Skip to main content
Log in

Translation of TNFAIP2 is tightly controlled by upstream open reading frames

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Translation is a highly regulated process, both at the global as well as on a transcript-specific level. Regulatory upstream open reading frames (uORFs) represent a mode to alter cap-dependent translation efficiency in a transcript-specific manner and are found in numerous mRNAs. In the majority of cases, uORFs inhibit the translation of their associated main ORFs. Consequently, their inactivation results in enhanced translation of the main ORF, a phenomenon best characterized in the context of the integrated stress response. In the present study, we identified potent translation-inhibitory uORFs in the transcript leader sequence (TLS) of tumor necrosis factor alpha induced protein 2 (TNFAIP2). The initial description of the uORFs was based on the observation that despite a massive induction of TNFAIP2 mRNA expression in response to interleukin 1β (IL1β), TNFAIP2 protein levels remained low in MCF7 cells. While we were able to characterize the uORFs with respect to their exact size and sequential requirements in this cellular context, only TPA stimulation partially overcame the translation-inhibitory activity of the TNFAIP2 uORFs. Characterization of TNFAIP2 translation in the context of monocyte-to-macrophage differentiation suggested that, while the uORFs efficiently block TNFAIP2 protein synthesis in monocytes, they are inactivated in mature macrophages, thus allowing for a massive increase in TNFAIP2 protein expression. In summary, we establish TNFAIP2 as a novel target of uORF-mediated translational regulation. Furthermore, our findings suggest that during macrophage differentiation a major uORF-dependent translational switch occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CDS:

Coding sequence

CHX:

Cycloheximide

DMSO:

Dimethyl sulfoxide

IL1β:

Interleukin 1β

ISR:

Integrated stress response

MΦ:

Macrophages

MO:

Monocytes

RPF:

Ribosome-protected fragments

TLS:

Transcript leader sequence

TNFAIP2:

Tumor necrosis factor α induced protein 2

TPA:

12-O-tetradecanoylphorbol-13-acetate

uORF:

Upstream open reading frame

UTR:

Untranslated region

References

  1. Buttgereit F, Brand MD (1995) A hierarchy of ATP-consuming processes in mammalian cells. Biochem J 312(Pt 1):163–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Roux PP, Topisirovic I (2018) Signaling pathways involved in the regulation of mRNA translation. Mol Cell Biol 38(12):e00070-18. https://doi.org/10.1128/mcb.00070-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lacerda R, Menezes J, Romão L (2017) More than just scanning: the importance of cap-independent mRNA translation initiation for cellular stress response and cancer. Cell Mol Life Sci 74(9):1659–1680. https://doi.org/10.1007/s00018-016-2428-2

    Article  CAS  PubMed  Google Scholar 

  4. Kwan T, Thompson SR (2019) Noncanonical translation initiation in eukaryotes. Cold Spring Harbor Perspect Biol 11(4):a032672. https://doi.org/10.1101/cshperspect.a032672

    Article  CAS  Google Scholar 

  5. Hinnebusch AG, Ivanov IP, Sonenberg N (2016) Translational control by 5′-untranslated regions of eukaryotic mRNAs. Science 352(6292):1413–1416. https://doi.org/10.1126/science.aad9868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Walters B, Thompson SR (2016) Cap-independent translational control of carcinogenesis. Front Oncol 6:128. https://doi.org/10.3389/fonc.2016.00128

    Article  PubMed  PubMed Central  Google Scholar 

  7. Somers J, Pöyry T, Willis AE (2013) A perspective on mammalian upstream open reading frame function. Int J Biochem Cell Biol 45(8):1690–1700. https://doi.org/10.1016/j.biocel.2013.04.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McGillivray P, Ault R, Pawashe M, Kitchen R, Balasubramanian S, Gerstein M (2018) A comprehensive catalog of predicted functional upstream open reading frames in humans. Nucl Acids Res 46(7):3326–3338. https://doi.org/10.1093/nar/gky188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dobbyn HC, Hill K, Hamilton TL, Spriggs KA, Pickering BM, Coldwell MJ, de Moor CH, Bushell M, Willis AE (2008) Regulation of BAG-1 IRES-mediated translation following chemotoxic stress. Oncogene 27(8):1167–1174. https://doi.org/10.1038/sj.onc.1210723

    Article  CAS  PubMed  Google Scholar 

  10. Young SK, Wek RC (2016) Upstream open reading frames differentially regulate gene-specific translation in the integrated stress response. J Biol Chem 291(33):16927–16935. https://doi.org/10.1074/jbc.R116.733899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Andreev DE, O’Connor PBF, Fahey C, Kenny EM, Terenin IM, Dmitriev SE, Cormican P, Morris DW, Shatsky IN, Baranov PV (2015) Translation of 5′ leaders is pervasive in genes resistant to eIF2 repression. eLife 4:e03971. https://doi.org/10.7554/elife.03971

    Article  PubMed  PubMed Central  Google Scholar 

  12. Baird TD, Palam LR, Fusakio ME, Willy JA, Davis CM, McClintick JN, Anthony TG, Wek RC (2014) Selective mRNA translation during eIF2 phosphorylation induces expression of IBTKα. Mol Biol Cell 25(10):1686–1697. https://doi.org/10.1091/mbc.E14-02-0704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Barbosa C, Peixeiro I, Romão L (2013) Gene expression regulation by upstream open reading frames and human disease. PLoS Genet 9(8):e1003529. https://doi.org/10.1371/journal.pgen.1003529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wethmar K (2014) The regulatory potential of upstream open reading frames in eukaryotic gene expression. Wiley Interdiscip Rev RNA 5(6):765–778. https://doi.org/10.1002/wrna.1245

    Article  CAS  PubMed  Google Scholar 

  15. Ghilardi N, Skoda RC (1999) A single-base deletion in the thrombopoietin (TPO) gene causes familial essential thrombocythemia through a mechanism of more efficient translation of TPO mRNA. Blood 94(4):1480–1482

    Article  CAS  PubMed  Google Scholar 

  16. Schulz J, Mah N, Neuenschwander M, Kischka T, Ratei R, Schlag PM, Castaños-Vélez E, Fichtner I, Tunn P-U, Denkert C, Klaas O, Berdel WE, von Kries JP, Makalowski W, Andrade-Navarro MA, Leutz A, Wethmar K (2018) Loss-of-function uORF mutations in human malignancies. Sci Rep 8(1):2395. https://doi.org/10.1038/s41598-018-19201-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wolf FW, Sarma V, Seldin M, Drake S, Suchard SJ, Shao H, O’Shea KS, Dixit VM (1994) B94, a primary response gene inducible by tumor necrosis factor-alpha, is expressed in developing hematopoietic tissues and the sperm acrosome. J Biol Chem 269(5):3633–3640

    CAS  PubMed  Google Scholar 

  18. Hase K, Kimura S, Takatsu H, Ohmae M, Kawano S, Kitamura H, Ito M, Watarai H, Hazelett CC, Yeaman C, Ohno H (2009) M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex. Nat Cell Biol 11(12):1427–1432. https://doi.org/10.1038/ncb1990

    Article  CAS  PubMed  Google Scholar 

  19. Sarma V, Wolf FW, Marks RM, Shows TB, Dixit VM (1992) Cloning of a novel tumor necrosis factor-alpha-inducible primary response gene that is differentially expressed in development and capillary tube-like formation in vitro. J Immunol 148(10):3302–3312

    CAS  PubMed  Google Scholar 

  20. Jia L, Zhou Z, Liang H, Wu J, Shi P, Li F, Wang Z, Wang C, Chen W, Zhang H, Wang Y, Liu R, Feng J, Chen C (2016) KLF5 promotes breast cancer proliferation, migration and invasion in part by upregulating the transcription of TNFAIP2. Oncogene 35(16):2040–2051. https://doi.org/10.1038/onc.2015.263

    Article  CAS  PubMed  Google Scholar 

  21. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17(1):10. https://doi.org/10.14806/ej.17.1.200

    Article  Google Scholar 

  22. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635

    Article  CAS  PubMed  Google Scholar 

  24. Rübsamen D, Blees JS, Schulz K, Doring C, Hansmann ML, Heide H, Weigert A, Schmid T, Brüne B (2012) IRES-dependent translation of egr2 is induced under inflammatory conditions. RNA 18(10):1910–1920. https://doi.org/10.1261/rna.033019.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Scholz A, Eggenhofer F, Gelhausen R, Grüning B, Zarnack K, Brüne B, Backofen R, Schmid T (2019) uORF-Tools: workflow for the determination of translation-regulatory upstream open reading frames. bioRxiv 10:15. https://doi.org/10.1101/415018

    Article  Google Scholar 

  26. Chevrier N, Mertins P, Artyomov MN, Shalek AK, Iannacone M, Ciaccio MF, Gat-Viks I, Tonti E, DeGrace MM, Clauser KR, Garber M, Eisenhaure TM, Yosef N, Robinson J, Sutton A, Andersen MS, Root DE, von Andrian U, Jones RB, Park H, Carr SA, Regev A, Amit I, Hacohen N (2011) Systematic discovery of TLR signaling components delineates viral-sensing circuits. Cell 147(4):853–867. https://doi.org/10.1016/j.cell.2011.10.022

    Article  CAS  PubMed  Google Scholar 

  27. Rusiniak ME, Yu M, Ross DT, Tolhurst EC, Slack JL (2000) Identification of B94 (TNFAIP2) as a potential retinoic acid target gene in acute promyelocytic leukemia. Can Res 60(7):1824–1829

    CAS  Google Scholar 

  28. Mehta K, Lopez-Berestein G (1986) Expression of tissue transglutaminase in cultured monocytic leukemia (THP-1) cells during differentiation. Can Res 46(3):1388–1394

    CAS  Google Scholar 

  29. Su X, Yu Y, Zhong Y, Giannopoulou EG, Hu X, Liu H, Cross JR, Rätsch G, Rice CM, Ivashkiv LB (2015) Interferon-γ regulates cellular metabolism and mRNA translation to potentiate macrophage activation. Nat Immunol 16(8):838–849. https://doi.org/10.1038/ni.3205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Taniuchi S, Miyake M, Tsugawa K, Oyadomari M, Oyadomari S (2016) Integrated stress response of vertebrates is regulated by four eIF2α kinases. Sci Rep 6:32886. https://doi.org/10.1038/srep32886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pakos-Zebrucka K, Koryga I, Mnich K, Ljujic M, Samali A, Gorman AM (2016) The integrated stress response. EMBO Rep 17(10):1374–1395. https://doi.org/10.15252/embr.201642195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jia L, Shi Y, Wen Y, Li W, Feng J, Chen C (2018) The roles of TNFAIP2 in cancers and infectious diseases. J Cell Mol Med 22(11):5188–5195. https://doi.org/10.1111/jcmm.13822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Park DJ, Vuong PT, de Vos S, Douer D, Koeffler HP (2003) Comparative analysis of genes regulated by PML/RAR alpha and PLZF/RAR alpha in response to retinoic acid using oligonucleotide arrays. Blood 102(10):3727–3736. https://doi.org/10.1182/blood-2003-02-0412

    Article  CAS  PubMed  Google Scholar 

  34. Kondratiev S, Duraisamy S, Unitt CL, Green MR, Pinkus GS, Shipp MA, Kutok JL, Drapkin RI, Rodig SJ (2011) Aberrant expression of the dendritic cell marker TNFAIP2 by the malignant cells of Hodgkin lymphoma and primary mediastinal large B-cell lymphoma distinguishes these tumor types from morphologically and phenotypically similar lymphomas. Am J Surg Pathol 35(10):1531–1539. https://doi.org/10.1097/PAS.0b013e31822bd476

    Article  PubMed  PubMed Central  Google Scholar 

  35. Schiller C, Nowak C, Diakopoulos KN, Weidle UH, Weiss EH (2014) An upstream open reading frame regulates LST1 expression during monocyte differentiation. PLoS One 9(5):e96245. https://doi.org/10.1371/journal.pone.0096245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dickhout JG, Lhoták Š, Hilditch BA, Basseri S, Colgan SM, Lynn EG, Carlisle RE, Zhou J, Sood SK, Ingram AJ, Austin RC (2011) Induction of the unfolded protein response after monocyte to macrophage differentiation augments cell survival in early atherosclerotic lesions. FASEB J 25(2):576–589. https://doi.org/10.1096/fj.10-159319

    Article  CAS  PubMed  Google Scholar 

  37. Johnstone TG, Bazzini AA, Giraldez AJ (2016) Upstream ORFs are prevalent translational repressors in vertebrates. EMBO J 35(7):706–723. https://doi.org/10.15252/embj.201592759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Kathi Zarnack for discussion of the bioinformatics analyses.

Funding

This work was supported by the Deutsche Forschungsgemeinschaft (SCHM2663/3 and GRK2336) and a fellowship by the Stiftung Polytechnische Gesellschaft Frankfurt (to AS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Schmid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 321 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scholz, A., Rappl, P., Böffinger, N. et al. Translation of TNFAIP2 is tightly controlled by upstream open reading frames. Cell. Mol. Life Sci. 77, 2017–2027 (2020). https://doi.org/10.1007/s00018-019-03265-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03265-4

Keywords