Skip to main content

Advertisement

Log in

The Drosophila odorant-binding protein 28a is involved in the detection of the floral odour ß-ionone

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Odorant-binding proteins (OBPs) are small soluble proteins that are thought to transport hydrophobic odorants across the aqueous sensillar lymph to olfactory receptors. A recent study revealed that OBP28a, one of the most abundant Drosophila OBPs, is not required for odorant transport, but acts in buffering rapid odour variation in the odorant environment. To further unravel and decipher its functional role, we expressed recombinant OBP28a and characterized its binding specificity. Using a fluorescent binding assay, we found that OBP28a binds a restricted number of floral-like chemicals, including ß-ionone, with an affinity in the micromolar range. We solved the X-ray crystal structure of OBP28a, which showed extensive conformation changes upon ligand binding. Mutant flies genetically deleted for the OBP28a gene showed altered responses to ß-ionone at a given concentration range, supporting its essential role in the detection of specific compounds present in the natural environment of the fly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

OBPs:

Odorant-binding proteins

OSNs:

Olfactory-sensory neurons

Ors:

Odorant receptors

cVA:

Cis-vaccenyl acetate

RPLC:

Reverse-phase liquid chromatography

CD:

Circular dichroism

SEC:

Size-exclusion chromatography

MALS:

Multi-angle laser light scattering

1PE:

Pentaethylene glycol

NPN:

N-phenyl-1-naphthylamine

SSR:

Single-sensillum recording

lmadPBP:

Pheromone-binding protein from Leucophaea maderae

dmelOBP76a:

Odorant-binding protein 76a from D. melanogaster

amelASP1:

Pheromone-binding protein 1 from Apis mellifera

amelOBP14:

Odorant-binding protein 14 from Apis mellifera

bmorPBP:

Pheromone-binding protein from Bombyx mori

agamOBP1:

Odorant-binding protein 1 from Anopheles gambiae

cquiOBP1:

Odorant-binding protein 1 from Culex pipiens quinquefasciatus

BMGY:

Buffered minimal glycerol

YNB:

Yeast nitrogen base

BMM:

Buffered minimal methanol

References

  1. de Bruyne M, Foster K, Carlson JR (2001) Odor coding in the Drosophila antenna. Neuron 30:537–552. https://doi.org/10.1016/S0896-6273(01)00289-6

    Article  PubMed  Google Scholar 

  2. Ai M, Min S, Grosjean Y et al (2010) Acid sensing by the Drosophila olfactory system. Nature 468:691–695. https://doi.org/10.1038/nature09537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yao CA, Ignell R, Carlson JR (2005) Chemosensory coding by neurons in the coeloconic sensilla of the Drosophila antenna. J Neurosci 25:8359–8367. https://doi.org/10.1523/JNEUROSCI.2432-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Clyne P, Grant A, O’Connell R, Carlson JR (1997) Odorant response of individual sensilla on the Drosophila antenna. Invertebr Neurosci 3:127–135. https://doi.org/10.1007/BF02480367

    Article  CAS  Google Scholar 

  5. Dweck HKM, Ebrahim SAM, Thoma M et al (2015) Pheromones mediating copulation and attraction in Drosophila. Proc Natl Acad Sci 112:E2829–E2835. https://doi.org/10.1073/pnas.1504527112

    Article  CAS  PubMed  Google Scholar 

  6. Younus F, Fraser NJ, Coppin CW et al (2017) Molecular basis for the behavioral effects of the odorant degrading enzyme Esterase 6 in Drosophila. Sci Rep 7:1–12. https://doi.org/10.1038/srep46188

    Article  CAS  Google Scholar 

  7. Larsson MC, Domingos AI, Jones WD et al (2004) Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43:703–714

    Article  CAS  Google Scholar 

  8. Benton R, Sachse S, Michnick SW, Vosshall LB (2006) Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol 4:240–257. https://doi.org/10.1109/ICARCV.2014.7064338

    Article  CAS  Google Scholar 

  9. Benton R, Vannice KS, Gomez-Diaz C, Vosshall LB (2009) Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell 136:149–162. https://doi.org/10.1016/j.cell.2008.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hussain A, Zhang M, Üçpunar HK et al (2016) Ionotropic chemosensory receptors mediate the taste and smell of polyamines. PLoS Biol 14:e1002454. https://doi.org/10.1371/journal.pbio.1002454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Galindo K, Smith DP (2001) A large family of divergent Drosophila odorant-binding proteins expressed in gustatory and olfactory sensilla. Genetics 159:1059–1072

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hekmat-Scafe DS, Scafe CR, McKinney AJ, Tanouye MA (2002) Genome-wide analysis of the odorant-binding protein gene family in Drosophila melanogaster. Genome Res 12:1357–1369. https://doi.org/10.1101/gr.239402.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vieira FG, Rozas J (2011) Comparative genomics of the odorant-binding and chemosensory protein gene families across the arthropoda: origin and evolutionary history of the chemosensory system. Genome Biol Evol 3:476–490. https://doi.org/10.1093/gbe/evr033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Anholt RRH, Williams TI (2010) The soluble proteome of the Drosophila antenna. Chem Senses 35:21–30. https://doi.org/10.1093/chemse/bjp073

    Article  CAS  PubMed  Google Scholar 

  15. Leal WS (2013) Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol 58:373–391. https://doi.org/10.1146/annurev-ento-120811-153635

    Article  CAS  PubMed  Google Scholar 

  16. Pelosi P, Iovinella I, Zhu J et al (2018) Beyond chemoreception: diverse tasks of soluble olfactory proteins in insects. Biol Rev 93:184–200. https://doi.org/10.1111/brv.12339

    Article  PubMed  Google Scholar 

  17. Pelosi P, Zhou JJ, Ban LP, Calvello M (2006) Soluble proteins in insect chemical communication. Cell Mol Life Sci 63:1658–1676. https://doi.org/10.1007/s00018-005-5607-0

    Article  CAS  PubMed  Google Scholar 

  18. Wu Z, Lin J, Zhang H, Zeng X (2016) BdorOBP83a-2 mediates responses of the oriental fruit fly to semiochemicals. Front Physiol 7:1–15. https://doi.org/10.3389/fphys.2016.00452

    Article  CAS  Google Scholar 

  19. Jeong YT, Shim J, Oh SR et al (2013) An odorant-binding protein required for suppression of sweet taste by bitter chemicals. Neuron 79:725–737. https://doi.org/10.1016/j.neuron.2013.06.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Horst R, Damberger F, Luginbühl P et al (2001) NMR structure reveals intramolecular regulation mechanism for pheromone binding and release. Proc Natl Acad Sci 98:14374–14379. https://doi.org/10.1073/pnas.251532998

    Article  CAS  PubMed  Google Scholar 

  21. Kruse SW, Zhao R, Smith DP, Jones DNM (2003) Structure of a specific alcohol-binding site defined by the odorant binding protein LUSH from Drosophila melanogaster. Nat Struct Biol 10:694–700. https://doi.org/10.1038/nsb960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lartigue A, Gruez A, Briand L et al (2004) Sulfur single-wavelength anomalous diffraction crystal structure of a pheromone-binding protein from the honeybee Apis mellifera L. J Biol Chem 279:4459–4464. https://doi.org/10.1074/jbc.M311212200

    Article  CAS  PubMed  Google Scholar 

  23. Wogulis M, Morgan T, Ishida Y et al (2006) The crystal structure of an odorant binding protein from Anopheles gambiae: evidence for a common ligand release mechanism. Biochem Biophys Res Commun 339:157–164. https://doi.org/10.1016/j.bbrc.2005.10.191

    Article  CAS  PubMed  Google Scholar 

  24. Lescop E, Briand L, Pernollet JC, Guittet E (2009) Structural basis of the broad specificity of a general odorant-binding protein from honeybee. Biochemistry 48:2431–2441. https://doi.org/10.1021/bi802300k

    Article  CAS  PubMed  Google Scholar 

  25. Fan J, Francis F, Liu Y et al (2011) An overview of odorant-binding protein functions in insect peripheral olfactory reception. Genet Mol Res 10:3056–3069. https://doi.org/10.4238/2011.December.8.2

    Article  CAS  PubMed  Google Scholar 

  26. Swarup S, Williams TI, Anholt RRH (2011) Functional dissection of Odorant binding protein genes in Drosophila melanogaster. Gene Brain Behav 10:648–657. https://doi.org/10.1111/j.1601-183X.2011.00704.x

    Article  CAS  Google Scholar 

  27. Laughlin JD, Ha TS, Jones DNM, Smith DP (2008) Activation of pheromone-sensitive neurons is mediated by conformational activation of pheromone-binding protein. Cell 133:1255–1265. https://doi.org/10.1016/j.cell.2008.04.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gomez-Diaz C, Reina JH, Cambillau C, Benton R (2013) Ligands for pheromone-sensing neurons are not conformationally activated odorant binding proteins. PLoS Biol 11:e1001546. https://doi.org/10.1371/journal.pbio.1001546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bentzur A, Shmueli A, Omesi L et al (2018) Odorant binding protein 69a connects social interaction to modulation of social responsiveness in Drosophila. PLoS Genet 14:e1007328. https://doi.org/10.1371/journal.pgen.1007328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Matsuo T, Sugaya S, Yasukawa J et al (2007) Odorant-binding proteins OBP57d and OBP57e affect taste perception and host-plant preference in Drosophila sechellia. PLoS Biol 5:0985–0996. https://doi.org/10.1371/journal.pbio.0050118

    Article  CAS  Google Scholar 

  31. Sun JS, Larter NK, Chahda S et al (2018) Humidity response depends on the small soluble protein Obp59a in Drosophila. eLife7 7:39249. https://doi.org/10.7554/eLife.39249

    Article  Google Scholar 

  32. Larter NK, Sun JS, Carlson JR (2016) Organization and function of Drosophila odorant binding proteins. Elife 5:e20242. https://doi.org/10.7554/eLife.20242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Briand L, Perez V, Huet JC et al (1999) Optimization of the production of a honeybee odorant-binding protein by Pichia pastoris. Protein Expr Purif 15:362–369. https://doi.org/10.1006/prep.1998.1027

    Article  CAS  PubMed  Google Scholar 

  34. Briand L, Swasdipan N, Nespoulous C et al (2002) Characterization of a chemosensory protein (ASP3c) from honeybee (Apis mellifera L.) as a brood pheromone carrier. Eur J Biochem 269:4586–4596. https://doi.org/10.1046/j.1432-1033.2002.03156.x

    Article  CAS  PubMed  Google Scholar 

  35. Qiao H, He X, Schymura D et al (2011) Cooperative interactions between odorant-binding proteins of Anopheles gambiae. Cell Mol Life Sci 68:1799–1813. https://doi.org/10.1007/s00018-010-0539-8

    Article  CAS  PubMed  Google Scholar 

  36. Stensmyr MC, Dweck HKM, Farhan A et al (2012) A Conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila. Cell 151:1345–1357. https://doi.org/10.1016/j.cell.2012.09.046

    Article  CAS  PubMed  Google Scholar 

  37. Dweck HKM, Ebrahim SAM, Khallaf MA et al (2016) Olfactory channels associated with the Drosophila maxillary palp mediate short- and long-range attraction. Elife 5:e14925

    Article  Google Scholar 

  38. Vogt RG, Rybczynski R, Lerner MR (1991) Molecular cloning and sequencing of general odorant-binding proteins GOBP1 and GOBP2 from the tobacco hawk moth Manduca sexta: comparisons with other insect OBPs and their signal peptides. J Neurosci 11:2972–2984

    Article  CAS  Google Scholar 

  39. Pelosi P, Maida R (1995) Odorant-binding proteins in insects. Comp Biochem Physiol B Biochem Mol Biol 111:503–514. https://doi.org/10.1016/0305-0491(95)00019-5

    Article  CAS  PubMed  Google Scholar 

  40. Steinbrecht RA, Laue M, Ziegelberger G (1995) Immunolocalization of insect odorant-binding proteins—a comparative-study. Chem Senses 20:109–110

    Google Scholar 

  41. Krieger J, von Nickisch-Rosenegk E, Mameli M et al (1996) Binding proteins from the antennae of Bombyx mori. Insect Biochem Mol Biol 26:297–307. https://doi.org/10.1016/0965-1748(95)00096-8

    Article  CAS  PubMed  Google Scholar 

  42. Sun JS, Xiao S, Carlson JR (2018) The diverse small proteins called odorant-binding proteins. R Soc Open Biol 8:180–208. https://doi.org/10.1098/rsob.180208

    Article  CAS  Google Scholar 

  43. Ban L, Scaloni A, D’Ambrosio C et al (2003) Biochemical characterization and bacterial expression of an odorant-binding protein from Locusta migratoria. Cell Mol Life Sci 60:390–400. https://doi.org/10.1007/s000180300032

    Article  CAS  PubMed  Google Scholar 

  44. Honson N, Johnson MA, Oliver JE et al (2003) Structure-activity studies with pheromone-binding proteins of the gypsy moth, Lymantria dispar. Chem Senses 28:479–489. https://doi.org/10.1093/chemse/28.6.479

    Article  CAS  PubMed  Google Scholar 

  45. Andronopoulou E, Labropoulou V, Douris V et al (2006) Specific interactions among odorant-binding proteins of the African malaria vector Anopheles gambiae. Insect Mol Biol 15:797–811. https://doi.org/10.1111/j.1365-2583.2006.00685.x

    Article  PubMed  Google Scholar 

  46. Lartigue A, Gruez A, Spinelli S et al (2003) The Crystal structure of a cockroach pheromone-binding protein suggests a new ligand binding and release mechanism. J Biol Chem 278:30213–30218. https://doi.org/10.1074/jbc.m304688200

    Article  CAS  PubMed  Google Scholar 

  47. Spinelli S, Lagarde A, Iovinella I et al (2012) Crystal structure of Apis mellifera OBP14, a C-minus odorant-binding protein, and its complexes with odorant molecules. Insect Biochem Mol Biol 42:41–50. https://doi.org/10.1016/j.ibmb.2011.10.005

    Article  CAS  PubMed  Google Scholar 

  48. Tsitsanou KE, Thireou T, Drakou CE et al (2012) Anopheles gambiae odorant binding protein crystal complex with the synthetic repellent DEET: implications for structure-based design of novel mosquito repellents. Cell Mol Life Sci 69:283–297. https://doi.org/10.1007/s00018-011-0745-z

    Article  CAS  PubMed  Google Scholar 

  49. Drakou CE, Tsitsanou KE, Potamitis C et al (2016) The crystal structure of the AgamOBP1•Icaridin complex reveals alternative binding modes and stereo-selective repellent recognition. Cell Mol Life Sci 74:319–338. https://doi.org/10.1007/s00018-016-2335-6

    Article  CAS  PubMed  Google Scholar 

  50. Mao Y, Xu X, Xu W et al (2010) Crystal and solution structures of an odorant-binding protein from the southern house mosquito complexed with an oviposition pheromone. Proc Natl Acad Sci 107:19102–19107. https://doi.org/10.1073/pnas.1012274107

    Article  PubMed  Google Scholar 

  51. Damberger FF, Michel E, Ishida Y et al (2013) Pheromone discrimination by a pH-tuned polymorphism of the Bombyx mori pheromone-binding protein. Proc Natl Acad Sci 110:18680–18685. https://doi.org/10.1073/pnas.1317706110

    Article  CAS  PubMed  Google Scholar 

  52. Leite NR, Krogh R, Xu W et al (2009) Structure of an odorant-binding protein from the mosquito Aedes aegypti suggests a binding pocket covered by a pH-sensitive “Lid”. PLoS One 4:e8006. https://doi.org/10.1371/journal.pone.0008006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ziemba BP, Murphy EJ, Edlin HT, Jones DNM (2013) A novel mechanism of ligand binding and release in the odorant binding protein 20 from the malaria mosquito Anopheles gambiae. Protein Sci 22:11–21. https://doi.org/10.1002/pro.2179

    Article  CAS  PubMed  Google Scholar 

  54. Shiota Y, Sakurai T, Daimon T et al (2018) In vivo functional characterisation of pheromone binding protein-1 in the silkmoth, Bombyx mori. Sci Rep 8:13529. https://doi.org/10.1038/s41598-018-31978-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Danty E, Briand L, Michard-Vanhée C et al (1999) Cloning and expression of a queen pheromone-binding protein in the honeybee: an olfactory-specific, developmentally regulated protein. J Neurosci 19:7468–7475. https://doi.org/10.1523/JNEUROSCI.19-17-07468.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schägger H (2006) Tricine–SDS-PAGE. Nat Protoc 1:16–22. https://doi.org/10.1038/nprot.2006.4

    Article  CAS  PubMed  Google Scholar 

  57. Whitmore L, Wallace BA (2004) DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucl Acids Res 32:W668–W673. https://doi.org/10.1093/nar/gkh371

    Article  CAS  PubMed  Google Scholar 

  58. Kabsch W (2010) XDS. Acta Crystallogr Sect D Biol Crystallogr 66:125–132. https://doi.org/10.1107/S0907444909047337

    Article  CAS  Google Scholar 

  59. Keegan RM, Winn MD (2007) MrBUMP: an automated pipeline for molecular replacement. Acta Crystallogr Sect D: Biol Crystallogr 64:119–124. https://doi.org/10.1107/S0907444907037195

    Article  CAS  Google Scholar 

  60. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr Sect D: Biol Crystallogr 60:2126–2132. https://doi.org/10.1107/S0907444904019158

    Article  CAS  Google Scholar 

  61. Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr Sect D: Biol Crystallogr 53:240–255. https://doi.org/10.1107/S0907444996012255

    Article  CAS  Google Scholar 

  62. Adams PD, Grosse-Kunstleve RW, Hung LW et al (2002) PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr Sect D: Biol Crystallogr 58:1948–1954. https://doi.org/10.1107/S0907444902016657

    Article  CAS  Google Scholar 

  63. Urzhumtseva L, Afonine PV, Adams PD, Urzhumtsev A (2009) Crystallographic model quality at a glance. Acta Crystallogr Sect D: Biol Crystallogr 65:297–300. https://doi.org/10.1107/S0907444908044296

    Article  CAS  Google Scholar 

  64. van Aalten DMF, Bywater R, Findlay JB et al (1996) PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. J Comput Aided Mol Des 10:255–262. https://doi.org/10.1007/BF00355047

    Article  PubMed  Google Scholar 

  65. Liang J, Edelsbrunner H, Woodward C (1998) Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design. Protein Sci 7:1884–1897. https://doi.org/10.1002/pro.5560070905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  67. Stensmyr MC, Dekker T, Hansson BS (2003) Evolution of the olfactory code in the Drosophila melanogaster subgroup. Proc R Soc B Biol Sci 270:2333–2340. https://doi.org/10.1098/rspb.2003.2512

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. J. R. Carlson for Drosophila lines; Dr. C. Everaerts for help with the statistics; and Dr. T. Tanimura for discussion and critical reading. The ESRF is acknowledged for access to beamlines via its in-house research program. Mass spectrometry experiments were performed by the Plateforme d’Analyse Protéomique de Paris Sud-Ouest (PAPPSO, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France).

Funding

This work was partly supported by grants from the Institut National de la Recherche Agronomique, of the Centre National de la Recherche Scientifique, of the Université de Bourgogne-Franche Comté, the Bourgogne-Franche Comté Regional Council (PARI 2010–2011–2012, AGRALE1 Project), and a postdoctoral fellowship from the Bourgogne Regional Council (D.G.). Fellowship for PhD to K.R. (INRA + Bourgogne-Franche Comté Regional Council).

Author information

Authors and Affiliations

Authors

Contributions

JFF and LB designed the research. DG, KR, FN, NP, SF, GG, and TC performed the research. DG, KR, FN, SF, GG, TC, and MM analysed the data. The manuscript was written by DG, KR, JFF, and LB. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Loïc Briand.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez, D., Rihani, K., Neiers, F. et al. The Drosophila odorant-binding protein 28a is involved in the detection of the floral odour ß-ionone. Cell. Mol. Life Sci. 77, 2565–2577 (2020). https://doi.org/10.1007/s00018-019-03300-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03300-4

Keywords

Navigation