Skip to main content

Advertisement

Log in

Insights into the mechanisms of epilepsy from structural biology of LGI1–ADAM22

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Epilepsy is one of the most common brain disorders, which can be caused by abnormal synaptic transmissions. Many epilepsy-related mutations have been identified in synaptic ion channels, which are main targets for current antiepileptic drugs. One of the novel potential targets for therapy of epilepsy is a class of non-ion channel-type epilepsy-related proteins. The leucine-rich repeat glioma-inactivated protein 1 (LGI1) is a neuronal secreted protein, and has been extensively studied as a product of a causative gene for autosomal dominant lateral temporal lobe epilepsy (ADLTE; also known as autosomal dominant partial epilepsy with auditory features [ADPEAF]). At least 43 mutations of LGI1 have been found in ADLTE families. Additionally, autoantibodies against LGI1 in limbic encephalitis are associated with amnesia, seizures, and cognitive dysfunction. Although the relationship of LGI1 with synaptic transmission and synaptic disorders has been studied genetically, biochemically, and clinically, the structural mechanism of LGI1 remained largely unknown until recently. In this review, we introduce insights into pathogenic mechanisms of LGI1 from recent structural studies on LGI1 and its receptor, ADAM22. We also discuss the mechanism for pathogenesis of autoantibodies against LGI1, and the potential of chemical correctors as novel drugs for epilepsy, with structural aspects of LGI1–ADAM22.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fukata Y, Fukata M (2017) Epilepsy and synaptic proteins. Curr Opin Neurobiol 45:1–8. https://doi.org/10.1016/j.conb.2017.02.001

    Article  CAS  PubMed  Google Scholar 

  2. Steinlein OK (2004) Genetic mechanisms that underlie epilepsy. Nat Rev Neurosci 5(5):400–408. https://doi.org/10.1038/nrn1388

    Article  CAS  PubMed  Google Scholar 

  3. Steinlein OK, Mulley JC, Propping P, Wallace RH, Phillips HA, Sutherland GR, Scheffer IE, Berkovic SF (1995) A missense mutation in the neuronal nicotinic acetylcholine receptor α4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet 11(2):201–203. https://doi.org/10.1038/ng1095-201

    Article  CAS  PubMed  Google Scholar 

  4. Tinuper P, Bisulli F, Cross JH, Hesdorffer D, Kahane P, Nobili L, Provini F, Scheffer IE, Tassi L, Vignatelli L, Bassetti C, Cirignotta F, Derry C, Gambardella A, Guerrini R, Halasz P, Licchetta L, Mahowald M, Manni R, Marini C, Mostacci B, Naldi I, Parrino L, Picard F, Pugliatti M, Ryvlin P, Vigevano F, Zucconi M, Berkovic S, Ottman R (2016) Definition and diagnostic criteria of sleep-related hypermotor epilepsy. Neurology 86(19):1834–1842. https://doi.org/10.1212/WNL.0000000000002666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wei F, Yan LM, Su T, He N, Lin ZJ, Wang J, Shi YW, Yi YH, Liao WP (2017) Ion channel genes and epilepsy: functional alteration, pathogenic potential, and mechanism of epilepsy. Neurosci Bull 33(4):455–477. https://doi.org/10.1007/s12264-017-0134-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Oyrer J, Maljevic S, Scheffer IE, Berkovic SF, Petrou S, Reid CA (2018) Ion channels in genetic epilepsy: from genes and mechanisms to disease-targeted therapies. Pharmacol Rev 70(1):142–173. https://doi.org/10.1124/pr.117.014456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kalachikov S, Evgrafov O, Ross B, Winawer M, Barker-Cummings C, Martinelli Boneschi F, Choi C, Morozov P, Das K, Teplitskaya E, Yu A, Cayanis E, Penchaszadeh G, Kottmann AH, Pedley TA, Hauser WA, Ottman R, Gilliam TC (2002) Mutations in LGI1 cause autosomal-dominant partial epilepsy with auditory features. Nat Genet 30(3):335–341. https://doi.org/10.1038/ng832

    Article  PubMed  PubMed Central  Google Scholar 

  8. Senechal KR, Thaller C, Noebels JL (2005) ADPEAF mutations reduce levels of secreted LGI1, a putative tumor suppressor protein linked to epilepsy. Hum Mol Genet 14(12):1613–1620. https://doi.org/10.1093/hmg/ddi169

    Article  CAS  PubMed  Google Scholar 

  9. Fukata Y, Yokoi N, Miyazaki Y, Fukata M (2017) The LGI1-ADAM22 protein complex in synaptic transmission and synaptic disorders. Neurosci Res 116:39–45. https://doi.org/10.1016/j.neures.2016.09.011

    Article  CAS  PubMed  Google Scholar 

  10. Rosanoff MJ, Ottman R (2008) Penetrance of LGI1 mutations in autosomal dominant partial epilepsy with auditory features. Neurology 71(8):567–571. https://doi.org/10.1212/01.wnl.0000323926.77565.ee

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nobile C, Michelucci R, Andreazza S, Pasini E, Tosatto SC, Striano P (2009) LGI1 mutations in autosomal dominant and sporadic lateral temporal epilepsy. Hum Mutat 30(4):530–536. https://doi.org/10.1002/humu.20925

    Article  CAS  PubMed  Google Scholar 

  12. Yokoi N, Fukata Y, Kase D, Miyazaki T, Jaegle M, Ohkawa T, Takahashi N, Iwanari H, Mochizuki Y, Hamakubo T, Imoto K, Meijer D, Watanabe M, Fukata M (2015) Chemical corrector treatment ameliorates increased seizure susceptibility in a mouse model of familial epilepsy. Nat Med 21(1):19–26. https://doi.org/10.1038/nm.3759

    Article  CAS  PubMed  Google Scholar 

  13. Liu F, Du C, Tian X, Ma Y, Zhao B, Yan Y, Lin Z, Lin P, Zhou R, Wang X (2019) A novel LGI1 missense mutation causes dysfunction in cortical neuronal migration and seizures. Brain Res. https://doi.org/10.1016/j.brainres.2019.146332

    Article  PubMed  Google Scholar 

  14. Irani SR, Alexander S, Waters P, Kleopa KA, Pettingill P, Zuliani L, Peles E, Buckley C, Lang B, Vincent A (2010) Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan’s syndrome and acquired neuromyotonia. Brain 133(9):2734–2748. https://doi.org/10.1093/brain/awq213

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lai M, Huijbers MG, Lancaster E, Graus F, Bataller L, Balice-Gordon R, Cowell JK, Dalmau J (2010) Investigation of LGI1 as the antigen in limbic encephalitis previously attributed to potassium channels: a case series. Lancet Neurol 9(8):776–785. https://doi.org/10.1016/S1474-4422(10)70137-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. van Sonderen A, Petit-Pedrol M, Dalmau J, Titulaer MJ (2017) The value of LGI1, Caspr2 and voltage-gated potassium channel antibodies in encephalitis. Nat Rev Neurol 13(5):290–301. https://doi.org/10.1038/nrneurol.2017.43

    Article  CAS  PubMed  Google Scholar 

  17. Chabrol E, Navarro V, Provenzano G, Cohen I, Dinocourt C, Rivaud-Pechoux S, Fricker D, Baulac M, Miles R, Leguern E, Baulac S (2010) Electroclinical characterization of epileptic seizures in leucine-rich, glioma-inactivated 1-deficient mice. Brain 133(9):2749–2762. https://doi.org/10.1093/brain/awq171

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fukata Y, Lovero KL, Iwanaga T, Watanabe A, Yokoi N, Tabuchi K, Shigemoto R, Nicoll RA, Fukata M (2010) Disruption of LGI1-linked synaptic complex causes abnormal synaptic transmission and epilepsy. Proc Natl Acad Sci USA 107(8):3799–3804. https://doi.org/10.1073/pnas.0914537107

    Article  PubMed  Google Scholar 

  19. Yu YE, Wen L, Silva J, Li Z, Head K, Sossey-Alaoui K, Pao A, Mei L, Cowell JK (2010) Lgi1 null mutant mice exhibit myoclonic seizures and CA1 neuronal hyperexcitability. Hum Mol Genet 19(9):1702–1711. https://doi.org/10.1093/hmg/ddq047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou YD, Lee S, Jin Z, Wright M, Smith SE, Anderson MP (2009) Arrested maturation of excitatory synapses in autosomal dominant lateral temporal lobe epilepsy. Nat Med 15(10):1208–1214. https://doi.org/10.1038/nm.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Thomas R, Favell K, Morante-Redolat J, Pool M, Kent C, Wright M, Daignault K, Ferraro GB, Montcalm S, Durocher Y, Fournier A, Perez-Tur J, Barker PA (2010) LGI1 is a Nogo receptor 1 ligand that antagonizes myelin-based growth inhibition. J Neurosci 30(19):6607–6612. https://doi.org/10.1523/JNEUROSCI.5147-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhou YD, Zhang D, Ozkaynak E, Wang X, Kasper EM, Leguern E, Baulac S, Anderson MP (2012) Epilepsy gene LGI1 regulates postnatal developmental remodeling of retinogeniculate synapses. J Neurosci 32(3):903–910. https://doi.org/10.1523/JNEUROSCI.5191-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Seagar M, Russier M, Caillard O, Maulet Y, Fronzaroli-Molinieres L, De San Feliciano M, Boumedine-Guignon N, Rodriguez L, Zbili M, Usseglio F, Formisano-Treziny C, Youssouf F, Sangiardi M, Boillot M, Baulac S, Benitez MJ, Garrido JJ, Debanne D, El Far O (2017) LGI1 tunes intrinsic excitability by regulating the density of axonal Kv1 channels. Proc Natl Acad Sci USA 114(29):7719–7724. https://doi.org/10.1073/pnas.1618656114

    Article  CAS  PubMed  Google Scholar 

  24. Hivert B, Marien L, Agbam KN, Faivre-Sarrailh C (2019) ADAM22 and ADAM23 modulate the targeting of the Kv1 channel-associated protein LGI1 to the axon initial segment. J Cell Sci 132:2. https://doi.org/10.1242/jcs.219774

    Article  CAS  Google Scholar 

  25. Fukata Y, Adesnik H, Iwanaga T, Bredt DS, Nicoll RA, Fukata M (2006) Epilepsy-related ligand/receptor complex LGI1 and ADAM22 regulate synaptic transmission. Science 313(5794):1792–1795. https://doi.org/10.1126/science.1129947

    Article  CAS  PubMed  Google Scholar 

  26. Ohkawa T, Fukata Y, Yamasaki M, Miyazaki T, Yokoi N, Takashima H, Watanabe M, Watanabe O, Fukata M (2013) Autoantibodies to epilepsy-related LGI1 in limbic encephalitis neutralize LGI1–ADAM22 interaction and reduce synaptic AMPA receptors. J Neurosci 33(46):18161–18174. https://doi.org/10.1523/JNEUROSCI.3506-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schulte U, Thumfart JO, Klocker N, Sailer CA, Bildl W, Biniossek M, Dehn D, Deller T, Eble S, Abbass K, Wangler T, Knaus HG, Fakler B (2006) The epilepsy-linked Lgi1 protein assembles into presynaptic Kv1 channels and inhibits inactivation by Kvbeta1. Neuron 49(5):697–706. https://doi.org/10.1016/j.neuron.2006.01.033

    Article  CAS  PubMed  Google Scholar 

  28. Yamagata A, Miyazaki Y, Yokoi N, Shigematsu H, Sato Y, Goto-Ito S, Maeda A, Goto T, Sanbo M, Hirabayashi M, Shirouzu M, Fukata Y, Fukata M, Fukai S (2018) Structural basis of epilepsy-related ligand-receptor complex LGI1–ADAM22. Nat Commun 9(1):1546. https://doi.org/10.1038/s41467-018-03947-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lovero KL, Fukata Y, Granger AJ, Fukata M, Nicoll RA (2015) The LGI1-ADAM22 protein complex directs synapse maturation through regulation of PSD-95 function. Proc Natl Acad Sci USA 112(30):E4129–E4137. https://doi.org/10.1073/pnas.1511910112

    Article  CAS  PubMed  Google Scholar 

  30. Sagane K, Ohya Y, Hasegawa Y, Tanaka I (1998) Metalloproteinase-like, disintegrin-like, cysteine-rich proteins MDC2 and MDC3: novel human cellular disintegrins highly expressed in the brain. Biochem J 334(Pt 1):93–98

    Article  CAS  Google Scholar 

  31. Liu H, Shim AH, He X (2009) Structural characterization of the ectodomain of a disintegrin and metalloproteinase-22 (ADAM22), a neural adhesion receptor instead of metalloproteinase: insights on ADAM function. J Biol Chem 284(42):29077–29086. https://doi.org/10.1074/jbc.M109.014258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Muona M, Fukata Y, Anttonen AK, Laari A, Palotie A, Pihko H, Lonnqvist T, Valanne L, Somer M, Fukata M, Lehesjoki AE (2016) Dysfunctional ADAM22 implicated in progressive encephalopathy with cortical atrophy and epilepsy. Neurol Genet 2(1):e46. https://doi.org/10.1212/NXG.0000000000000046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen L, Chetkovich DM, Petralia RS, Sweeney NT, Kawasaki Y, Wenthold RJ, Bredt DS, Nicoll RA (2000) Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature 408(6815):936–943. https://doi.org/10.1038/35050030

    Article  CAS  PubMed  Google Scholar 

  34. Sainlos M, Tigaret C, Poujol C, Olivier NB, Bard L, Breillat C, Thiolon K, Choquet D, Imperiali B (2011) Biomimetic divalent ligands for the acute disruption of synaptic AMPAR stabilization. Nat Chem Biol 7(2):81–91. https://doi.org/10.1038/nchembio.498

    Article  CAS  PubMed  Google Scholar 

  35. Petit-Pedrol M, Sell J, Planaguma J, Mannara F, Radosevic M, Haselmann H, Ceanga M, Sabater L, Spatola M, Soto D, Gasull X, Dalmau J, Geis C (2018) LGI1 antibodies alter Kv1.1 and AMPA receptors changing synaptic excitability, plasticity and memory. Brain 141(11):3144–3159. https://doi.org/10.1093/brain/awy253

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ottman R, Winawer MR, Kalachikov S, Barker-Cummings C, Gilliam TC, Pedley TA, Hauser WA (2004) LGI1 mutations in autosomal dominant partial epilepsy with auditory features. Neurology 62(7):1120–1126

    Article  CAS  Google Scholar 

  37. Berkovic SF, Izzillo P, McMahon JM, Harkin LA, McIntosh AM, Phillips HA, Briellmann RS, Wallace RH, Mazarib A, Neufeld MY, Korczyn AD, Scheffer IE, Mulley JC (2004) LGI1 mutations in temporal lobe epilepsies. Neurology 62(7):1115–1119

    Article  CAS  Google Scholar 

  38. Gu W, Brodtkorb E, Steinlein OK (2002) LGI1 is mutated in familial temporal lobe epilepsy characterized by aphasic seizures. Ann Neurol 52(3):364–367. https://doi.org/10.1002/ana.10280

    Article  CAS  PubMed  Google Scholar 

  39. Pizzuti A, Flex E, Di Bonaventura C, Dottorini T, Egeo G, Manfredi M, Dallapiccola B, Giallonardo AT (2003) Epilepsy with auditory features: a LGI1 gene mutation suggests a loss-of-function mechanism. Ann Neurol 53(3):396–399. https://doi.org/10.1002/ana.10492

    Article  CAS  PubMed  Google Scholar 

  40. Lee MK, Kim SW, Lee JH, Cho YJ, Kim DE, Lee BI, Kim HM, Lee MG, Heo K (2014) A newly discovered LGI1 mutation in Korean family with autosomal dominant lateral temporal lobe epilepsy. Seizure 23(1):69–73. https://doi.org/10.1016/j.seizure.2013.10.001

    Article  PubMed  Google Scholar 

  41. Sadleir LG, Agher D, Chabrol E, Elkouby L, Leguern E, Paterson SJ, Harty R, Bellows ST, Berkovic SF, Scheffer IE, Baulac S (2013) Seizure semiology in autosomal dominant epilepsy with auditory features, due to novel LGI1 mutations. Epilepsy Res 107(3):311–317. https://doi.org/10.1016/j.eplepsyres.2013.09.008

    Article  CAS  PubMed  Google Scholar 

  42. Striano P, de Falco A, Diani E, Bovo G, Furlan S, Vitiello L, Pinardi F, Striano S, Michelucci R, de Falco FA, Nobile C (2008) A novel loss-of-function LGI1 mutation linked to autosomal dominant lateral temporal epilepsy. Arch Neurol 65(7):939–942. https://doi.org/10.1001/archneur.65.7.939

    Article  PubMed  Google Scholar 

  43. Di Bonaventura C, Operto FF, Busolin G, Egeo G, D’Aniello A, Vitello L, Smaniotto G, Furlan S, Diani E, Michelucci R, Giallonardo AT, Coppola G, Nobile C (2011) Low penetrance and effect on protein secretion of LGI1 mutations causing autosomal dominant lateral temporal epilepsy. Epilepsia 52(7):1258–1264. https://doi.org/10.1111/j.1528-1167.2011.03071.x

    Article  CAS  PubMed  Google Scholar 

  44. Di Bonaventura C, Carni M, Diani E, Fattouch J, Vaudano EA, Egeo G, Pantano P, Maraviglia B, Bozzao L, Manfredi M, Prencipe M, Giallonardo TA, Nobile C (2009) Drug resistant ADLTE and recurrent partial status epilepticus with dysphasic features in a family with a novel LGI1 mutation: electroclinical, genetic, and EEG/fMRI findings. Epilepsia 50(11):2481–2486. https://doi.org/10.1111/j.1528-1167.2009.02181.x

    Article  PubMed  Google Scholar 

  45. Hedera P, Abou-Khalil B, Crunk AE, Taylor KA, Haines JL, Sutcliffe JS (2004) Autosomal dominant lateral temporal epilepsy: two families with novel mutations in the LGI1 gene. Epilepsia 45(3):218–222

    Article  CAS  Google Scholar 

  46. Pisano T, Marini C, Brovedani P, Brizzolara D, Pruna D, Mei D, Moro F, Cianchetti C, Guerrini R (2005) Abnormal phonologic processing in familial lateral temporal lobe epilepsy due to a new LGI1 mutation. Epilepsia 46(1):118–123. https://doi.org/10.1111/j.0013-9580.2005.26304.x

    Article  CAS  PubMed  Google Scholar 

  47. Michelucci R, Poza JJ, Sofia V, de Feo MR, Binelli S, Bisulli F, Scudellaro E, Simionati B, Zimbello R, D’Orsi G, Passarelli D, Avoni P, Avanzini G, Tinuper P, Biondi R, Valle G, Mautner VF, Stephani U, Tassinari CA, Moschonas NK, Siebert R, Lopez de Munain A, Perez-Tur J, Nobile C (2003) Autosomal dominant lateral temporal epilepsy: clinical spectrum, new epitempin mutations, and genetic heterogeneity in seven European families. Epilepsia 44(10):1289–1297

    Article  CAS  Google Scholar 

  48. Klein KM, Pendziwiat M, Cohen R, Appenzeller S, de Kovel CG, Rosenow F, Koeleman BP, Kuhlenbaumer G, Sheintuch L, Veksler R, Friedman A, Afawi Z, Helbig I (2016) Autosomal dominant epilepsy with auditory features: a new LGI1 family including a phenocopy with cortical dysplasia. J Neurol 263(1):11–16. https://doi.org/10.1007/s00415-015-7921-2

    Article  CAS  PubMed  Google Scholar 

  49. Fumoto N, Matsumoto R, Kawamata J, Koyasu S, Kondo T, Kitamura A, Koshiba Y, Kinoshita M, Kawasaki J, Yamashita H, Takahashi R, Ikeda A (2017) Novel LGI1 mutation in a Japanese autosomal dominant lateral temporal lobe epilepsy family. Neurol Clin Neurosci 5(1):44–45. https://doi.org/10.1111/ncn3.12105

    Article  CAS  Google Scholar 

  50. Chabrol E, Popescu C, Gourfinkel-An I, Trouillard O, Depienne C, Senechal K, Baulac M, LeGuern E, Baulac S (2007) Two novel epilepsy-linked mutations leading to a loss of function of LGI1. Arch Neurol 64(2):217–222. https://doi.org/10.1001/archneur.64.2.217

    Article  PubMed  Google Scholar 

  51. Dazzo E, Santulli L, Posar A, Fattouch J, Conti S, Loden-van Straaten M, Mijalkovic J, De Bortoli M, Rosa M, Millino C, Pacchioni B, Di Bonaventura C, Giallonardo AT, Striano S, Striano P, Parmeggiani A, Nobile C (2015) Autosomal dominant lateral temporal epilepsy (ADLTE): novel structural and single-nucleotide LGI1 mutations in families with predominant visual auras. Epilepsy Res 110:132–138. https://doi.org/10.1016/j.eplepsyres.2014.12.004

    Article  CAS  PubMed  Google Scholar 

  52. Fertig E, Lincoln A, Martinuzzi A, Mattson RH, Hisama FM (2003) Novel LGI1 mutation in a family with autosomal dominant partial epilepsy with auditory features. Neurology 60(10):1687–1690

    Article  Google Scholar 

  53. Leonardi E, Andreazza S, Vanin S, Busolin G, Nobile C, Tosatto SC (2011) A computational model of the LGI1 protein suggests a common binding site for ADAM proteins. PLoS One 6(3):e18142. https://doi.org/10.1371/journal.pone.0018142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Striano P, Busolin G, Santulli L, Leonardi E, Coppola A, Vitiello L, Rigon L, Michelucci R, Tosatto SC, Striano S, Nobile C (2011) Familial temporal lobe epilepsy with psychic auras associated with a novel LGI1 mutation. Neurology 76(13):1173–1176. https://doi.org/10.1212/WNL.0b013e318212ab2e

    Article  CAS  PubMed  Google Scholar 

  55. Kawamata J, Ikeda A, Fujita Y, Usui K, Shimohama S, Takahashi R (2010) Mutations in LGI1 gene in Japanese families with autosomal dominant lateral temporal lobe epilepsy: the first report from Asian families. Epilepsia 51(4):690–693. https://doi.org/10.1111/j.1528-1167.2009.02309.x

    Article  CAS  PubMed  Google Scholar 

  56. Heiman GA, Kamberakis K, Gill R, Kalachikov S, Pedley TA, Hauser WA, Ottman R (2010) Evaluation of depression risk in LGI1 mutation carriers. Epilepsia 51(9):1685–1690. https://doi.org/10.1111/j.1528-1167.2010.02677.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research in SF’s lab has been supported by Grants from JSPS/MEXT KAKENHI (JP16H04749 to A.Y. and JP24247014 and JP18H03983 to S.F.) and JST CREST (JPMJCR12M5) to S.F. We apologize to colleagues whose research could not be cited due to space limitation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Atsushi Yamagata or Shuya Fukai.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamagata, A., Fukai, S. Insights into the mechanisms of epilepsy from structural biology of LGI1–ADAM22. Cell. Mol. Life Sci. 77, 267–274 (2020). https://doi.org/10.1007/s00018-019-03269-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03269-0

Keywords

Navigation