Skip to main content

Advertisement

Log in

Lipophagy mediated carbohydrate-induced changes of lipid metabolism via oxidative stress, endoplasmic reticulum (ER) stress and ChREBP/PPARγ pathways

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

High-carbohydrate diets (HCD) can induce the occurrence of nonalcoholic fatty liver disease (NAFLD), characterized by dramatic accumulation of hepatic lipid droplets (LDs). However, the potential molecular mechanisms are still largely unknown. In this study, we investigated the role of autophagy in the process of HCD-induced changes of hepatic lipid metabolism, and to examine the process of underlying mechanisms during these molecular contexts. We found that HCD significantly increased hepatic lipid accumulation and activated autophagy. Using primary hepatocytes, we found that HG increased lipid accumulation and stimulated the release of NEFA by autophagy-mediated lipophagy, and that lipophagy significantly alleviated high glucose (HG)-induced lipid accumulation. Oxidative and endoplasmic reticulum (ER) stress pathways played crucial regulatory roles in HG-induced lipophagy activation and HG-induced changes of lipid metabolism. Further investigation found that HG-activated lipophagy and HG-induced changes of lipid metabolism were via enhancing carbohydrate response element-binding protein (ChREBP) DNA binding capacity at PPARγ promoter region, which in turn induced transcriptional activation of the key genes related to lipogenesis and autophagy. The present study, for the first time, revealed the novel mechanism for lipophagy mediating HCD-induced changes of lipid metabolism by oxidative stress and ER stress, and ChREBP/PPARγ pathways. Our study provided innovative evidence for the direct relationship between carbohydrate and lipid metabolism via ChREBP/PPARγ pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

3-MA:

3-Methyl adenine

4-PBA:

4-Phenylbutyric acid

6PGD:

6-Phosphogluconate dehydrogenase

ACCa:

Acetyl-CoA carboxylase a

ACSL:

Acyl-CoA synthetase long-chain

AO:

Acridine orange

ATF:

Activating transcription factor

ATG:

Autophagy-related gene

BSA:

Bovine serum albumin

CF:

Condition factor

ChREBP:

Carbohydrate response element-binding protein

CPT-1:

Carnitine palmitoyltransferase-1

CQ:

Chloroquine

DCFH2-DA:

2′,7′-Dichlorodihydrofluorescein diacetate

eIF2α:

Eukaryotic translation initiation factor 2α

ERS:

Endoplasmic reticulum stress

FABPL:

Fatty acid-binding protein liver

FAS:

Fatty acid synthase

FBW:

Final mean body weight

FCR:

Feed conversion rate

FFA:

Free fatty acids

FI:

Feed intake

G6PD:

Glucose 6-phosphate dehydrogenase

GLUT:

Glucose transporter

GRP78:

Glucose-regulated protein 78

GSH:

Glutathione

GSSG:

Glutathione disulfide

HCD:

High-carbohydrate diet

H&E:

Hematoxylin and eosin

HG:

High glucose

HSI:

Hepatosomatic index

HSL:

Hormone-sensitive lipase

ICD:

Intermediate carbohydrate diet

ICDH:

Isocitrate dehydrogenase

IRE1α:

Inositol requiring 1α

LCD:

Low-carbohydrate diet

LD:

Lipid droplet

LXR a:

Liver x receptor a

MAP1LC3B:

Microtubule-associated proteins 1A/1B light chain 3B

IBW:

Initial mean body weight

M199:

Medium-199

MDA:

Malondialdehyde

MDC:

Monodansylcadaverine

ME:

Malic enzyme

NAC:

N-acetyl-l-cysteine

NAFLD:

Nonalcoholic fatty liver disease

NEFA:

Nonesterified fatty acid

OD:

Optical density

ORO:

Oil red O

PERK:

Protein kinase R (PKR)-like ER kinase

PPAR:

Peroxisome proliferator-activated receptor

PVDF:

Polyvinylidene difluoride

ROS:

Reactive oxygen species

S.E.M:

Standard error of the mean

SGR:

Specific growth rate

SOD:

Superoxide dismutase

SREBP-1:

Sterol regulatory element-binding proteins-1

TG:

Triglyceride

UPR:

Unfolded protein response

VAI:

Visceral adipose index

VSI:

Viscerosomatic index

WG:

Weight gain

XBP1:

X-box binding protein 1

References

  1. Fabbrini E, Sullivan S, Klein S (2010) Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications. Hepatology 51:679–689

    CAS  PubMed  Google Scholar 

  2. Farrell GC, Larter CZ (2006) Non-alcoholic fatty liver: from steatosis to cirrhosis. Hepatology 43:S99–S112

    CAS  PubMed  Google Scholar 

  3. Abdelmalek MF, Suzuki A, Guy C, Unalp-Arida A, Colvin R, Johnson RJ, Diehl AM (2010) Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology 51:1961–1971

    CAS  PubMed  Google Scholar 

  4. Neuschwander-Tetri BA (2013) Carbohydrate intake and nonalcoholic fatty liver disease. Curr Opin Clin Nutr 16:446–452

    CAS  Google Scholar 

  5. Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477

    CAS  PubMed  Google Scholar 

  6. Singh R, Kaushik S, Wang YJ, Xiang YQ, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ (2009) Autophagy regulates lipid metabolism. Nature 458:1131–1135

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Bechmann LP, Hannivoort RA, Gerken G, Hotamisligil GS, Trauner M, Canbay A (2012) The interaction of hepatic lipid and glucose metabolism in liver diseases. J Hepatol 56:952–964

    CAS  PubMed  Google Scholar 

  8. Dong HQ, Czaja MJ (2011) Regulation of lipid droplets by autophagy. Trends Endocrinol Metab 22:234–240

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Singh R, Cuervo AM (2012) Lipophagy: connecting autophagy and lipid metabolism. Int J Cell Biol 2012:282041

    PubMed  PubMed Central  Google Scholar 

  10. Lavallard VJ, Gual P (2014) Autophagy and non-alcoholic fatty liver disease. Biomed Res Int 2014:120179

    PubMed  PubMed Central  Google Scholar 

  11. Azad MB, Chen YQ, Gibson SB (2009) Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment. Antioxid Redox Signal 11:777–790

    CAS  PubMed  Google Scholar 

  12. Kawai D, Takaki A, Nakatsuka A, Wada J, Tamaki N, Yasunaka T, Koike K, Tsuzaki R, Matsumoto K, Miyake Y et al (2012) Hydrogen-rich water prevents progression of nonalcoholic steatohepatitis and accompanying hepatocarcinogenesis in mice. Hepatology 56:912–921

    CAS  PubMed  Google Scholar 

  13. Panieri E, Santoro MM (2016) ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death Dis 7:e2253

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Pan YX, Luo Z, Zhuo MQ, Wei CC, Chen GH, Song YF (2018) Oxidative stress and mitochondrial dysfunction mediated Cd-induced hepatic lipid accumulation in zebrafish Danio rerio. Aquat Toxicol 199:12–20

    CAS  PubMed  Google Scholar 

  15. Wang H, Sun RQ, Zeng XY, Zhou X, Li SP, Jo E, Molero JC, Ye JM (2015) Restoration of autophagy alleviates hepatic ER stress and impaired insulin signalling transduction in high fructose-fed male mice. Endocrinology 156:169–181

    PubMed  Google Scholar 

  16. Madaro L, Marrocco V, Carnio S, Sandri M, Bouché M (2013) Intracellular signaling in ER stress-induced autophagy in skeletal muscle cells. FASEB J 27:1990–2000

    CAS  PubMed  Google Scholar 

  17. Rutkowski DT, Wu J, Back SH, Callaghan MU, Ferris SP, Iqbal J, Clark R, Miao H, Hassler JR, Fornek J et al (2008) UPR pathways combine to prevent hepatic steatosis caused by ER stress-mediated suppression of transcriptional master regulators. Dev Cell 15:829–840

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Werstuck GH, Lentz SR, Dayal S, Hossain GS, Sood SK, Shi YY, Zhou J, Maeda N, Krisans SK, Malinow MR et al (2001) Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways. J Clin Invest 107:1263–1273

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Patel L, Pass I, Coxon P, Downes CP, Smith SA, Macphee CH (2001) Tumor suppressor and anti-inflammatory actions of PPARγ agonists are mediated via upregulation of PTEN. Curr Biol 11:764–768

    CAS  PubMed  Google Scholar 

  20. Zheng JL, Zhuo MQ, Luo Z, Pan YX, Song YF, Huang C, Zhu QL, Hu W, Chen QL (2015) Peroxisome proliferator-activated receptor gamma (PPARγ) in yellow catfish Pelteobagrus fulvidraco: molecular characterization, mRNA expression and transcriptional regulation by insulin in vivo and in vitro. Gen Comp Endocr 212:51–62

    CAS  PubMed  Google Scholar 

  21. Meyer A, Van de Peer Y (2005) From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). BioEssays 27:937–945

    CAS  PubMed  Google Scholar 

  22. Gong G, Dan C, Xiao S, Guo W, Huang P, Xiong Y, Wu J, He Y, Zhang J, Li X et al (2018) Chromosomal-level assembly of yellow catfish genome using third-generation DNA sequencing and Hi-C analysis. GigaScience 7:giy120. https://doi.org/10.1093/gigascience/giy120

    Article  CAS  PubMed Central  Google Scholar 

  23. Ye WJ, Tan XY, Chen YD, Luo Z (2009) Effects of dietary protein to carbohydrate ratios on growth and body composition of juvenile yellow catfish, Pelteobagrus fulvidraco (Siluriformes, Bagridae, Pelteobagrus). Aquac Res 40:1410–1418

    CAS  Google Scholar 

  24. Wei CC, Luo Z, Hogstrand C, Xu YH, Wu LX, Chen GH, Pan YX, Song YF (2018) Zinc reduces hepatic lipid deposition and activates lipophagy via Zn2+/MTF-1/PPARα and Ca2+/CaMKKβ/AMPK pathways. FASEB J 32:6666–6680

    CAS  Google Scholar 

  25. Yang SB, Tan XY, Zhang DG, Cheng J, Luo Z (2018) Identification of ten SUMOylation-related genes from yellow catfish Pelteobagrus fulvidraco, and their transcriptional responses to carbohydrate addition in vivo and in vitro. Front Physiol 9:1544

    PubMed  PubMed Central  Google Scholar 

  26. Wu K, Luo Z, Hogstrand C, Chen GH, Wei CC, Li DD (2018) Zn stimulates the phospholipids biosynthesis via the pathways of oxidative and endoplasmic reticulum stress in the intestine of freshwater teleost yellow catfish. Environ Sci Technol 52:9206–9214

    CAS  PubMed  Google Scholar 

  27. Giustarini D, Dalle-donne I, Milzani A, Fanti P, Rossi R (2013) Analysis of GSH and GSSG after derivatization with n-ethylmaleimide. Nat Protoc 8:1660–1669

    CAS  PubMed  Google Scholar 

  28. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Arozena AA, Adachi H, Adams CM, Adams PD, Adeli K et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12:1–222

    PubMed  PubMed Central  Google Scholar 

  29. Song YF, Luo Z, Zhang LH, Hogstrand C, Pan YX (2016) Endoplasmic reticulum stress and disturbed calcium homeostasis are involved in copper-induced alteration in hepatic lipid metabolism in yellow catfish Pelteobagrus fulvidraco. Chemosphere 144:2443–2453

    CAS  PubMed  Google Scholar 

  30. Cai XY, Liu YL, Hu YQ, Liu XZ, Jiang HY, Yang SH, Shao Z, Xia Y, Xiong L (2018) Ros-mediated lysosomal membrane permeabilization is involved in bupivacaine-induced death of rabbit intervertebral disc cells. Redox Biol 18:65–76

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu K, Tan XY, Xu YH, Chen GH, Zhuo MQ (2018) Functional analysis of promoters of genes in lipid metabolism and their transcriptional response to STAT3 under leptin signals. Genes 9:334

    PubMed Central  Google Scholar 

  32. Xu YH, Luo Z, Wu K, Fan YF, You WJ, Zhang LH (2017) Structure and functional analysis of promoters from two liver isoforms of CPT I in grass carp Ctenopharyngodon idella. Int J Mol Sci 18:E2405

    PubMed  Google Scholar 

  33. Thorens B (1996) Glucose transporters in the regulation of intestinal, renal, and liver glucose fluxes. Am J Physiol 270:G541–G553

    CAS  PubMed  Google Scholar 

  34. Assumpção JAF, Magalhães KG, Corrêa JR (2017) The role of pparγ and autophagy in ros production, lipid droplets biogenesis and its involvement with colorectal cancer cells modulation. Cancer Cell Int 17:82

    PubMed  PubMed Central  Google Scholar 

  35. Postic C, Dentin R, Denechaud PD, Girard J (2007) ChREBP, a transcriptional regulator of glucose and lipid metabolism. Annu Rev Nutr 27:179–192

    CAS  PubMed  Google Scholar 

  36. Chen B, Zheng YM, Zhang JP (2018) Comparative study of different diets-induced NAFLD models of zebrafish. Front Endocrinol 9:366

    Google Scholar 

  37. Dias J, Alvarez MJ, Diez A, Arzel J, Corraze G, Bautista JM, Kaushik SJ (1998) Regulation of hepatic lipogenesis by dietary protein/energy in juvenile European sea bass (Dicentrarchus labrax). Aquaculture 161:169–186

    CAS  Google Scholar 

  38. Gou R, Chen JT, Sheng SF, Wang RQ, Fang YD, Yang ZJ, Wang L, Tang L (2016) Kim-1 mediates high glucose-induced autophagy and apoptosis in renal tubular epithelial cells. Cell Physiol Biochem 38:2479–2488

    CAS  PubMed  Google Scholar 

  39. Wang H, Sun RQ, Camera D, Zeng XY, Jo E, Chan SM, Herbert TP, Molero JC, Ye JM (2016) Endoplasmic reticulum stress up-regulates Nedd4-2 to induce autophagy. FASEB J 30:2549–2556

    PubMed  Google Scholar 

  40. Lebeaupin C, Vallée D, Hazari Y, Hetz C, Chevet E, Bailly-Maitre B (2018) Endoplasmic reticulum stress signaling and the pathogenesis of non-alcoholic fatty liver disease. J Hepatol 69:927–947

    CAS  PubMed  Google Scholar 

  41. Chen Y, Azad MB, Gibson SB (2009) Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ 16:1040–1052

    CAS  PubMed  Google Scholar 

  42. Zhang Z, Guo M, Zhao S, Shao J, Zheng S (2016) ROS-JNK1/2-dependent activation of autophagy is required for the induction of anti-inflammatory effect of dihydroartemisinin in liver fibrosis. Free Radic Biol Med 101:272–283

    CAS  PubMed  Google Scholar 

  43. Zhao XJ, Yu HW, Yang YZ, Wu WY, Chen TY, Jia KK, Kang LL, Jiao RQ, Kong LD (2018) Polydatin prevents fructose-induced liver inflammation and lipid deposition through increasing miR-200a to regulate Keap1/Nrf2 pathway. Redox Biol 18:124–137

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Rovito D, Giordano C, Vizza D, Plastina P, Barone I, Casaburi I, Lanzino M, De AF, Sisci D, Mauro L et al (2013) Omega-3 PUFA ethanolamides DHEA and EPA induce autophagy through PPARγ activation in MCF-7 breast cancer cells. J Cell Physiol 228:1314–1322

    CAS  PubMed  Google Scholar 

  45. Zhou J, Zhang W, Liang B, Casimiro MC, Whitaker-Menezes D, Wang M, Lisanti MP, Lanza-Jacoby S, Pestell RG, Wang C (2009) PPARγ activation induces autophagy in breast cancer cells. Int J Biochem Cell Biol 41:2334–2342

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2018YFD0900400) and Fundamental Research Funds for the Central Universities, China (Grant no. 2662018PY089).

Author information

Authors and Affiliations

Authors

Contributions

ZL and TZ designed the experiments. TZ carried out animal and cell experiments and sample analysis with the help of KW, YHX, GHC, and CCW; TZ, ZL and CH analyzed data; TZ wrote the manuscript, and ZL and CH revised the manuscript. All the authors read and approved the manuscript.

Corresponding author

Correspondence to Zhi Luo.

Ethics declarations

Conflict of interest

No potential conflict of interest were disclosed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 29953 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, T., Wu, K., Hogstrand, C. et al. Lipophagy mediated carbohydrate-induced changes of lipid metabolism via oxidative stress, endoplasmic reticulum (ER) stress and ChREBP/PPARγ pathways. Cell. Mol. Life Sci. 77, 1987–2003 (2020). https://doi.org/10.1007/s00018-019-03263-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03263-6

Keywords

Navigation