FA-SAT ncRNA interacts with PKM2 protein: depletion of this complex induces a switch from cell proliferation to apoptosis


FA-SAT is a highly conserved satellite DNA sequence transcribed in many Bilateria species. To disclose the cellular and functional profile of FA-SAT non-coding RNAs, a comprehensive experimental approach, including the transcripts location in the cell and in the cell cycle, the identification of its putative protein interactors, and silencing/ectopic expression phenotype analysis, was performed. FA-SAT non-coding RNAs play a nuclear function at the G1 phase of the cell cycle and the interactomic assay showed that the PKM2 protein is the main interactor. The disruption of the FA-SAT non-coding RNA/PKM2 protein complex, by the depletion of either FA-SAT or PKM2, results in the same phenotype—apoptosis, and the ectopic overexpression of FA-SAT did not affect the cell-cycle progression, but promotes the PKM2 nuclear accumulation. Overall, our data first describe the importance of this ribonucleoprotein complex in apoptosis and cell-cycle progression, what foresees a promising novel candidate molecular target for cancer therapy and diagnosis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Adega F, Guedes-Pinto H, Chaves R (2009) Satellite DNA in the karyotype evolution of domestic animals—clinical considerations. Cytogenet Genome Res 126(1–2):12–20. https://doi.org/10.1159/000245903

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Tsoumani KT, Drosopoulou E, Mavragani-Tsipidou P, Mathiopoulos KD (2013) Molecular characterization and chromosomal distribution of a species-specific transcribed centromeric satellite repeat from the olive fruit fly, Bactrocera oleae. PLoS One 8(11):e79393. https://doi.org/10.1371/journal.pone.0079393

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Chaves R, Ferreira D, Mendes-da-Silva A, Meles S, Adega F (2017) FA-SAT is an old satellite DNA frozen in several Bilateria genomes. Genome Biol Evol 9(11):3073–3087

    CAS  Article  Google Scholar 

  4. 4.

    Ugarkovic D (2005) Functional elements residing within satellite DNAs. EMBO Rep 6(11):1035–1039. https://doi.org/10.1038/sj.embor.7400558

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Plohl M, Luchetti A, Mestrovic N, Mantovani B (2008) Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. Gene 409(1–2):72–82. https://doi.org/10.1016/j.gene.2007.11.013

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Enukashvily NI, Ponomartsev NV (2013) Mammalian satellite DNA: a speaking dumb. Adv Protein Chem Struct Biol 90:31–65. https://doi.org/10.1016/B978-0-12-410523-2.00002-X

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Ferreira D, Meles S, Escudeiro A, Mendes-da-Silva A, Adega F, Chaves R (2015) Satellite non-coding RNAs: the emerging players in cells, cellular pathways and cancer. Chromosome Res 23(3):479–493. https://doi.org/10.1007/s10577-015-9482-8

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Rošić S, Erhardt S (2016) No longer a nuisance: long non-coding RNAs join CENP-A in epigenetic centromere regulation. Cell Mol Life Sci 73(7):1387–1398. https://doi.org/10.1007/s00018-015-2124-7

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Biscotti MA, Canapa A, Forconi M, Olmo E, Barucca M (2015) Transcription of tandemly repetitive DNA: functional roles. Chromosome Res 23(3):463–477. https://doi.org/10.1007/s10577-015-9494-4

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Fanning TG (1987) Origin and evolution of a major feline satellite DNA. J Mol Biol 197(4):627–634

    CAS  Article  Google Scholar 

  11. 11.

    Pontius JU, O’Brien SJ (2009) Artifacts of the 1.9x feline genome assembly derived from the feline-specific satellite sequence. J Hered 100(Suppl 1):S14–S18. https://doi.org/10.1093/jhered/esp035

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Santos S, Chaves R, Guedes-Pinto H (2004) Chromosomal localization of the major satellite DNA family (FA-SAT) in the domestic cat. Cytogenet Genome Res 107(1–2):119–122. https://doi.org/10.1159/000079581

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Santos S, Chaves R, Adega F, Bastos E, Guedes-Pinto H (2006) Amplification of the major satellite DNA family (FA-SAT) in a cat fibrosarcoma might be related to chromosomal instability. J Hered 97(2):114–118. https://doi.org/10.1093/jhered/esj016

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Ferreira D, Escudeiro A, Adega F, Chaves R (2019) DNA methylation patterns of a satellite non-coding sequence—FA-SAT in cancer cells: its expression cannot be explained solely by DNA methylation. Front Genet 10:101. https://doi.org/10.3389/fgene.2019.00101

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Harris I, McCracken S, Mak TW (2012) PKM2: a gatekeeper between growth and survival. Cell Res 22(3):447–449. https://doi.org/10.1038/cr.2011.203

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Tamada M, Suematsu M, Saya H (2012) Pyruvate kinase M2: multiple faces for conferring benefits on cancer cells. Clin Cancer Res 18(20):5554–5561. https://doi.org/10.1158/1078-0432.CCR-12-0859

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Iqbal MA, Gupta V, Gopinath P, Mazurek S, Bamezai RN (2014) Pyruvate kinase M2 and cancer: an updated assessment. FEBS Lett 588(16):2685–2692. https://doi.org/10.1016/j.febslet.2014.04.011

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Wong N, Ojo D, Yan J, Tang D (2015) PKM2 contributes to cancer metabolism. Cancer Lett 356(2 Pt A):184–191. https://doi.org/10.1016/j.canlet.2014.01.031

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Wiznerowicz M, Trono D (2003) Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J Virol 77(16):8957–8961

    CAS  Article  Google Scholar 

  20. 20.

    McNulty SM, Sullivan LL, Sullivan BA (2017) Human centromeres produce chromosome-specific and array-specific alpha satellite transcripts that are complexed with CENP-A and CENP-C. Dev Cell 42(3):226–240. https://doi.org/10.1016/j.devcel.2017.07.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Bellucci M, Agostini F, Masin M, Tartaglia GG (2011) Predicting protein associations with long noncoding RNAs. Nat Methods 8(6):444–445. https://doi.org/10.1038/nmeth.1611

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Anjo SI, Santa C, Manadas B (2015) Short GeLC-SWATH: a fast and reliable quantitative approach for proteomic screenings. Proteomics 15(4):757–762. https://doi.org/10.1002/pmic.201400221

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Vizcaino JA, Csordas A, Del-Toro N, Dianes JA, Griss J, Lavidas I, Mayer G, Perez-Riverol Y, Reisinger F, Ternent T, Xu QW, Wang R, Hermjakob H (2016) 2016 update of the PRIDE database and its related tools. Nucleic Acids Res 44(22):11033. https://doi.org/10.1093/nar/gkw880

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Huang DW, Sherman BT, Lempicki RA (2008) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57. https://doi.org/10.1038/nprot.2008.211

    CAS  Article  Google Scholar 

  25. 25.

    da Huang W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1):1–13. https://doi.org/10.1093/nar/gkn923

    CAS  Article  Google Scholar 

  26. 26.

    Croft D, Mundo AF, Haw R, Milacic M, Weiser J, Wu G, Caudy M, Garapati P, Gillespie M, Kamdar MR, Jassal B, Jupe S, Matthews L, May B, Palatnik S, Rothfels K, Shamovsky V, Song H, Williams M, Birney E, Hermjakob H, Stein L, D’Eustachio P (2014) The reactome pathway knowledgebase. Nucleic Acids Res 42:472–477. https://doi.org/10.1093/nar/gkt1102

    CAS  Article  Google Scholar 

  27. 27.

    Novikova IV, Hennelly SP, Sanbonmatsu KY (2013) Tackling structures of long noncoding RNAs. Int J Mol Sci 14(12):23672–23684. https://doi.org/10.3390/ijms141223672

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Rosic S, Kohler F, Erhardt S (2014) Repetitive centromeric satellite RNA is essential for kinetochore formation and cell division. J Cell Biol 207(3):335–349. https://doi.org/10.1083/jcb.201404097

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Jolly C, Metz A, Govin J, Vigneron M, Turner BM, Khochbin S, Vourc’h C (2004) Stress-induced transcription of satellite III repeats. J Cell Biol 164(1):25–33. https://doi.org/10.1083/jcb.200306104

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Bouzinba-Segard H, Guais A, Francastel C (2006) Accumulation of small murine minor satellite transcripts leads to impaired centromeric architecture and function. Proc Natl Acad Sci USA 103(23):8709–8714. https://doi.org/10.1073/pnas.0508006103

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Valgardsdottir R, Chiodi I, Giordano M, Rossi A, Bazzini S, Ghigna C, Riva S, Biamonti G (2008) Transcription of satellite III non-coding RNAs is a general stress response in human cells. Nucleic Acids Res 36(2):423–434. https://doi.org/10.1093/nar/gkm1056

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Sengupta S, Parihar R, Ganesh S (2009) Satellite III non-coding RNAs show distinct and stress-specific patterns of induction. Biochem Biophys Res Commun 382(1):102–107. https://doi.org/10.1016/j.bbrc.2009.02.137

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Pezer Z, Ugarkovic D (2012) Satellite DNA-associated siRNAs as mediators of heat shock response in insects. RNA Biol 9(5):587–595. https://doi.org/10.4161/rna.20019

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Tilman G, Arnoult N, Lenglez S, Van Beneden A, Loriot A, De Smet C, Decottignies A (2012) Cancer-linked satellite 2 DNA hypomethylation does not regulate Sat2 non-coding RNA expression and is initiated by heat shock pathway activation. Epigenetics 7(8):903–913. https://doi.org/10.4161/epi.21107

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    de Barros FR, Goissis MD, Caetano HV, Paula-Lopes FF, Peres MA, Assumpcao ME, Visintin JA (2010) Serum starvation and full confluency for cell cycle synchronization of domestic cat (Felis catus) foetal fibroblasts. Reprod Domest Anim 45(1):38–41. https://doi.org/10.1111/j.1439-0531.2008.01201.x

    Article  PubMed  Google Scholar 

  36. 36.

    Bertero T, Gastaldi C, Bourget-Ponzio I, Mari B, Meneguzzi G, Barbry P, Ponzio G, Rezzonico R (2013) CDC25A targeting by miR-483-3p decreases CCND-CDK4/6 assembly and contributes to cell cycle arrest. Cell Death Differ 20(6):800–811. https://doi.org/10.1038/cdd.2013.5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Cirillo D, Blanco M, Armaos A, Buness A, Avner P, Guttman M, Cerase A, Tartaglia GG (2016) Quantitative predictions of protein interactions with long noncoding RNAs. Nat Methods 14(1):5–6. https://doi.org/10.1038/nmeth.4100

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Kauppinen S, Vester B, Wengel J (2005) Locked nucleic acid (LNA): high affinity targeting of RNA for diagnostics and therapeutics. Drug Discov Today Technol 2(3):287–290. https://doi.org/10.1016/j.ddtec.2005.08.012

    Article  PubMed  Google Scholar 

  39. 39.

    Goldberg MS, Sharp PA (2012) Pyruvate kinase M2-specific siRNA induces apoptosis and tumor regression. J Exp Med 209(2):217–224. https://doi.org/10.1084/jem.20111487

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Kwon OH, Kang TW, Kim JH, Kim M, Noh SM, Song KS, Yoo HS, Kim WH, Xie Z, Pocalyko D, Kim SY, Kim YS (2012) Pyruvate kinase M2 promotes the growth of gastric cancer cells via regulation of Bcl-xL expression at transcriptional level. Biochem Biophys Res Commun 423(1):38–44. https://doi.org/10.1016/j.bbrc.2012.05.063

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Lu L, Wang L, Jiang GS, Zhang CH, Zeng FQ (2013) Silencing pyruvate kinase M2 sensitizes human prostate cancer PC3 cells to gambogic acid-induced apoptosis. Natl J Androl 19(2):102–106

    CAS  Google Scholar 

  42. 42.

    Chu B, Wang J, Wang Y, Yang G (2015) Knockdown of PKM2 induces apoptosis and autophagy in human A549 alveolar adenocarcinoma cells. Mol Med Rep 12(3):4358–4363. https://doi.org/10.3892/mmr.2015.3943

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Hu W, Lu SX, Li M, Zhang C, Liu LL, Fu J, Jin JT, Luo RZ, Zhang CZ, Yun JP (2015) Pyruvate kinase M2 prevents apoptosis via modulating Bim stability and associates with poor outcome in hepatocellular carcinoma. Oncotarget 6(9):6570–6583. https://doi.org/10.18632/oncotarget.3262

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Miao Y, Lu M, Yan Q, Li S, Feng Y (2016) Inhibition of proliferation, migration, and invasion by knockdown of pyruvate kinase-M2 (PKM2) in ovarian cancer SKOV3 and OVCAR3 cells. Oncol Res Featur Preclin Clin Cancer Ther 24(6):463–475. https://doi.org/10.3727/096504016X14685034103671

    Article  Google Scholar 

  45. 45.

    Yang J, Yu Z, Li J, Zhang A, Zhang X, Kan Q (2016) Impact of PKM2 gene silencing on biological behavior of HepG2 cells. Int J Clin Exp Med 7(9):13475–13483

    Google Scholar 

  46. 46.

    Zhou CF, Li XB, Sun H, Zhang B, Han YS, Jiang Y, Zhuang QL, Fang J, Wu GH (2012) Pyruvate kinase type M2 is upregulated in colorectal cancer and promotes proliferation and migration of colon cancer cells. IUBMB Life 64(9):775–782. https://doi.org/10.1002/iub.1066

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Lu J, Gilbert DM (2007) Proliferation-dependent and cell cycle regulated transcription of mouse pericentric heterochromatin. J Cell Biol 179(3):411–421. https://doi.org/10.1083/jcb.200706176

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Chen ES, Zhang K, Nicolas E, Cam HP, Zofall M, Grewal SI (2008) Cell cycle control of centromeric repeat transcription and heterochromatin assembly. Nature 451(7179):734–737. https://doi.org/10.1038/nature06561

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Ferri F, Bouzinba-Segard H, Velasco G, Hube F, Francastel C (2009) Non-coding murine centromeric transcripts associate with and potentiate Aurora B kinase. Nucleic Acids Res 37(15):5071–5080. https://doi.org/10.1093/nar/gkp529

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Trofimova I, Popova D, Vasilevskaya E, Krasikova A (2014) Non-coding RNA derived from a conservative subtelomeric tandem repeat in chicken and Japanese quail somatic cells. Mol Cytogenet 7(1):102. https://doi.org/10.1186/s13039-014-0102-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Lee S, Kopp F, Chang TC, Sataluri A, Chen B, Sivakumar S, Yu H, Xie Y, Mendell JT (2016) Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins. Cell 164(1–2):69–80. https://doi.org/10.1016/j.cell.2015.12.017

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Liang Y, Chen X, Wu Y, Li J, Zhang S, Wang K, Guan X, Yang K, Bai Y (2018) LncRNA CASC9 promotes esophageal squamous cell carcinoma metastasis through upregulating LAMC2 expression by interacting with the CREB-binding protein. Cell Death Differ. https://doi.org/10.1038/s41418-018-0084-9

    Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Castello A, Fischer B, Eichelbaum K, Horos R, Beckmann BM, Strein C, Davey NE, Humphreys DT, Preiss T, Steinmetz LM, Krijgsveld J, Hentze MW (2012) Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149(6):1393–1406. https://doi.org/10.1016/j.cell.2012.04.031

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Beckmann BM, Horos R, Fischer B, Castello A, Eichelbaum K, Alleaume AM, Schwarzl T, Curk T, Foehr S, Huber W, Krijgsveld J, Hentze MW (2015) The RNA-binding proteomes from yeast to man harbour conserved enigmRBPs. Nat Commun 6:10127. https://doi.org/10.1038/ncomms10127

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Yang W, Zheng Y, Xia Y, Ji H, Chen X, Guo F, Lyssiotis CA, Aldape K, Cantley LC, Lu Z (2012) ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat Cell Biol 14(12):1295–1304. https://doi.org/10.1038/ncb2629

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Yang W, Xia Y, Ji H, Zheng Y, Liang J, Huang W, Gao X, Aldape K, Lu Z (2011) Nuclear PKM2 regulates beta-catenin transactivation upon EGFR activation. Nature 480(7375):118–122. https://doi.org/10.1038/nature10598

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Yang W, Xia Y, Hawke D, Li X, Liang J, Xing D, Aldape K, Hunter T, Alfred Yung WK, Lu Z (2012) PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 150(4):685–696. https://doi.org/10.1016/j.cell.2012.07.018

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Kitagawa M, Kitagawa K, Kotake Y, Niida H, Ohhata T (2013) Cell cycle regulation by long non-coding RNAs. Cell Mol Life Sci 70(24):4785–4794. https://doi.org/10.1007/s00018-013-1423-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references


This work was supported by the PhD Grants (SFRH/BD/80446/2011, SFRH/BD/98122/2013, SFRH/BD/81495/2011) all from the Science and Technology Foundation (FCT) from Portugal and for the projects with the reference PTDC/NEU-NMC/0205/2012, PTDC/NEU-SCC/7051/2014, UID/NEU/04539/2013 and POCI-01-0145-FEDER-007440, also from FCT and co-financed by “COMPETE Programa Operacional Factores de Competitividade” QREN, the European Union (FEDER—Fundo Europeu de Desenvolvimento Regional) and UID/MULTI/04046/2019 Research Unit grant from FCT (to BioISI). We also want to acknowledge to Raúl Pérez (from CITAB, Vila Real) for the technical support in Flow Cytometry, Elsa Logarinho (PI of the Aging and Aneuploidy group from I3S, Porto) for the support in the lentivirus production and Paula Lopes (from BioISI, Vila Real) for the English revision.

Author information



Corresponding author

Correspondence to Raquel Chaves.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 107 kb)

Supplementary material 2 (DOCX 1725 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ferreira, D., Escudeiro, A., Adega, F. et al. FA-SAT ncRNA interacts with PKM2 protein: depletion of this complex induces a switch from cell proliferation to apoptosis. Cell. Mol. Life Sci. 77, 1371–1386 (2020). https://doi.org/10.1007/s00018-019-03234-x

Download citation


  • FA-SAT
  • Non-coding RNA
  • Satellite RNA
  • PKM2
  • Apoptosis