes. Mol Cell 49(3):453–463

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Shalgi R et al (2013) Widespread regulation of translation by elongation pausing in heat shock. Mol Cell 49(3):439–452

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Proshkin S, Rahmouni AR, Mironov A, Nudler E (2010) Cooperation between translating ribosomes and RNA polymerase in transcription elongation. Science 328(5977):504–508

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Newton WA, Beckwith JR, Zipser D, Brenner S (1965) Nonsense mutants and polarity in the lac operon of Escherichia coli. J Mol Biol 14(1):290–296

    CAS  PubMed  Google Scholar 

  55. Adhya S, Gottesman M (1978) Control of transcription termination. Annu Rev Biochem 47:967–996

    CAS  PubMed  Google Scholar 

  56. Elgamal S, Artsimovitch I, Ibba M (2016) Maintenance of transcription–translation coupling by elongation factor P. mBio 7(5):e01373-16

    Google Scholar 

  57. Zhu M, Mori M, Hwa T, Dai X (2019) Disruption of transcription-translation coordination in Escherichia coli leads to premature transcriptional termination. Nat Microbiol. https://doi.org/10.1038/s41564-019-0543-1

    Article  PubMed  PubMed Central  Google Scholar 

  58. Iyer S, Le D, Park BR, Kim M (2018) Distinct mechanisms coordinate transcription and translation under carbon and nitrogen starvation in Escherichia coli. Nat Microbiol 3(6):741

    CAS  PubMed  Google Scholar 

  59. Vogel U, Jensen KF (1994) Effects of guanosine 3′,5′-bisdiphosphate (ppGpp) on rate of transcription elongation in isoleucine-starved Escherichia coli. J Biol Chem 269(23):16236–16241

    CAS  PubMed  Google Scholar 

  60. Davies KJ (2010) Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life 50(4–5):279–289

    Google Scholar 

  61. Nawrot B, Sochacka E, Düchler M (2011) tRNA structural and functional changes induced by oxidative stress. Cell Mol Life Sci 68(24):4023–4032

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Fund of China (No. 31700089, No. 31970027, No. 31700039 and No. 31870028) and by self-determined research funds of CCNU from the colleges’ basic research and operation of MOE (CCNU18QN028, CCNU18KFY01, CCNU19TS028 and CCNU18ZDPY05).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manlu Zhu or Xiongfeng Dai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Dai, X. Bacterial stress defense: the crucial role of ribosome speed. Cell. Mol. Life Sci. 77, 853–858 (2020). https://doi.org/10.1007/s00018-019-03304-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03304-0

Keywords

Navigation