Skip to main content

Advertisement

Log in

Apolipoprotein E-mediated regulation of selenoprotein P transportation via exosomes

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Selenoprotein P (SELENOP), secreted from the liver, functions as a selenium (Se) supplier to other tissues. In the brain, Se homeostasis is critical for physiological function. Previous studies have reported that SELENOP co-localizes with the apolipoprotein E receptor 2 (ApoER2) along the blood–brain barrier (BBB). However, the mechanism underlying SELENOP transportation from hepatocytes to neuronal cells remains unclear. Here, we found that SELENOP was secreted from hepatocytes as an exosomal component protected from plasma kallikrein-mediated cleavage. SELENOP was interacted with apolipoprotein E (ApoE) through heparin-binding sites of SELENOP, and the interaction regulated the secretion of exosomal SELENOP. Using in vitro BBB model of transwell cell culture, exosomal SELENOP was found to supply Se to brain endothelial cells and neuronal cells, which synthesized selenoproteins by a process regulated by ApoE and ApoER2. The regulatory role of ApoE in SELENOP transport was also observed in vivo using ApoE−/− mice. Exosomal SELENOP transport protected neuronal cells from amyloid β (Aβ)-induced cell death. Taken together, our results suggest a new delivery mechanism for Se to neuronal cells by exosomal SELENOP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Labunskyy VM, Hatfield DL, Gladyshev VN (2014) Selenoproteins: molecular pathways and physiological roles. Physiol Rev 94(3):739–777. https://doi.org/10.1152/physrev.00039.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigo R, Gladyshev VN (2003) Characterization of mammalian selenoproteomes. Science 300(5624):1439–1443. https://doi.org/10.1126/science.1083516

    Article  CAS  PubMed  Google Scholar 

  3. Hill KE, Xia Y, Akesson B, Boeglin ME, Burk RF (1996) Selenoprotein P concentration in plasma is an index of selenium status in selenium-deficient and selenium-supplemented Chinese subjects. J Nutr 126(1):138–145. https://doi.org/10.1093/jn/126.1.138

    Article  CAS  PubMed  Google Scholar 

  4. Read R, Bellew T, Yang JG, Hill KE, Palmer IS, Burk RF (1990) Selenium and amino acid composition of selenoprotein P, the major selenoprotein in rat serum. J Biol Chem 265(29):17899–17905

    CAS  PubMed  Google Scholar 

  5. Burk RF, Hill KE (2009) Selenoprotein P-expression, functions, and roles in mammals. Biochim Biophys Acta 1790(11):1441–1447. https://doi.org/10.1016/j.bbagen.2009.03.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hill KE, Zhou J, McMahan WJ, Motley AK, Atkins JF, Gesteland RF, Burk RF (2003) Deletion of selenoprotein P alters distribution of selenium in the mouse. J Biol Chem 278(16):13640–13646. https://doi.org/10.1074/jbc.M300755200

    Article  CAS  PubMed  Google Scholar 

  7. Schomburg L, Schweizer U, Holtmann B, Flohe L, Sendtner M, Kohrle J (2003) Gene disruption discloses role of selenoprotein P in selenium delivery to target tissues. Biochem J 370(Pt 2):397–402. https://doi.org/10.1042/BJ20021853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shetty S, Copeland PR (2018) Molecular mechanism of selenoprotein P synthesis. Biochim Biophys Acta Gen Subj. https://doi.org/10.1016/j.bbagen.2018.04.011

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chittum HS, Himeno S, Hill KE, Burk RF (1996) Multiple forms of selenoprotein P in rat plasma. Arch Biochem Biophys 325(1):124–128. https://doi.org/10.1006/abbi.1996.0015

    Article  CAS  PubMed  Google Scholar 

  10. Burk RF, Hill KE (2005) Selenoprotein P: an extracellular protein with unique physical characteristics and a role in selenium homeostasis. Annu Rev Nutr 25:215–235. https://doi.org/10.1146/annurev.nutr.24.012003.132120

    Article  CAS  PubMed  Google Scholar 

  11. Hondal RJ, Ma S, Caprioli RM, Hill KE, Burk RF (2001) Heparin-binding histidine and lysine residues of rat selenoprotein P. J Biol Chem 276(19):15823–15831. https://doi.org/10.1074/jbc.M010405200

    Article  CAS  PubMed  Google Scholar 

  12. Kurokawa S, Hill KE, McDonald WH, Burk RF (2012) Long isoform mouse selenoprotein P (Sepp1) supplies rat myoblast L8 cells with selenium via endocytosis mediated by heparin binding properties and apolipoprotein E receptor-2 (ApoER2). J Biol Chem 287(34):28717–28726. https://doi.org/10.1074/jbc.M112.383521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Saito Y, Sato N, Hirashima M, Takebe G, Nagasawa S, Takahashi K (2004) Domain structure of bi-functional selenoprotein P. Biochem J 381(Pt 3):841–846. https://doi.org/10.1042/BJ20040328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mita Y, Nakayama K, Inari S, Nishito Y, Yoshioka Y, Sakai N, Sotani K, Nagamura T, Kuzuhara Y, Inagaki K, Iwasaki M, Misu H, Ikegawa M, Takamura T, Noguchi N, Saito Y (2017) Selenoprotein P-neutralizing antibodies improve insulin secretion and glucose sensitivity in type 2 diabetes mouse models. Nat Commun 8(1):1658. https://doi.org/10.1038/s41467-017-01863-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Caito SW, Milatovic D, Hill KE, Aschner M, Burk RF, Valentine WM (2011) Progression of neurodegeneration and morphologic changes in the brains of juvenile mice with selenoprotein P deleted. Brain Res 1398:1–12. https://doi.org/10.1016/j.brainres.2011.04.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Peters MM, Hill KE, Burk RF, Weeber EJ (2006) Altered hippocampus synaptic function in selenoprotein P deficient mice. Mol Neurodegener 1:12. https://doi.org/10.1186/1750-1326-1-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wood MJ, O’Loughlin AJ, Samira L (2011) Exosomes and the blood-brain barrier: implications for neurological diseases. Ther Deliv 2(9):1095–1099

    Article  CAS  Google Scholar 

  18. Colombo M, Raposo G, Thery C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289. https://doi.org/10.1146/annurev-cellbio-101512-122326

    Article  CAS  Google Scholar 

  19. Burk RF, Hill KE, Motley AK, Winfrey VP, Kurokawa S, Mitchell SL, Zhang W (2014) Selenoprotein P and apolipoprotein E receptor-2 interact at the blood-brain barrier and also within the brain to maintain an essential selenium pool that protects against neurodegeneration. FASEB J 28(8):3579–3588. https://doi.org/10.1096/fj.14-252874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kurokawa S, Bellinger FP, Hill KE, Burk RF, Berry MJ (2014) Isoform-specific binding of selenoprotein P to the beta-propeller domain of apolipoprotein E receptor 2 mediates selenium supply. J Biol Chem 289(13):9195–9207. https://doi.org/10.1074/jbc.M114.549014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bellinger FP, He QP, Bellinger MT, Lin Y, Raman AV, White LR, Berry MJ (2008) Association of selenoprotein p with Alzheimer’s pathology in human cortex. J Alzheimers Dis 15(3):465–472

    Article  CAS  Google Scholar 

  22. Rc B, Hare DJ, Lind M, McLean CA, Volitakis I, Laws SM, Masters CL, Bush AI, Roberts BR (2017) The APOE epsilon4 allele is associated with lower selenium levels in the brain: implications for Alzheimer’s disease. ACS Chem Neurosci 8(7):1459–1464. https://doi.org/10.1021/acschemneuro.7b00014

    Article  CAS  Google Scholar 

  23. Bellinger FP, Raman AV, Rueli RH, Bellinger MT, Dewing AS, Seale LA, Andres MA, Uyehara-Lock JH, White LR, Ross GW, Berry MJ (2012) Changes in selenoprotein P in substantia nigra and putamen in Parkinson’s disease. J Parkinsons Dis 2(2):115–126. https://doi.org/10.3233/JPD-2012-11052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jang JK, Park KJ, Lee JH, Ko KY, Kang S, Kim IY (2017) Selenoprotein S is required for clearance of C99 through endoplasmic reticulum-associated degradation. Biochem Biophys Res Commun 486(2):444–450. https://doi.org/10.1016/j.bbrc.2017.03.060

    Article  CAS  PubMed  Google Scholar 

  25. Lee JH, Kwon JH, Jeon YH, Ko KY, Lee SR, Kim IY (2014) Pro178 and Pro183 of selenoprotein S are essential residues for interaction with p97(VCP) during endoplasmic reticulum-associated degradation. J Biol Chem 289(20):13758–13768. https://doi.org/10.1074/jbc.M113.534529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. https://doi.org/10.1002/0471143030.cb0322s30(Chapter 3: Unit 3 22)

    Article  PubMed  Google Scholar 

  27. Hill KE, Chittum HS, Lyons PR, Boeglin ME, Burk RF (1996) Effect of selenium on selenoprotein P expression in cultured liver cells. Biochim Biophys Acta 1313(1):29–34. https://doi.org/10.1016/0167-4889(96)00047-x

    Article  PubMed  Google Scholar 

  28. Misu H, Takayama H, Saito Y, Mita Y, Kikuchi A, Ishii KA, Chikamoto K, Kanamori T, Tajima N, Lan F, Takeshita Y, Honda M, Tanaka M, Kato S, Matsuyama N, Yoshioka Y, Iwayama K, Tokuyama K, Akazawa N, Maeda S, Takekoshi K, Matsugo S, Noguchi N, Kaneko S, Takamura T (2017) Deficiency of the hepatokine selenoprotein P increases responsiveness to exercise in mice through upregulation of reactive oxygen species and AMP-activated protein kinase in muscle. Nat Med 23(4):508–516. https://doi.org/10.1038/nm.4295

    Article  CAS  PubMed  Google Scholar 

  29. Steinbrenner H, Hotze AL, Speckmann B, Pinto A, Sies H, Schott M, Ehlers M, Scherbaum WA, Schinner S (2013) Localization and regulation of pancreatic selenoprotein P. J Mol Endocrinol 50(1):31–42. https://doi.org/10.1530/JME-12-0105

    Article  CAS  PubMed  Google Scholar 

  30. Naiki H, Gejyo F (1999) Kinetic analysis of amyloid fibril formation. Methods Enzymol 309:305–318

    Article  CAS  Google Scholar 

  31. Yuyama K, Sun H, Mitsutake S, Igarashi Y (2012) Sphingolipid-modulated exosome secretion promotes clearance of amyloid-beta by microglia. J Biol Chem 287(14):10977–10989. https://doi.org/10.1074/jbc.M111.324616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gonzalez-Begne M, Lu B, Han X, Hagen FK, Hand AR, Melvin JE, Yates JR (2009) Proteomic analysis of human parotid gland exosomes by multidimensional protein identification technology (MudPIT). J Proteome Res 8(3):1304–1314. https://doi.org/10.1021/pr800658c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Christianson HC, Svensson KJ, van Kuppevelt TH, Li JP, Belting M (2013) Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc Natl Acad Sci USA 110(43):17380–17385. https://doi.org/10.1073/pnas.1304266110

    Article  PubMed  Google Scholar 

  34. Sarrazin S, Lamanna WC, Esko JD (2011) Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a004952

    Article  PubMed  PubMed Central  Google Scholar 

  35. Olson GE, Winfrey VP, Nagdas SK, Hill KE, Burk RF (2007) Apolipoprotein E receptor-2 (ApoER2) mediates selenium uptake from selenoprotein P by the mouse testis. J Biol Chem 282(16):12290–12297. https://doi.org/10.1074/jbc.M611403200

    Article  CAS  PubMed  Google Scholar 

  36. Mahley RW (1988) Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240(4852):622–630

    Article  CAS  Google Scholar 

  37. Mahley RW, Rall SC Jr (2000) Apolipoprotein E: far more than a lipid transport protein. Annu Rev Genomics Hum Genet 1:507–537. https://doi.org/10.1146/annurev.genom.1.1.507

    Article  CAS  PubMed  Google Scholar 

  38. Kanekiyo T, Xu H, Bu G (2014) ApoE and Abeta in Alzheimer’s disease: accidental encounters or partners? Neuron 81(4):740–754. https://doi.org/10.1016/j.neuron.2014.01.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. van Niel G, Bergam P, Di Cicco A, Hurbain I, Lo Cicero A, Dingli F, Palmulli R, Fort C, Potier MC, Schurgers LJ, Loew D, Levy D, Raposo G (2015) Apolipoprotein E regulates amyloid formation within endosomes of pigment cells. Cell Rep 13(1):43–51. https://doi.org/10.1016/j.celrep.2015.08.057

    Article  CAS  PubMed  Google Scholar 

  40. Ji ZS, Brecht WJ, Miranda RD, Hussain MM, Innerarity TL, Mahley RW (1993) Role of heparan sulfate proteoglycans in the binding and uptake of apolipoprotein E-enriched remnant lipoproteins by cultured cells. J Biol Chem 268(14):10160–10167

    CAS  PubMed  Google Scholar 

  41. Saito H, Dhanasekaran P, Nguyen D, Baldwin F, Weisgraber KH, Wehrli S, Phillips MC, Lund-Katz S (2003) Characterization of the heparin binding sites in human apolipoprotein E. J Biol Chem 278(17):14782–14787. https://doi.org/10.1074/jbc.M213207200

    Article  CAS  PubMed  Google Scholar 

  42. Saito Y, Takahashi K (2002) Characterization of selenoprotein P as a selenium supply protein. Eur J Biochem 269(22):5746–5751

    Article  CAS  Google Scholar 

  43. Kikuchi N, Satoh K, Kurosawa R, Yaoita N, Elias-Al-Mamun M, Siddique MAH, Omura J, Satoh T, Nogi M, Sunamura S, Miyata S, Saito Y, Hoshikawa Y, Okada Y, Shimokawa H (2018) Selenoprotein P promotes the development of pulmonary arterial hypertension: a possible novel therapeutic target. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.117.033113

    Article  PubMed  Google Scholar 

  44. Shetty S, Marsicano JR, Copeland PR (2018) Uptake and utilization of selenium from selenoprotein P. Biol Trace Elem Res 181(1):54–61. https://doi.org/10.1007/s12011-017-1044-9

    Article  CAS  PubMed  Google Scholar 

  45. Christianson HC, Belting M (2014) Heparan sulfate proteoglycan as a cell-surface endocytosis receptor. Matrix Biol 35:51–55. https://doi.org/10.1016/j.matbio.2013.10.004

    Article  CAS  PubMed  Google Scholar 

  46. Gao R, Brigstock DR (2004) Connective tissue growth factor (CCN2) induces adhesion of rat activated hepatic stellate cells by binding of its C-terminal domain to integrin alpha(v)beta(3) and heparan sulfate proteoglycan. J Biol Chem 279(10):8848–8855. https://doi.org/10.1074/jbc.M313204200

    Article  CAS  PubMed  Google Scholar 

  47. Zhang Y, Zhou Y, Schweizer U, Savaskan NE, Hua D, Kipnis J, Hatfield DL, Gladyshev VN (2008) Comparative analysis of selenocysteine machinery and selenoproteome gene expression in mouse brain identifies neurons as key functional sites of selenium in mammals. J Biol Chem 283(4):2427–2438. https://doi.org/10.1074/jbc.M707951200

    Article  CAS  PubMed  Google Scholar 

  48. Takemoto AS, Berry MJ, Bellinger FP (2010) Role of selenoprotein P in Alzheimer’s disease. Ethn Dis 20(1 Suppl 1):S1-92-5

    PubMed  PubMed Central  Google Scholar 

  49. Yuyama K, Sun H, Sakai S, Mitsutake S, Okada M, Tahara H, Furukawa J, Fujitani N, Shinohara Y, Igarashi Y (2014) Decreased amyloid-beta pathologies by intracerebral loading of glycosphingolipid-enriched exosomes in Alzheimer model mice. J Biol Chem 289(35):24488–24498. https://doi.org/10.1074/jbc.M114.577213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ochiishi T, Doi M, Yamasaki K, Hirose K, Kitamura A, Urabe T, Hattori N, Kinjo M, Ebihara T, Shimura H (2016) Development of new fusion proteins for visualizing amyloid-beta oligomers in vivo. Sci Rep 6:22712. https://doi.org/10.1038/srep22712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Du X, Zheng Y, Wang Z, Chen Y, Zhou R, Song G, Ni J, Liu Q (2014) Inhibitory act of selenoprotein P on Cu(+)/Cu(2+)-induced tau aggregation and neurotoxicity. Inorg Chem 53(20):11221–11230. https://doi.org/10.1021/ic501788v

    Article  CAS  PubMed  Google Scholar 

  52. Misu H, Takamura T, Takayama H, Hayashi H, Matsuzawa-Nagata N, Kurita S, Ishikura K, Ando H, Takeshita Y, Ota T, Sakurai M, Yamashita T, Mizukoshi E, Yamashita T, Honda M, Miyamoto K, Kubota T, Kubota N, Kadowaki T, Kim HJ, Lee IK, Minokoshi Y, Saito Y, Takahashi K, Yamada Y, Takakura N, Kaneko S (2010) A liver-derived secretory protein, selenoprotein P, causes insulin resistance. Cell Metab 12(5):483–495. https://doi.org/10.1016/j.cmet.2010.09.015

    Article  CAS  PubMed  Google Scholar 

  53. Wang Q, Shi L, Ren Y, Yue W, Zhang C, Lei F (2012) Effects of maternal and dietary selenium (Se-enriched yeast) on the expression of Sel P and apoER2 of germ cells of their offspring in goats. Anim Reprod Sci 135(1–4):31–36. https://doi.org/10.1016/j.anireprosci.2012.09.008

    Article  CAS  PubMed  Google Scholar 

  54. Fuentealba RA, Barria MI, Lee J, Cam J, Araya C, Escudero CA, Inestrosa NC, Bronfman FC, Bu G, Marzolo MP (2007) ApoER2 expression increases Abeta production while decreasing amyloid precursor protein (APP) endocytosis: possible role in the partitioning of APP into lipid rafts and in the regulation of gamma-secretase activity. Mol Neurodegener 2:14. https://doi.org/10.1186/1750-1326-2-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cardoso BR, Roberts BR, Bush AI, Hare DJ (2015) Selenium, selenoproteins and neurodegenerative diseases. Metallomics 7(8):1213–1228. https://doi.org/10.1039/c5mt00075k

    Article  CAS  PubMed  Google Scholar 

  56. Cardoso BR, Hare DJ, Bush AI, Li QX, Fowler CJ, Masters CL, Martins RN, Ganio K, Lothian A, Mukherjee S, Kapp EA, Roberts BR, Group Ar (2017) Selenium levels in serum, red blood cells, and cerebrospinal fluid of Alzheimer’s disease patients: a report from the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL). J Alzheimers Dis 57(1):183–193. https://doi.org/10.3233/JAD-160622

    Article  CAS  PubMed  Google Scholar 

  57. Haratake M, Yoshida S, Mandai M, Fuchigami T, Nakayama M (2013) Elevated amyloid-beta plaque deposition in dietary selenium-deficient Tg2576 transgenic mice. Metallomics 5(5):479–483. https://doi.org/10.1039/c3mt00035d

    Article  CAS  PubMed  Google Scholar 

  58. Du X, Wang Z, Zheng Y, Li H, Ni J, Liu Q (2014) Inhibitory effect of selenoprotein P on Cu(+)/Cu(2+)-induced Abeta42 aggregation and toxicity. Inorg Chem 53(3):1672–1678. https://doi.org/10.1021/ic4028282

    Article  CAS  PubMed  Google Scholar 

  59. Du X, Li H, Wang Z, Qiu S, Liu Q, Ni J (2013) Selenoprotein P and selenoprotein M block Zn2+-mediated Abeta42 aggregation and toxicity. Metallomics 5(7):861–870. https://doi.org/10.1039/c3mt20282h

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2016R1A2B4009525). This work was also supported by National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2015H1A2A1033613). This work was also partially supported by a Korea University Grant. We also thank the Electron Microscopy core facility at the ConveRgence mEDIcine research cenTer (CREDIT), Asan Medical Center for support and instrumentation for providing the valuable technical services.

Author information

Authors and Affiliations

Authors

Contributions

YJ designed and performed most of the experiments and wrote the manuscript. YWC contributed to animal experiments. MKJ and CGP are responsible for EM analysis. HM and JHL contributed to the design of exosomal study and assisted in the experiments. Additional experiments were helped by KYK, JKJ, MH, and HK. IYK contributed to study design, evaluation of results, and writing of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ick Young Kim.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 160 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Y., Chung, Y.W., Jung, M.K. et al. Apolipoprotein E-mediated regulation of selenoprotein P transportation via exosomes. Cell. Mol. Life Sci. 77, 2367–2386 (2020). https://doi.org/10.1007/s00018-019-03287-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03287-y

Keywords

Navigation