Skip to main content
Log in

Auditory function and dysfunction: estrogen makes a difference

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Estrogen is the major female hormone involved in reproductive functions, but it also exerts a variety of additional roles in non-reproductive organs. In this review, we highlight the preclinical and clinical studies that have pointed out sex differences and estrogenic influence on audition. We also describe the experimental evidences supporting a protective role of estrogen towards acquired forms of hearing loss. Although a high level of endogenous estrogen is associated with a better hearing function, hormonal treatments at menopause have provided contradictory outcomes. The various factors that are likely to explain these discrepancies include the treatment regimen as well as the hormonal status and responsiveness of the patients. The complexity of estrogen signaling is being untangled and many downstream effectors of its genomic and non-genomic actions have been identified in other systems. Based on these advances and on the common physio-pathological events that underlie age-related, drug or noise-induced hearing loss, we discuss potential mechanisms for their protective actions in the cochlea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Roth TN (2015) Aging of the auditory system. Handb Clin Neurol 129:357–373

    PubMed  Google Scholar 

  2. Davis A, McMahon CM, Pichora-Fuller KM, Russ S, Lin F, Olusanya BO, Chadha S, Tremblay KL (2016) Aging and hearing health: the life-course approach. Gerontologist 56(Suppl 2):S256–S267

    PubMed  PubMed Central  Google Scholar 

  3. Kim SY, Lim JS, Kong IG, Choi HG (2018) Hearing impairment and the risk of neurodegenerative dementia: a longitudinal follow-up study using a national sample cohort. Sci Rep 8:15266

    PubMed  PubMed Central  Google Scholar 

  4. Lin FR et al (2013) Hearing loss and cognitive decline in older adults. JAMA Intern Med 173:293–299

    Google Scholar 

  5. Gruber CJ, Tschugguel W, Schneeberger C, Huber JC (2002) Production and actions of estrogens. N Engl J Med 346:340–352

    CAS  PubMed  Google Scholar 

  6. Barakat R, Oakley O, Kim H, Jin J, Ko CJ (2016) Extra-gonadal sites of estrogen biosynthesis and function. BMB Rep 49:488–496

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Tremere LA, Burrows K, Jeong JK, Pinaud R (2011) Organization of estrogen-associated circuits in the mouse primary auditory cortex. J Exp Neurosci 2011:45–60

    PubMed  PubMed Central  Google Scholar 

  8. Caras ML (2013) Estrogenic modulation of auditory processing: a vertebrate comparison. Front Neuroendocrinol 34:285–299

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Maney DL, Pinaud R (2011) Estradiol-dependent modulation of auditory processing and selectivity in songbirds. Front Neuroendocrinol 32:287–302

    CAS  PubMed  Google Scholar 

  10. Remage-Healey L, Saldanha CJ, Schlinger BA (2011) Estradiol synthesis and action at the synapse: evidence for “synaptocrine” signaling. Front Endocrinol (Lausanne) 2:28

    Google Scholar 

  11. Forlano PM, Deitcher DL, Bass AH (2005) Distribution of estrogen receptor alpha mRNA in the brain and inner ear of a vocal fish with comparisons to sites of aromatase expression. J Comp Neurol 483:91–113

    CAS  PubMed  Google Scholar 

  12. Yasar P, Ayaz G, User SD, Gupur G, Muyan M (2017) Molecular mechanism of estrogen-estrogen receptor signaling. Reprod Med Biol 16:4–20

    CAS  PubMed  Google Scholar 

  13. Arnal JF et al (2017) Membrane and nuclear estrogen receptor alpha actions: from tissue specificity to medical implications. Physiol Rev 97:1045–1087

    PubMed  Google Scholar 

  14. Levin ER, Hammes SR (2016) Nuclear receptors outside the nucleus: extranuclear signalling by steroid receptors. Nat Rev Mol Cell Biol 17:783–797

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Motohashi R, Takumida M, Shimizu A, Konomi U, Fujita K, Hirakawa K, Suzuki M, Anniko M (2010) Effects of age and sex on the expression of estrogen receptor alpha and beta in the mouse inner ear. Acta Otolaryngol 130:204–214

    CAS  PubMed  Google Scholar 

  16. Stenberg AE, Wang H, Sahlin L, Hultcrantz M (1999) Mapping of estrogen receptors alpha and beta in the inner ear of mouse and rat. Hear Res 136:29–34

    CAS  PubMed  Google Scholar 

  17. Stenberg AE, Wang H, Sahlin L, Stierna P, Enmark E, Hultcrantz M (2002) Estrogen receptors alpha and beta in the inner ear of the ‘Turner mouse’ and an estrogen receptor beta knockout mouse. Hear Res 166:1–8

    CAS  PubMed  Google Scholar 

  18. Simonoska R, Stenberg AE, Duan M, Yakimchuk K, Fridberger A, Sahlin L, Gustafsson JA, Hultcrantz M (2009) Inner ear pathology and loss of hearing in estrogen receptor-beta deficient mice. J Endocrinol 201:397–406

    CAS  PubMed  Google Scholar 

  19. Meltser I, Tahera Y, Simpson E, Hultcrantz M, Charitidi K, Gustafsson JA, Canlon B (2008) Estrogen receptor beta protects against acoustic trauma in mice. J Clin Invest 118:1563–1570

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Andersson S et al (2017) Insufficient antibody validation challenges oestrogen receptor beta research. Nat Commun 8:15840

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Nelson AW et al (2017) Comprehensive assessment of estrogen receptor beta antibodies in cancer cell line models and tissue reveals critical limitations in reagent specificity. Mol Cell Endocrinol 440:138–150

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang L, Xu Y, Zhang Y, Vijayakumar S, Jones SM, Lundberg YYW (2018) Mechanism underlying the effects of estrogen deficiency on otoconia. J Assoc Res Otolaryngol 19:353–362

    PubMed  PubMed Central  Google Scholar 

  23. Scheffer DI, Shen J, Corey DP, Chen ZY (2015) Gene expression by mouse inner ear hair cells during development. J Neurosci 35:6366–6380

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Simpson ER (2003) Sources of estrogen and their importance. J Steroid Biochem Mol Biol 86:225–230

    CAS  PubMed  Google Scholar 

  25. Dehan CP, Jerger J (1990) Analysis of gender differences in the auditory brainstem response. Laryngoscope 100:18–24

    CAS  PubMed  Google Scholar 

  26. Jerger J, Hall J (1980) Effects of age and sex on auditory brainstem response. Arch Otolaryngol 106:387–391

    CAS  PubMed  Google Scholar 

  27. Wharton JA, Church GT (1990) Influence of menopause on the auditory brainstem response. Audiology 29:196–201

    CAS  PubMed  Google Scholar 

  28. Bilger RC, Matthies ML, Hammel DR, Demorest ME (1990) Genetic implications of gender differences in the prevalence of spontaneous otoacoustic emissions. J Speech Hear Res 33:418–432

    CAS  PubMed  Google Scholar 

  29. McFadden D, Loehlin JC, Pasanen EG (1996) Additional findings on heritability and prenatal masculinization of cochlear mechanisms: click-evoked otoacoustic emissions. Hear Res 97:102–119

    CAS  PubMed  Google Scholar 

  30. Hoffman HJ, Dobie RA, Losonczy KG, Themann CL, Flamme GA (2017) Declining prevalence of hearing loss in US adults aged 20 to 69 years. JAMA Otolaryngol Head Neck Surg 143:274–285

    PubMed  PubMed Central  Google Scholar 

  31. Jun HJ, Hwang SY, Lee SH, Lee JE, Song JJ, Chae S (2015) The prevalence of hearing loss in South Korea: data from a population-based study. Laryngoscope 125:690–694

    PubMed  Google Scholar 

  32. Park YH, Shin SH, Byun SW, Kim JY (2016) Age- and gender-related mean hearing threshold in a highly-screened population: the Korean National Health and Nutrition Examination Survey 2010–2012. PLoS One 11:e0150783

    PubMed  PubMed Central  Google Scholar 

  33. Snihur AW, Hampson E (2011) Sex and ear differences in spontaneous and click-evoked otoacoustic emissions in young adults. Brain Cogn 77:40–47

    PubMed  Google Scholar 

  34. Adriztina I, Adnan A, Adenin I, Haryuna SH, Sarumpaet S (2016) Influence of hormonal changes on audiologic examination in normal ovarian cycle females: an analytic study. Int Arch Otorhinolaryngol 20:294–299

    PubMed  Google Scholar 

  35. Serra A, Maiolino L, Agnello C, Messina A, Caruso S (2003) Auditory brain stem response throughout the menstrual cycle. Ann Otol Rhinol Laryngol 112:549–553

    PubMed  Google Scholar 

  36. Upadhayay N, Paudel BH, Singh PN, Bhattarai BK, Agrawal K (2014) Pre- and postovulatory auditory brainstem response in normal women. Indian J Otolaryngol Head Neck Surg 66:133–137

    PubMed  Google Scholar 

  37. Kim SH, Kang BM, Chae HD, Kim CH (2002) The association between serum estradiol level and hearing sensitivity in postmenopausal women. Obstet Gynecol 99:726–730

    CAS  PubMed  Google Scholar 

  38. Jönsson R, Rosenhall U, Gause-Nilsson I, Steen B (1998) Auditory function in 70- and 75-year-olds of four age cohorts. A cross-sectional and time-lag study of presbyacusis. Scand Audiol 27:81–93

    PubMed  Google Scholar 

  39. Kim S, Lim EJ, Kim HS, Park JH, Jarng SS, Lee SH (2010) Sex differences in a cross sectional study of age-related hearing loss in Korean. Clin Exp Otorhinolaryngol 3:27–31

    PubMed  PubMed Central  Google Scholar 

  40. Pearson JD, Morrell CH, Gordon-Salant S, Brant LJ, Metter EJ, Klein LL, Fozard JL (1995) Gender differences in a longitudinal study of age-associated hearing loss. J Acoust Soc Am 97:1196–1205

    CAS  PubMed  Google Scholar 

  41. Roth TN, Hanebuth D, Probst R (2011) Prevalence of age-related hearing loss in Europe: a review. Eur Arch Otorhinolaryngol 268:1101–1107

    PubMed  PubMed Central  Google Scholar 

  42. Balogova Z, Popelar J, Chiumenti F, Chumak T, Burianova JS, Rybalko N, Syka J (2017) Age-related differences in hearing function and cochlear morphology between male and female fischer 344 rats. Front Aging Neurosci 9:428

    PubMed  Google Scholar 

  43. Guimaraes P, Zhu X, Cannon T, Kim S, Frisina RD (2004) Sex differences in distortion product otoacoustic emissions as a function of age in CBA mice. Hear Res 192:83–89

    PubMed  Google Scholar 

  44. Henry KR (2004) Males lose hearing earlier in mouse models of late-onset age-related hearing loss; females lose hearing earlier in mouse models of early-onset hearing loss. Hear Res 190:141–148

    PubMed  Google Scholar 

  45. Alves C, Oliveira CS (2014) Hearing loss among patients with Turner’s syndrome: literature review. Braz J Otorhinolaryngol 80:257–263

    PubMed  Google Scholar 

  46. Bonnard A, Hederstierna C, Bark R, Hultcrantz M (2017) Audiometric features in young adults with Turner syndrome. Int J Audiol 56:650–656

    PubMed  Google Scholar 

  47. Kubba H, Smyth A, Wong SC, Mason A (2017) Ear health and hearing surveillance in girls and women with Turner’s syndrome: recommendations from the Turner’s Syndrome Support Society. Clin Otolaryngol 42:503–507

    CAS  PubMed  Google Scholar 

  48. Hultcrantz M, Stenberg AE, Fransson A, Canlon B (2000) Characterization of hearing in an X,0 ‘Turner mouse’. Hear Res 143:182–188

    CAS  PubMed  Google Scholar 

  49. Caruso S, Maiolino L, Agnello C, Garozzo A, Di Mari L, Serra A (2003) Effects of patch or gel estrogen therapies on auditory brainstem response in surgically postmenopausal women: a prospective, randomized study. Fertil Steril 79:556–561

    PubMed  Google Scholar 

  50. Hederstierna C, Hultcrantz M, Collins A, Rosenhall U (2007) Hearing in women at menopause. Prevalence of hearing loss, audiometric configuration and relation to hormone replacement therapy. Acta Otolaryngol 127:149–155

    PubMed  Google Scholar 

  51. Khaliq F, Tandon OP, Goel N (2003) Auditory evoked responses in postmenopausal women on hormone replacement therapy. Indian J Physiol Pharmacol 47:393–399

    CAS  PubMed  Google Scholar 

  52. Kilicdag EB, Yavuz H, Bagis T, Tarim E, Erkan AN, Kazanci F (2004) Effects of estrogen therapy on hearing in postmenopausal women. Am J Obstet Gynecol 190:77–82

    CAS  PubMed  Google Scholar 

  53. Curhan SG, Eliassen AH, Eavey RD, Wang M, Lin BM, Curhan GC (2017) Menopause and postmenopausal hormone therapy and risk of hearing loss. Menopause 24:1049–1056

    PubMed  PubMed Central  Google Scholar 

  54. Strachan D (1996) Sudden sensorineural deafness and hormone replacement therapy. J Laryngol Otol 110:1148–1150

    CAS  PubMed  Google Scholar 

  55. Ostberg JE, Beckman A, Cadge B, Conway GS (2004) Oestrogen deficiency and growth hormone treatment in childhood are not associated with hearing in adults with turner syndrome. Horm Res 62:182–186

    CAS  PubMed  Google Scholar 

  56. Coleman JR, Campbell D, Cooper WA, Welsh MG, Moyer J (1994) Auditory brainstem responses after ovariectomy and estrogen replacement in rat. Hear Res 80:209–215

    CAS  PubMed  Google Scholar 

  57. Cooper WA, Ross KC, Coleman JR (1999) Estrogen treatment and age effects on auditory brainstem responses in the post-breeding Long-Evans rat. Audiology 38:7–12

    CAS  PubMed  Google Scholar 

  58. Price K, Zhu X, Guimaraes PF, Vasilyeva ON, Frisina RD (2009) Hormone replacement therapy diminishes hearing in peri-menopausal mice. Hear Res 252:29–36

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Guimaraes P, Frisina ST, Mapes F, Tadros SF, Frisina DR, Frisina RD (2006) Progestin negatively affects hearing in aged women. Proc Natl Acad Sci USA 103:14246–14249

    CAS  PubMed  Google Scholar 

  60. Mohammed H et al (2015) Progesterone receptor modulates ERalpha action in breast cancer. Nature 523:313–317

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Li J, Wang H, Johnson SM, Horner-Glister E, Thompson J, White IN, Al-Azzawi F (2008) Differing transcriptional responses to pulsed or continuous estradiol exposure in human umbilical vein endothelial cells. J Steroid Biochem Mol Biol 111:41–49

    CAS  PubMed  Google Scholar 

  62. Marriott LK, McGann-Gramling KR, Hauss-Wegrzyniak B, Sheldahl LC, Shapiro RA, Dorsa DM, Wenk GL (2007) Brain infusion of lipopolysaccharide increases uterine growth as a function of estrogen replacement regimen: suppression of uterine estrogen receptor-alpha by constant, but not pulsed, estrogen replacement. Endocrinology 148:232–240

    CAS  PubMed  Google Scholar 

  63. Gonzalez L, Witchel SF (2012) The patient with Turner syndrome: puberty and medical management concerns. Fertil Steril 98:780–786

    PubMed  PubMed Central  Google Scholar 

  64. Ing NH, Tornesi MB (1997) Estradiol up-regulates estrogen receptor and progesterone receptor gene expression in specific ovine uterine cells. Biol Reprod 56:1205–1215

    CAS  PubMed  Google Scholar 

  65. Potier M, Elliot SJ, Tack I, Lenz O, Striker GE, Striker LJ, Karl M (2001) Expression and regulation of estrogen receptors in mesangial cells: influence on matrix metalloproteinase-9. J Am Soc Nephrol 12:241–251

    CAS  PubMed  Google Scholar 

  66. Rink TL (2004) The gender gap. Occup Health Saf 73:179–183

    PubMed  Google Scholar 

  67. Hu X, Wang Y, Lau CC (2016) Effects of noise exposure on the auditory function of ovariectomized rats with estrogen deficiency. J Int Adv Otol 12:261–265

    PubMed  Google Scholar 

  68. Pillai JA, Siegel JH (2011) Interaction of tamoxifen and noise-induced damage to the cochlea. Hear Res 282:161–166

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Petrie WK, Dennis MK, Hu C, Dai D, Arterburn JB, Smith HO, Hathaway HJ, Prossnitz ER (2013) G protein-coupled estrogen receptor-selective ligands modulate endometrial tumor growth. Obstet Gynecol Int 2013:472720

    PubMed  PubMed Central  Google Scholar 

  70. Breglio AM et al (2017) Cisplatin is retained in the cochlea indefinitely following chemotherapy. Nat Commun 8:1654

    PubMed  PubMed Central  Google Scholar 

  71. Olgun Y et al (2016) Analysis of genetic and non genetic risk factors for cisplatin ototoxicity in pediatric patients. Int J Pediatr Otorhinolaryngol 90:64–69

    PubMed  Google Scholar 

  72. Yancey A, Harris MS, Egbelakin A, Gilbert J, Pisoni DB, Renbarger J (2012) Risk factors for cisplatin-associated ototoxicity in pediatric oncology patients. Pediatr Blood Cancer 59:144–148

    PubMed  PubMed Central  Google Scholar 

  73. Hu XJ, Li FF, Wang Y, Lau CC (2017) Effects of cisplatin on the auditory function of ovariectomized rats with estrogen deficiency. Acta Otolaryngol 137:606–610

    CAS  PubMed  Google Scholar 

  74. Jiang M, Karasawa T, Steyger PS (2017) Aminoglycoside-induced cochleotoxicity: a review. Front Cell Neurosci 11:308

    PubMed  PubMed Central  Google Scholar 

  75. Nakamagoe M, Tabuchi K, Uemaetomari I, Nishimura B, Hara A (2010) Estradiol protects the cochlea against gentamicin ototoxicity through inhibition of the JNK pathway. Hear Res 261:67–74

    CAS  PubMed  Google Scholar 

  76. Pooley AE, Luong M, Hussain A, Nathan BP (2015) Neurite outgrowth promoting effect of 17-beta estradiol is mediated through estrogen receptor alpha in an olfactory epithelium culture. Brain Res 1624:19–27

    CAS  PubMed  Google Scholar 

  77. Milon B et al (2018) The impact of biological sex on the response to noise and otoprotective therapies against acoustic injury in mice. Biol Sex Differ 9:12

    PubMed  PubMed Central  Google Scholar 

  78. Thomas S, Munster PN (2009) Histone deacetylase inhibitor induced modulation of anti-estrogen therapy. Cancer Lett 280:184–191

    CAS  PubMed  Google Scholar 

  79. Wang J, Wang Y, Chen X, Zhang PZ, Shi ZT, Wen LT, Qiu JH, Chen FQ (2015) Histone deacetylase inhibitor sodium butyrate attenuates gentamicin-induced hearing loss in vivo. Am J Otolaryngol 36:242–248

    CAS  PubMed  Google Scholar 

  80. Lauer AM, Schrode KM (2017) Sex bias in basic and preclinical noise-induced hearing loss research. Noise Health 19:207–212

    PubMed  PubMed Central  Google Scholar 

  81. Villavisanis DF, Schrode KM, Lauer AM (2018) Sex bias in basic and preclinical age-related hearing loss research. Biol Sex Differ 9:23

    PubMed  PubMed Central  Google Scholar 

  82. Tremblay AM, Giguere V (2007) The NR3B subgroup: an ovERRview. Nucl Recept Signal 5:e009

    PubMed  PubMed Central  Google Scholar 

  83. Ben Said M et al (2011) A novel missense mutation in the ESRRB gene causes DFNB35 hearing loss in a Tunisian family. Eur J Med Genet 54:e535–e541

    PubMed  Google Scholar 

  84. Collin RW et al (2008) Mutations of ESRRB encoding estrogen-related receptor beta cause autosomal-recessive nonsyndromic hearing impairment DFNB35. Am J Hum Genet 82:125–138

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Bhatt I, Phillips S, Richter S, Tucker D, Lundgren K, Morehouse R, Henrich V (2016) A polymorphism in human estrogen-related receptor beta (ESRRbeta) predicts audiometric temporary threshold shift. Int J Audiol 55:571–579

    PubMed  Google Scholar 

  86. Nolan LS et al (2013) Estrogen-related receptor gamma and hearing function: evidence of a role in humans and mice. Neurobiol Aging 34(2077):e1–e9

    Google Scholar 

  87. Schilit SL et al (2016) Estrogen-related receptor gamma implicated in a phenotype including hearing loss and mild developmental delay. Eur J Hum Genet 24:1622–1626

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen J, Nathans J (2007) Estrogen-related receptor beta/NR3B2 controls epithelial cell fate and endolymph production by the stria vascularis. Dev Cell 13:325–337

    PubMed  Google Scholar 

  89. Buniello A et al (2016) Wbp2 is required for normal glutamatergic synapses in the cochlea and is crucial for hearing. EMBO Mol Med 8:191–207

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Stefkovich ML, Arao Y, Hamilton KJ, Korach KS (2018) Experimental models for evaluating non-genomic estrogen signaling. Steroids 133:34–37

    CAS  PubMed  Google Scholar 

  91. Dinh CT, Goncalves S, Bas E, Van De Water TR, Zine A (2015) Molecular regulation of auditory hair cell death and approaches to protect sensory receptor cells and/or stimulate repair following acoustic trauma. Front Cell Neurosci 9:96

    PubMed  PubMed Central  Google Scholar 

  92. Yang CH, Schrepfer T, Schacht J (2015) Age-related hearing impairment and the triad of acquired hearing loss. Front Cell Neurosci 9:276

    PubMed  PubMed Central  Google Scholar 

  93. Fiocchetti M, Ascenzi P, Marino M (2012) Neuroprotective effects of 17beta-estradiol rely on estrogen receptor membrane initiated signals. Front Physiol 3:73

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Iorga A, Cunningham CM, Moazeni S, Ruffenach G, Umar S, Eghbali M (2017) The protective role of estrogen and estrogen receptors in cardiovascular disease and the controversial use of estrogen therapy. Biol Sex Differ 8:33

    PubMed  PubMed Central  Google Scholar 

  95. Lagranha CJ, Silva TLA, Silva SCA, Braz GRF, da Silva AI, Fernandes MP, Sellitti DF (2018) Protective effects of estrogen against cardiovascular disease mediated via oxidative stress in the brain. Life Sci 192:190–198

    CAS  PubMed  Google Scholar 

  96. Lean JM, Davies JT, Fuller K, Jagger CJ, Kirstein B, Partington GA, Urry ZL, Chambers TJ (2003) A crucial role for thiol antioxidants in estrogen-deficiency bone loss. J Clin Invest 112:915–923

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Lacort M, Leal AM, Liza M, Martin C, Martinez R, Ruiz-Larrea MB (1995) Protective effect of estrogens and catecholestrogens against peroxidative membrane damage in vitro. Lipids 30:141–146

    CAS  PubMed  Google Scholar 

  98. Mukai K, Daifuku K, Yokoyama S, Nakano M (1990) Stopped-flow investigation of antioxidant activity of estrogens in solution. Biochim Biophys Acta 1035:348–352

    CAS  PubMed  Google Scholar 

  99. Rao AK, Dietrich AK, Ziegler YS, Nardulli AM (2011) 17beta-Estradiol-mediated increase in Cu/Zn superoxide dismutase expression in the brain: a mechanism to protect neurons from ischemia. J Steroid Biochem Mol Biol 127:382–389

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhu X, Tang Z, Cong B, Du J, Wang C, Wang L, Ni X, Lu J (2013) Estrogens increase cystathionine-gamma-lyase expression and decrease inflammation and oxidative stress in the myocardium of ovariectomized rats. Menopause 20:1084–1091

    PubMed  Google Scholar 

  101. Bellanti F, Matteo M, Rollo T, De Rosario F, Greco P, Vendemiale G, Serviddio G (2013) Sex hormones modulate circulating antioxidant enzymes: impact of estrogen therapy. Redox Biol 1:340–346

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Unfer TC, Figueiredo CG, Zanchi MM, Maurer LH, Kemerich DM, Duarte MM, Konopka CK, Emanuelli T (2015) Estrogen plus progestin increase superoxide dismutase and total antioxidant capacity in postmenopausal women. Climacteric 18:379–388

    CAS  PubMed  Google Scholar 

  103. Ada S, Hanci D, Ulusoy S, Vejselova D, Burukoglu D, Muluk NB, Cingi C (2017) Potential protective effect of N-acetyl cysteine in acoustic trauma: an experimental study using scanning electron microscopy. Adv Clin Exp Med 26:893–897

    PubMed  Google Scholar 

  104. Feldman L, Efrati S, Eviatar E, Abramsohn R, Yarovoy I, Gersch E, Averbukh Z, Weissgarten J (2007) Gentamicin-induced ototoxicity in hemodialysis patients is ameliorated by N-acetylcysteine. Kidney Int 72(3):359–363

    CAS  PubMed  Google Scholar 

  105. Marie A et al (2018) N-acetylcysteine treatment reduces age-related hearing loss and memory impairment in the senescence-accelerated Prone 8 (SAMP8) mouse model. Aging Dis 9(4):664–673

    PubMed  PubMed Central  Google Scholar 

  106. Redza-Dutordoir M, Averill-Bates DA (2016) Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta 1863:2977–2992

    CAS  PubMed  Google Scholar 

  107. Nakamagoe M, Tabuchi K, Nishimura B, Hara A (2011) Effects of neuroactive steroids on cochlear hair cell death induced by gentamicin. Steroids 76:1443–1450

    CAS  PubMed  Google Scholar 

  108. Garcia-Segura LM, Cardona-Gomez P, Naftolin F, Chowen JA (1998) Estradiol upregulates Bcl-2 expression in adult brain neurons. NeuroReport 9:593–597

    CAS  PubMed  Google Scholar 

  109. Pike CJ (1999) Estrogen modulates neuronal Bcl-xL expression and beta-amyloid-induced apoptosis: relevance to Alzheimer’s disease. J Neurochem 72:1552–1563

    CAS  PubMed  Google Scholar 

  110. Perillo B, Sasso A, Abbondanza C, Palumbo G (2000) 17beta-estradiol inhibits apoptosis in MCF-7 cells, inducing bcl-2 expression via two estrogen-responsive elements present in the coding sequence. Mol Cell Biol 20:2890–2901

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Yune TY, Park HG, Lee JY, Oh TH (2008) Estrogen-induced Bcl-2 expression after spinal cord injury is mediated through phosphoinositide-3-kinase/Akt-dependent CREB activation. J Neurotrauma 25:1121–1131

    PubMed  Google Scholar 

  112. Wang L, Andersson S, Warner M, Gustafsson JA (2001) Morphological abnormalities in the brains of estrogen receptor beta knockout mice. Proc Natl Acad Sci USA 98:2792–2796

    CAS  PubMed  Google Scholar 

  113. Liberman MC, Kujawa SG (2017) Cochlear synaptopathy in acquired sensorineural hearing loss: manifestations and mechanisms. Hear Res 349:138–147

    PubMed  PubMed Central  Google Scholar 

  114. Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci 29:14077–14085

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Sohrabji F, Miranda RC, Toran-Allerand CD (1995) Identification of a putative estrogen response element in the gene encoding brain-derived neurotrophic factor. Proc Natl Acad Sci USA 92:11110–11114

    CAS  PubMed  Google Scholar 

  116. Wan G, Gómez-Casati ME, Gigliello AR, Liberman MC, Corfas G (2014) Neurotrophin-3 regulates ribbon synapse density in the cochlea and induces synapse regeneration after acoustic trauma. eLife 3:e03564

    PubMed Central  Google Scholar 

  117. Zuccotti A et al (2012) Lack of brain-derived neurotrophic factor hampers inner hair cell synapse physiology, but protects against noise-induced hearing loss. J Neurosci 32:8545–8553

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Meltser I, Cederroth CR, Basinou V, Savelyev S, Lundkvist GS, Canlon B (2014) TrkB-mediated protection against circadian sensitivity to noise trauma in the murine cochlea. Curr Biol 24:658–663

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Oberlander JG, Woolley CS (2016) 17beta-estradiol acutely potentiates glutamatergic synaptic transmission in the hippocampus through distinct mechanisms in males and females. J Neurosci 36:2677–2690

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Jain A, Huang GZ, Woolley CS (2019) Latent sex differences in molecular signaling that underlies excitatory synaptic potentiation in the hippocampus. J Neurosci 39:1552–1565

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Koss WA, Haertel JM, Philippi SM, Frick KM (2018) Sex differences in the rapid cell signaling mechanisms underlying the memory-enhancing effects of 17beta-estradiol. eNeuro. https://doi.org/10.1523/ENEURO.0267-18.2018

    PubMed  PubMed Central  Google Scholar 

  122. Nilsen J, Chen S, Brinton RD (2002) Dual action of estrogen on glutamate-induced calcium signaling: mechanisms requiring interaction between estrogen receptors and src/mitogen activated protein kinase pathway. Brain Res 930:216–234

    CAS  PubMed  Google Scholar 

  123. Zhao L, Wu TW, Brinton RD (2004) Estrogen receptor subtypes alpha and beta contribute to neuroprotection and increased Bcl-2 expression in primary hippocampal neurons. Brain Res 1010:22–34

    CAS  PubMed  Google Scholar 

  124. Guidolin D, Tortorella C, Marcoli M, Maura G, Agnati LF (2016) Neuroglobin, a factor playing for nerve cell survival. Int J Mol Sci 17(11):1817–1832

    PubMed Central  Google Scholar 

  125. De Marinis E, Fiocchetti M, Acconcia F, Ascenzi P, Marino M (2013) Neuroglobin upregulation induced by 17beta-estradiol sequesters cytocrome c in the mitochondria preventing H2O2-induced apoptosis of neuroblastoma cells. Cell Death Dis 4:e508

    PubMed  PubMed Central  Google Scholar 

  126. Reuss S et al (2016) Neuroglobin expression in the mammalian auditory system. Mol Neurobiol 53:1461–1477

    CAS  PubMed  Google Scholar 

  127. Vorasubin N, Hosokawa S, Hosokawa K, Ishiyama G, Ishiyama A, Lopez IA (2016) Neuroglobin immunoreactivity in the human cochlea. Brain Res 1630:56–63

    CAS  PubMed  Google Scholar 

  128. Hequembourg S, Liberman MC (2001) Spiral ligament pathology: a major aspect of age-related cochlear degeneration in C57BL/6 mice. J Assoc Res Otolaryngol 2:118–129

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Kow LM, Pfaff DW (2016) Rapid estrogen actions on ion channels: a survey in search for mechanisms. Steroids 111:46–53

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Saint-Criq V, Rapetti-Mauss R, Yusef YR, Harvey BJ (2012) Estrogen regulation of epithelial ion transport: implications in health and disease. Steroids 77:918–923

    CAS  PubMed  Google Scholar 

  131. Chang Q, Wang J, Li Q, Kim Y, Zhou B, Wang Y, Li H, Lin X (2015) Virally mediated Kcnq1 gene replacement therapy in the immature scala media restores hearing in a mouse model of human Jervell and Lange-Nielsen deafness syndrome. EMBO Mol Med 7:1077–1086

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Wangemann P et al (2004) Loss of KCNJ10 protein expression abolishes endocochlear potential and causes deafness in Pendred syndrome mouse model. BMC Med 2:30

    PubMed  PubMed Central  Google Scholar 

  133. Lee JH, Marcus DC (2001) Estrogen acutely inhibits ion transport by isolated stria vascularis. Hear Res 158:123–130

    CAS  PubMed  Google Scholar 

  134. Shi X (2011) Physiopathology of the cochlear microcirculation. Hear Res 282:10–24

    PubMed  PubMed Central  Google Scholar 

  135. Guo X, Razandi M, Pedram A, Kassab G, Levin ER (2005) Estrogen induces vascular wall dilation: mediation through kinase signaling to nitric oxide and estrogen receptors alpha and beta. J Biol Chem 280:19704–19710

    CAS  PubMed  Google Scholar 

  136. Yamane H, Takayama M, Konishi K, Iguchi H, Shibata S, Sunami K, Nakai Y (1997) Nitric oxide synthase and contractile protein in the rat cochlear lateral wall: possible role of nitric oxide in regulation of strial blood flow. Hear Res 108:65–73

    CAS  PubMed  Google Scholar 

  137. Brechtelsbauer PB, Nuttall AL, Miller JM (1994) Basal nitric oxide production in regulation of cochlear blood flow. Hear Res 77:38–42

    CAS  PubMed  Google Scholar 

  138. Fujioka M, Okano H, Ogawa K (2014) Inflammatory and immune responses in the cochlea: potential therapeutic targets for sensorineural hearing loss. Front Pharmacol 5:287

    PubMed  PubMed Central  Google Scholar 

  139. Thakkar R, Wang R, Sareddy G, Wang J, Thiruvaiyaru D, Vadlamudi R, Zhang Q, Brann D (2016) NLRP3 inflammasome activation in the brain after global cerebral ischemia and regulation by 17beta-estradiol. Oxid Med Cell Longev 2016:8309031

    PubMed  PubMed Central  Google Scholar 

  140. Xu Y, Sheng H, Bao Q, Wang Y, Lu J, Ni X (2016) NLRP3 inflammasome activation mediates estrogen deficiency-induced depression- and anxiety-like behavior and hippocampal inflammation in mice. Brain Behav Immun 56:175–186

    CAS  PubMed  Google Scholar 

  141. Tschopp J, Schroder K (2010) NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat Rev Immunol 10:210–215

    CAS  PubMed  Google Scholar 

  142. Shi X et al (2017) NLRP3-inflammasomes are triggered by age-related hearing loss in the inner ear of mice. Am J Transl Res 9:5611–5618

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Nakanishi H et al (2017) NLRP3 mutation and cochlear autoinflammation cause syndromic and nonsyndromic hearing loss DFNA34 responsive to anakinra therapy. Proc Natl Acad Sci USA 114:E7766–E7775

    CAS  PubMed  Google Scholar 

  144. Vambutas A, Lesser M, Mullooly V, Pathak S, Zahtz G, Rosen L, Goldofsky E (2014) Early efficacy trial of anakinra in corticosteroid-resistant autoimmune inner ear disease. J Clin Invest 124:4115–4122

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Paciello F, Fetoni AR, Rolesi R, Wright MB, Grassi C, Troiani D, Paludetti G (2018) Pioglitazone represents an effective therapeutic target in preventing oxidative/inflammatory cochlear damage induced by noise exposure. Front Pharmacol 9:1103

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Bernard Minguet for the illustrations of this manuscript. This work was supported by grants from the Belgian National Funds for Scientific Research (FSR-FNRS), the fondation Léon-Frédéricq (ULiège, Belgium) and the Fonds spéciaux (University of Liège, Belgium).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence Delacroix.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delhez, A., Lefebvre, P., Péqueux, C. et al. Auditory function and dysfunction: estrogen makes a difference. Cell. Mol. Life Sci. 77, 619–635 (2020). https://doi.org/10.1007/s00018-019-03295-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03295-y

Keywords

Navigation