Skip to main content

Advertisement

Log in

Robust dengue virus infection in bat cells and limited innate immune responses coupled with positive serology from bats in IndoMalaya and Australasia

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Natural reservoir hosts can sustain infection of pathogens without succumbing to overt disease. Multiple bat species host a plethora of viruses, pathogenic to other mammals, without clinical symptoms. Here, we detail infection of bat primary cells, immune cells, and cell lines with Dengue virus. While antibodies and viral RNA were previously detected in wild bats, their ability to sustain infection is not conclusive. Old-world fruitbat cells can be infected, producing high titres of virus with limited cellular responses. In addition, there is minimal interferon (IFN) response in cells infected with MOIs leading to dengue production. The ability to support in vitro replication/production raises the possibility of bats as a transient host in the life cycle of dengue or similar flaviviruses. New antibody serology evidence from Asia/Pacific highlights the previous exposure and raises awareness that bats may be involved in flavivirus dynamics and infection of other hosts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

IFN:

Interferon

DENV:

Dengue virus

ZIKV:

Zika virus

JEV:

Japanese encephalitis virus

YFV:

Yellow fever virus

SLEV:

St Louis encephalitis virus

WNV:

West Nile virus

IRG:

Interferon regulated gene

PRR:

Pattern recognition receptor

BMDM:

Bone-marrow-derived macrophage

BMDC:

Bone-marrow-derived dendritic cells

LIPS:

Luciferase immune-precipitation system

SE:

South east

References

  1. Reagan R, Brueckner AL (1952) Studies of dengue fever virus in the cave bat (Myotus lucifugus). J Infect Dis 91(2):145–146

    Article  CAS  Google Scholar 

  2. Shepherd RC, Williams MC (1964) Studies on viruses in East African bats (Chiroptera): 1. Haemagglutination inhibition and circulation of arboviruses. Zoonoses Res 3(3):125–139

    PubMed  CAS  Google Scholar 

  3. La Motte LC Jr. (1958) Japanese B encephalitis in bats during simulated hibernation. Am J Hyg 67(1):101–108

    Google Scholar 

  4. Herbold JR, Heuschele WP, Berry RL, Parsons MA (1983) Reservoir of St. Louis encephalitis virus in Ohio bats. Am J Vet Res 44(10):1889–1893

    PubMed  CAS  Google Scholar 

  5. Davis A, Bunning M, Gordy P, Panella N, Blitvich B, Bowen R (2005) Experimental and natural infection of North American bats with West Nile virus. Am J Trop Med Hyg 73(2):467–469

    Article  Google Scholar 

  6. Simpson DI, O’Sullivan JP (1968) Studies on arboviruses and bats (Chiroptera) in East Africa: I Experimental infection of bats and virus transssion attempts in Aedes (Stegomyia) aegypti (Linnaeus). Ann Trop Med Parasitol 62(4):422–431

    Article  CAS  Google Scholar 

  7. Hsieh JT, Rathore APS, Soundarajan G, St John AL (2019) Japanese encephalitis virus neuropenetrance is driven by mast cell chymase. Nat Commun 10(1):706. https://doi.org/10.1038/s41467-019-08641-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Puccioni-Sohler M, Rosadas C (2015) Advances and new insights in the neuropathogenesis of dengue infection. Arq Neuropsiquiatr 73(8):698–703. https://doi.org/10.1590/0004-282X20150074

    Article  PubMed  Google Scholar 

  9. Maximova OA, Pletnev AG (2018) Flaviviruses and the central nervous system: revisiting neuropathological concepts. Annu Rev Virol 5(1):255–272. https://doi.org/10.1146/annurev-virology-092917-043439

    Article  PubMed  CAS  Google Scholar 

  10. Mustafa YM, Meuren LM, Coelho SVA, de Arruda LB (2019) Pathways exploited by flaviviruses to counteract the blood-brain barrier and invade the central nervous system. Front Microbiol 10:525. https://doi.org/10.3389/fmicb.2019.00525

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kading RC, Schountz T (2016) Flavivirus infections of bats: potential role in zika virus ecology. Am J Trop Med Hyg 95(5):993–996. https://doi.org/10.4269/ajtmh.16-0625

    Article  PubMed  PubMed Central  Google Scholar 

  12. de Thoisy B, Lacoste V, Germain A, Munoz-Jordan J, Colon C, Mauffrey JF, Delaval M, Catzeflis F, Kazanji M, Matheus S, Dussart P, Morvan J, Setien AA, Deparis X, Lavergne A (2009) Dengue infection in neotropical forest mammals. Vector Borne Zoonotic Dis 9(2):157–170. https://doi.org/10.1089/vbz.2007.0280

    Article  PubMed  Google Scholar 

  13. Machain-Williams C, Lopez-Uribe M, Talavera-Aguilar L, Carrillo-Navarrete J, Vera-Escalante L, Puerto-Manzano F, Ulloa A, Farfan-Ale JA, Garcia-Rejon J, Blitvich BJ, Lorono-Pino MA (2013) Serologic evidence of flavivirus infection in bats in the Yucatan Peninsula of Mexico. J Wildl Dis 49(3):684–689. https://doi.org/10.7589/2012-12-318

    Article  PubMed  Google Scholar 

  14. Vicente-Santos A, Moreira-Soto A, Soto-Garita C, Chaverri LG, Chaves A, Drexler JF, Morales JA, Alfaro-Alarcon A, Rodriguez-Herrera B, Corrales-Aguilar E (2017) Neotropical bats that co-habit with humans function as dead-end hosts for dengue virus. PLoS Negl Trop Dis 11(5):e0005537. https://doi.org/10.1371/journal.pntd.0005537

    Article  PubMed  PubMed Central  Google Scholar 

  15. Perea-Martinez L, Moreno-Sandoval HN, Moreno-Altamirano MM, Salas-Rojas M, Garcia-Flores MM, Arechiga-Ceballos N, Tordo N, Marianneau P, Aguilar-Setien A (2013) Experimental infection of Artibeus intermedius bats with serotype-2 dengue virus. Comp Immunol Microbiol Infect Dis 36(2):193–198. https://doi.org/10.1016/j.cimid.2012.12.002

    Article  PubMed  CAS  Google Scholar 

  16. Moreira-Soto A, Soto-Garita C, Corrales-Aguilar E (2017) Neotropical primary bat cell lines show restricted dengue virus replication. Comp Immunol Microbiol Infect Dis 50:101–105. https://doi.org/10.1016/j.cimid.2016.12.004

    Article  PubMed  Google Scholar 

  17. Bean AG, Baker ML, Stewart CR, Cowled C, Deffrasnes C, Wang LF, Lowenthal JW (2013) Studying immunity to zoonotic diseases in the natural host—keeping it real. Nat Rev Immunol 13(12):851–861. https://doi.org/10.1038/nri3551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Kuzmin IV, Schwarz TM, Ilinykh PA, Jordan I, Ksiazek TG, Sachidanandam R, Basler CF, Bukreyev A (2017) Innate immune responses of bat and human cells to filoviruses: commonalities and distinctions. J Virol. https://doi.org/10.1128/jvi.02471-16

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mishra A, Vijayakumar P, Raut AA (2017) Emerging avian influenza infections: current understanding of innate immune response and molecular pathogenesis. Int Rev Immunol 36(2):89–107. https://doi.org/10.1080/08830185.2017.1291640

    Article  PubMed  CAS  Google Scholar 

  20. Ploquin MJ, Silvestri G, Muller-Trutwin M (2016) Immune activation in HIV infection: what can the natural hosts of simian immunodeficiency virus teach us? Curr Opin HIV AIDS 11(2):201–208. https://doi.org/10.1097/COH.0000000000000238

    Article  PubMed  CAS  Google Scholar 

  21. Crameri G, Todd S, Grimley S, McEachern JA, Marsh GA, Smith C, Tachedjian M, De Jong C, Virtue ER, Yu M, Bulach D, Liu JP, Michalski WP, Middleton D, Field HE, Wang LF (2009) Establishment, immortalisation and characterisation of pteropid bat cell lines. PLoS One 4(12):e8266. https://doi.org/10.1371/journal.pone.0008266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Zhou P, Chionh YT, Irac SE, Ahn M, Jia Ng JH, Fossum E, Bogen B, Ginhoux F, Irving AT, Dutertre CA, Wang LF (2016) Unlocking bat immunology: establishment of Pteropus alecto bone marrow-derived dendritic cells and macrophages. Sci Rep 6:38597. https://doi.org/10.1038/srep38597

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Reller ME, Bodinayake C, Nagahawatte A, Devasiri V, Kodikara-Arachichi W, Strouse JJ, Broadwater A, Ostbye T, de Silva A, Woods CW (2012) Unsuspected dengue and acute febrile illness in rural and semi-urban southern Sri Lanka. Emerg Infect Dis 18(2):256–263. https://doi.org/10.3201/eid1802.110962

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chatel-Chaix L, Cortese M, Romero-Brey I, Bender S, Neufeldt CJ, Fischl W, Scaturro P, Schieber N, Schwab Y, Fischer B, Ruggieri A, Bartenschlager R (2016) Dengue virus perturbs mitochondrial morphodynamics to dampen innate immune responses. Cell Host Microbe 20(3):342–356. https://doi.org/10.1016/j.chom.2016.07.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Jain B, Chaturvedi UC, Jain A (2014) Role of intracellular events in the pathogenesis of dengue; an overview. Microb Pathog 69–70:45–52. https://doi.org/10.1016/j.micpath.2014.03.004

    Article  PubMed  CAS  Google Scholar 

  26. Balinsky CA, Schmeisser H, Wells AI, Ganesan S, Jin T, Singh K, Zoon KC (2017) IRAV (FLJ11286), an interferon-stimulated gene with antiviral activity against dengue virus, interacts with MOV10. J Virol. https://doi.org/10.1128/jvi.01606-16

    Article  PubMed  PubMed Central  Google Scholar 

  27. Thiemmeca S, Tamdet C, Punyadee N, Prommool T, Songjaeng A, Noisakran S, Puttikhunt C, Atkinson JP, Diamond MS, Ponlawat A, Avirutnan P (2016) Secreted NS1 protects dengue virus from mannose-binding lectin-mediated neutralization. J Immunol 197(10):4053–4065. https://doi.org/10.4049/jimmunol.1600323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Wang WK, Sung TL, Tsai YC, Kao CL, Chang SM, King CC (2002) Detection of dengue virus replication in peripheral blood mononuclear cells from dengue virus type 2-infected patients by a reverse transcription-real-time PCR assay. J Clin Microbiol 40(12):4472–4478. https://doi.org/10.1128/jcm.40.12.4472-4478.2002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Cheng MS, Lau SH, Chan KP, Toh CS, Chow VT (2015) Impedimetric cell-based biosensor for real-time monitoring of cytopathic effects induced by dengue viruses. Biosens Bioelectron 70:74–80. https://doi.org/10.1016/j.bios.2015.03.018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Pattanakitsakul SN, Rungrojcharoenkit K, Kanlaya R, Sinchaikul S, Noisakran S, Chen ST, Malasit P, Thongboonkerd V (2007) Proteomic analysis of host responses in HepG2 cells during dengue virus infection. J Proteome Res 6(12):4592–4600. https://doi.org/10.1021/pr070366b

    Article  PubMed  CAS  Google Scholar 

  31. Ludert JE, Mosso C, Ceballos-Olvera I, del Angel RM (2008) Use of a commercial enzyme immunoassay to monitor dengue virus replication in cultured cells. Virol J 5:51. https://doi.org/10.1186/1743-422X-5-51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Zompi S, Harris E (2012) Animal models of dengue virus infection. Viruses 4(1):62–82. https://doi.org/10.3390/v4010062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Romo H, Kenney JL, Blitvich BJ, Brault AC (2018) Restriction of Zika virus infection and transmission in Aedes aegypti mediated by an insect-specific flavivirus. Emerg Microbes Infect 7(1):181. https://doi.org/10.1038/s41426-018-0180-4

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hsu YL, Shi SF, Wu WL, Ho LJ, Lai JH (2013) Protective roles of interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) in dengue virus infection of human lung epithelial cells. PLoS One 8(11):e79518. https://doi.org/10.1371/journal.pone.0079518

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Helbig KJ, Carr JM, Calvert JK, Wati S, Clarke JN, Eyre NS, Narayana SK, Fiches GN, McCartney EM, Beard MR (2013) Viperin is induced following dengue virus type-2 (DENV-2) infection and has anti-viral actions requiring the C-terminal end of viperin. PLoS Negl Trop Dis 7(4):e2178. https://doi.org/10.1371/journal.pntd.0002178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Fallahi P, Elia G (2016) Interferon-gamma-induced protein 10 in dengue virus infection. Clin Ter 167(6):e186–e191. https://doi.org/10.7417/CT.2016.1966

    Article  PubMed  CAS  Google Scholar 

  37. Lin RJ, Yu HP, Chang BL, Tang WC, Liao CL, Lin YL (2009) Distinct antiviral roles for human 2′,5′-oligoadenylate synthetase family members against dengue virus infection. J Immunol 183(12):8035–8043. https://doi.org/10.4049/jimmunol.0902728

    Article  PubMed  CAS  Google Scholar 

  38. Pan XB, Han JC, Cong X, Wei L (2012) BST2/tetherin inhibits dengue virus release from human hepatoma cells. PLoS One 7(12):e51033. https://doi.org/10.1371/journal.pone.0051033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Sprokholt J, Helgers LC, Geijtenbeek TB (2017) Innate immune receptors drive dengue virus immune activation and disease. Future Virol 13(4):287–305. https://doi.org/10.2217/fvl-2017-0146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Urcuqui-Inchima S, Cabrera J, Haenni AL (2017) Interplay between dengue virus and toll-like receptors, RIG-I/MDA5 and microRNAs: implications for pathogenesis. Antivir Res 147:47–57. https://doi.org/10.1016/j.antiviral.2017.09.017

    Article  PubMed  CAS  Google Scholar 

  41. Sprokholt JK, Kaptein TM, van Hamme JL, Overmars RJ, Gringhuis SI, Geijtenbeek TBH (2017) RIG-I-like receptor activation by dengue virus drives follicular T helper cell formation and antibody production. PLoS Pathog 13(11):e1006738. https://doi.org/10.1371/journal.ppat.1006738

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Mok L, Wynne JW, Tachedjian M, Shiell B, Ford K, Matthews DA, Bacic A, Michalski WP (2017) Proteomics informed by transcriptomics for characterising differential cellular susceptibility to Nelson Bay orthoreovirus infection. BMC Genom 18(1):615. https://doi.org/10.1186/s12864-017-3994-x

    Article  CAS  Google Scholar 

  43. Hodgkison R, Balding ST, Zubaid A, Kunz TH (2004) Temporal Variation in the relative abundance of fruit bats (Megachiroptera: Pteropodidae) in relation to the availability of food in a lowland Malaysian rain forest. Biotropica 36(4):522–533

    Google Scholar 

  44. Larman HB, Zhao Z, Laserson U, Li MZ, Ciccia A, Gakidis MAM, Church GM, Kesari S, LeProust EM, Solimini NL, Elledge SJ (2011) Autoantigen discovery with a synthetic human peptidome. Nat Biotechnol 29:535. https://doi.org/10.1038/nbt.1856

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Mohan D, Wansley DL, Sie BM, Noon MS, Baer AN, Laserson U, Larman HB (2018) PhIP-Seq characterization of serum antibodies using oligonucleotide-encoded peptidomes. Nat Protoc 13(9):1958–1978. https://doi.org/10.1038/s41596-018-0025-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Shepard DS, Undurraga EA, Halasa YA (2013) Economic and disease burden of dengue in southeast Asia. PLOS Negl Trop Dis 7(2):e2055. https://doi.org/10.1371/journal.pntd.0002055

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zheng TT, Nie LF (2018) Modelling the transmission dynamics of two-strain dengue in the presence awareness and vector control. J Theor Biol 443:82–91. https://doi.org/10.1016/j.jtbi.2018.01.017

    Article  PubMed  Google Scholar 

  48. Pepin KM, Leach CB, Marques-Toledo C, Laass KH, Paixao KS, Luis AD, Hayman DT, Johnson NG, Buhnerkempe MG, Carver S, Grear DA, Tsao K, Eiras AE, Webb CT (2015) Utility of mosquito surveillance data for spatial prioritization of vector control against dengue viruses in three Brazilian cities. Parasit Vectors 8:98. https://doi.org/10.1186/s13071-015-0659-y

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jing Y, Wang X, Tang S, Wu J (2017) Data informed analysis of 2014 dengue fever outbreak in Guangzhou: impact of multiple environmental factors and vector control. J Theor Biol 416:161–179. https://doi.org/10.1016/j.jtbi.2016.12.014

    Article  PubMed  Google Scholar 

  50. Vasilakis N, Cardosa J, Hanley KA, Holmes EC, Weaver SC (2011) Fever from the forest: prospects for the continued emergence of sylvatic dengue virus and its impact on public health. Nat Rev Microbiol 9(7):532–541. https://doi.org/10.1038/nrmicro2595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Mandl JN, Ahmed R, Barreiro LB, Daszak P, Epstein JH, Virgin HW, Feinberg MB (2015) Reservoir host immune responses to emerging zoonotic viruses. Cell 160(1–2):20–35. https://doi.org/10.1016/j.cell.2014.12.003

    Article  PubMed  CAS  Google Scholar 

  52. Ashford RW (2003) When is a reservoir not a reservoir? Emerg Infect Dis 9(11):1495–1496. https://doi.org/10.3201/eid0911.030088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Stabell AC, Meyerson NR, Gullberg RC, Gilchrist AR, Webb KJ, Old WM, Perera R, Sawyer SL (2018) Dengue viruses cleave STING in humans but not in nonhuman primates, their presumed natural reservoir. Elife. https://doi.org/10.7554/elife.31919

    Article  PubMed  PubMed Central  Google Scholar 

  54. Mozzi A, Pontremoli C, Forni D, Clerici M, Pozzoli U, Bresolin N, Cagliani R, Sironi M (2015) OASes and STING: adaptive evolution in concert. Genome Biol Evol 7(4):1016–1032. https://doi.org/10.1093/gbe/evv046

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Xie J, Li Y, Shen X, Goh G, Zhu Y, Cui J, Wang LF, Shi ZL, Zhou P (2018) Dampened STING-dependent interferon activation in bats. Cell Host Microbe 23(3):297–301.e294. https://doi.org/10.1016/j.chom.2018.01.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Green AM, Beatty PR, Hadjilaou A, Harris E (2014) Innate immunity to dengue virus infection and subversion of antiviral responses. J Mol Biol 426(6):1148–1160. https://doi.org/10.1016/j.jmb.2013.11.023

    Article  PubMed  CAS  Google Scholar 

  57. Jones M, Davidson A, Hibbert L, Gruenwald P, Schlaak J, Ball S, Foster GR, Jacobs M (2005) Dengue virus inhibits alpha interferon signaling by reducing STAT2 expression. J Virol 79(9):5414–5420. https://doi.org/10.1128/JVI.79.9.5414-5420.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Bui TT, Moi ML, Nabeshima T, Takemura T, Nguyen TT, Nguyen LN, Pham HTT, Nguyen TTT, Manh DH, Dumre SP, Mizukami S, Hirayama K, Tajima S, Le MTQ, Aoyagi K, Hasebe F, Morita K (2018) A single amino acid substitution in the NS4B protein of dengue virus confers enhanced virus growth and fitness in human cells in vitro through IFN-dependent host response. J Gen Virol 99(8):1044–1057. https://doi.org/10.1099/jgv.0.001092

    Article  PubMed  CAS  Google Scholar 

  59. Castillo Ramirez JA, Urcuqui-Inchima S (2015) Dengue virus control of type I IFN responses: a history of manipulation and control. J Interferon Cytokine Res 35(6):421–430. https://doi.org/10.1089/jir.2014.0129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Best SM (2017) The many faces of the flavivirus NS5 protein in antagonism of type I interferon signaling. J Virol. https://doi.org/10.1128/jvi.01970-16

    Article  PubMed  PubMed Central  Google Scholar 

  61. Thongyuan S, Kittayapong P (2017) First evidence of dengue infection in domestic dogs living in different ecological settings in Thailand. PLoS One 12(8):e0180013. https://doi.org/10.1371/journal.pone.0180013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Ryan PA, Martin L, Mackenzie JS, Kay BH (1997) Investigation of gray-headed flying foxes (Pteropus poliocephalus) (Megachiroptera: Pteropodidae) and mosquitoes in the ecology of Ross River virus in Australia. Am J Trop Med Hyg 57(4):476–482

    Article  CAS  Google Scholar 

  63. Kading RC, Kityo RM, Mossel EC, Borland EM, Nakayiki T, Nyakarahuka L, Ledermann JP, Panella NA, Gilbert AT, Crabtree MB, Peterhans JK, Towner JS, Amman BR, Sealy TK, Nichol ST, Powers AM, Lutwama JJ, Miller BR (2018) Neutralizing antibodies against flaviviruses, Babanki virus, and Rift Valley fever virus in Ugandan bats. Infect Ecol Epidemiol 8(1):1439215. https://doi.org/10.1080/20008686.2018.1439215

    Article  PubMed  PubMed Central  Google Scholar 

  64. Breed AC, Field HE, Smith CS, Edmonston J, Meers J (2010) Bats without borders: long-distance movements and implications for disease risk management. EcoHealth 7(2):204–212. https://doi.org/10.1007/s10393-010-0332-z

    Article  PubMed  PubMed Central  Google Scholar 

  65. van den Hurk AF, Smith CS, Field HE, Smith IL, Northill JA, Taylor CT, Jansen CC, Smith GA, Mackenzie JS (2009) Transmission of Japanese Encephalitis virus from the black flying fox, Pteropus alecto, to Culex annulirostris mosquitoes, despite the absence of detectable viremia. Am J Trop Med Hyg 81(3):457–462

    Article  Google Scholar 

  66. Rosen L, Roseboom LE, Gubler DJ, Lien JC, Chaniotis BN (1985) Comparative susceptibility of mosquito species and strains to oral and parenteral infection with dengue and Japanese encephalitis viruses. Am J Trop Med Hyg 34(3):603–615

    Article  CAS  Google Scholar 

  67. Brathwaite Dick O, San Martin JL, Montoya RH, del Diego J, Zambrano B, Dayan GH (2012) The history of dengue outbreaks in the Americas. Am J Trop Med Hyg 87(4):584–593. https://doi.org/10.4269/ajtmh.2012.11-0770

    Article  PubMed  PubMed Central  Google Scholar 

  68. Gubler DJ (2006) Dengue/dengue haemorrhagic fever: history and current status. Novartis Found Symp 277:3–16 (discussion 16-22, 71-13, 251-253)

    PubMed  Google Scholar 

  69. Ooi EE, Gubler DJ (2009) Dengue in Southeast Asia: epidemiological characteristics and strategic challenges in disease prevention. Cad Saude Publica 25(Suppl 1):S115–124

    Article  Google Scholar 

  70. Gubler DJ (1998) Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 11(3):480–496

    Article  CAS  Google Scholar 

  71. Lei M, Dong D (2016) Phylogenomic analyses of bat subordinal relationships based on transcriptome data. Sci Rep 6:27726. https://doi.org/10.1038/srep27726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Shen B, Han X, Jones G, Rossiter SJ, Zhang S (2013) Adaptive evolution of the myo6 gene in old world fruit bats (Family: Pteropodidae). PLoS One 8(4):e62307. https://doi.org/10.1371/journal.pone.0062307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Shen B, Han X, Zhang J, Rossiter SJ, Zhang S (2012) Adaptive evolution in the glucose transporter 4 gene Slc2a4 in Old World fruit bats (Family: Pteropodidae). PLoS One 7(4):e33197. https://doi.org/10.1371/journal.pone.0033197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Gunnell GF, Smith R, Smith T (2017) 33 million year old Myotis (Chiroptera, Vespertilionidae) and the rapid global radiation of modern bats. PLoS One 12(3):e0172621. https://doi.org/10.1371/journal.pone.0172621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Yin Q, Zhu L, Liu D, Irwin DM, Zhang S, Pan YH (2016) Molecular evolution of the nuclear factor (erythroid-derived 2)-Like 2 gene Nrf2 in old world fruit bats (Chiroptera: Pteropodidae). PLoS One 11(1):e0146274. https://doi.org/10.1371/journal.pone.0146274

    Article  PubMed  PubMed Central  Google Scholar 

  76. Hamilton PB, Cruickshank C, Stevens JR, Teixeira MM, Mathews F (2012) Parasites reveal movement of bats between the new and old worlds. Mol Phylogenet Evol 63(2):521–526. https://doi.org/10.1016/j.ympev.2012.01.007

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Singapore National Research Foundation Competitive Research Programme Grant (NRF2012NRF-CRP001-056 to LFW), National Medical Research Council of Singapore New Investigator’s Grant (NMRC/BNIG/2040/2015 to ATI, NMRC/BNIG/2005/2013 to IHM) and a National Medical Research Council Research Grant (ZRRF16006 to LFW and ATI). Many thanks to the following in helping with bat sample processing: NEA/NParks, Crameri Research Consulting, Prof. Joanne Meers of UQ, the Queensland Animal Science Precinct (QASP) team led by Hume Field, and Duke-NUS team members from LEZV/LOVE labs for collection of bat samples. We acknowledge the help from the SingHealth Advanced Bioimaging facility.

Author information

Authors and Affiliations

Authors

Contributions

ATI designed the study, performed experiments, analysed the data, and wrote the manuscript under supervision from LFW and with input from all authors. PR, KPS, KL, WNC, and SM performed experiments and analysed data. JLG and MLH performed proteomics studies. BPYHL, JHJN, IHM, and GJDS contributed with wild animal samples in Singapore, processing of bats, and generation of cell lines. BL and SJE designed the ViRScan/PhIP-Seq pipelines and contributed to the manuscript.

Corresponding authors

Correspondence to Aaron T. Irving or Lin-Fa Wang.

Ethics declarations

Conflict of interest

We declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irving, A.T., Rozario, P., Kong, PS. et al. Robust dengue virus infection in bat cells and limited innate immune responses coupled with positive serology from bats in IndoMalaya and Australasia. Cell. Mol. Life Sci. 77, 1607–1622 (2020). https://doi.org/10.1007/s00018-019-03242-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03242-x

Keywords

Navigation