Abstract
FA-SAT is a highly conserved satellite DNA sequence transcribed in many Bilateria species. To disclose the cellular and functional profile of FA-SAT non-coding RNAs, a comprehensive experimental approach, including the transcripts location in the cell and in the cell cycle, the identification of its putative protein interactors, and silencing/ectopic expression phenotype analysis, was performed. FA-SAT non-coding RNAs play a nuclear function at the G1 phase of the cell cycle and the interactomic assay showed that the PKM2 protein is the main interactor. The disruption of the FA-SAT non-coding RNA/PKM2 protein complex, by the depletion of either FA-SAT or PKM2, results in the same phenotype—apoptosis, and the ectopic overexpression of FA-SAT did not affect the cell-cycle progression, but promotes the PKM2 nuclear accumulation. Overall, our data first describe the importance of this ribonucleoprotein complex in apoptosis and cell-cycle progression, what foresees a promising novel candidate molecular target for cancer therapy and diagnosis.
This is a preview of subscription content, access via your institution.









References
- 1.
Adega F, Guedes-Pinto H, Chaves R (2009) Satellite DNA in the karyotype evolution of domestic animals—clinical considerations. Cytogenet Genome Res 126(1–2):12–20. https://doi.org/10.1159/000245903
- 2.
Tsoumani KT, Drosopoulou E, Mavragani-Tsipidou P, Mathiopoulos KD (2013) Molecular characterization and chromosomal distribution of a species-specific transcribed centromeric satellite repeat from the olive fruit fly, Bactrocera oleae. PLoS One 8(11):e79393. https://doi.org/10.1371/journal.pone.0079393
- 3.
Chaves R, Ferreira D, Mendes-da-Silva A, Meles S, Adega F (2017) FA-SAT is an old satellite DNA frozen in several Bilateria genomes. Genome Biol Evol 9(11):3073–3087
- 4.
Ugarkovic D (2005) Functional elements residing within satellite DNAs. EMBO Rep 6(11):1035–1039. https://doi.org/10.1038/sj.embor.7400558
- 5.
Plohl M, Luchetti A, Mestrovic N, Mantovani B (2008) Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. Gene 409(1–2):72–82. https://doi.org/10.1016/j.gene.2007.11.013
- 6.
Enukashvily NI, Ponomartsev NV (2013) Mammalian satellite DNA: a speaking dumb. Adv Protein Chem Struct Biol 90:31–65. https://doi.org/10.1016/B978-0-12-410523-2.00002-X
- 7.
Ferreira D, Meles S, Escudeiro A, Mendes-da-Silva A, Adega F, Chaves R (2015) Satellite non-coding RNAs: the emerging players in cells, cellular pathways and cancer. Chromosome Res 23(3):479–493. https://doi.org/10.1007/s10577-015-9482-8
- 8.
Rošić S, Erhardt S (2016) No longer a nuisance: long non-coding RNAs join CENP-A in epigenetic centromere regulation. Cell Mol Life Sci 73(7):1387–1398. https://doi.org/10.1007/s00018-015-2124-7
- 9.
Biscotti MA, Canapa A, Forconi M, Olmo E, Barucca M (2015) Transcription of tandemly repetitive DNA: functional roles. Chromosome Res 23(3):463–477. https://doi.org/10.1007/s10577-015-9494-4
- 10.
Fanning TG (1987) Origin and evolution of a major feline satellite DNA. J Mol Biol 197(4):627–634
- 11.
Pontius JU, O’Brien SJ (2009) Artifacts of the 1.9x feline genome assembly derived from the feline-specific satellite sequence. J Hered 100(Suppl 1):S14–S18. https://doi.org/10.1093/jhered/esp035
- 12.
Santos S, Chaves R, Guedes-Pinto H (2004) Chromosomal localization of the major satellite DNA family (FA-SAT) in the domestic cat. Cytogenet Genome Res 107(1–2):119–122. https://doi.org/10.1159/000079581
- 13.
Santos S, Chaves R, Adega F, Bastos E, Guedes-Pinto H (2006) Amplification of the major satellite DNA family (FA-SAT) in a cat fibrosarcoma might be related to chromosomal instability. J Hered 97(2):114–118. https://doi.org/10.1093/jhered/esj016
- 14.
Ferreira D, Escudeiro A, Adega F, Chaves R (2019) DNA methylation patterns of a satellite non-coding sequence—FA-SAT in cancer cells: its expression cannot be explained solely by DNA methylation. Front Genet 10:101. https://doi.org/10.3389/fgene.2019.00101
- 15.
Harris I, McCracken S, Mak TW (2012) PKM2: a gatekeeper between growth and survival. Cell Res 22(3):447–449. https://doi.org/10.1038/cr.2011.203
- 16.
Tamada M, Suematsu M, Saya H (2012) Pyruvate kinase M2: multiple faces for conferring benefits on cancer cells. Clin Cancer Res 18(20):5554–5561. https://doi.org/10.1158/1078-0432.CCR-12-0859
- 17.
Iqbal MA, Gupta V, Gopinath P, Mazurek S, Bamezai RN (2014) Pyruvate kinase M2 and cancer: an updated assessment. FEBS Lett 588(16):2685–2692. https://doi.org/10.1016/j.febslet.2014.04.011
- 18.
Wong N, Ojo D, Yan J, Tang D (2015) PKM2 contributes to cancer metabolism. Cancer Lett 356(2 Pt A):184–191. https://doi.org/10.1016/j.canlet.2014.01.031
- 19.
Wiznerowicz M, Trono D (2003) Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J Virol 77(16):8957–8961
- 20.
McNulty SM, Sullivan LL, Sullivan BA (2017) Human centromeres produce chromosome-specific and array-specific alpha satellite transcripts that are complexed with CENP-A and CENP-C. Dev Cell 42(3):226–240. https://doi.org/10.1016/j.devcel.2017.07.001
- 21.
Bellucci M, Agostini F, Masin M, Tartaglia GG (2011) Predicting protein associations with long noncoding RNAs. Nat Methods 8(6):444–445. https://doi.org/10.1038/nmeth.1611
- 22.
Anjo SI, Santa C, Manadas B (2015) Short GeLC-SWATH: a fast and reliable quantitative approach for proteomic screenings. Proteomics 15(4):757–762. https://doi.org/10.1002/pmic.201400221
- 23.
Vizcaino JA, Csordas A, Del-Toro N, Dianes JA, Griss J, Lavidas I, Mayer G, Perez-Riverol Y, Reisinger F, Ternent T, Xu QW, Wang R, Hermjakob H (2016) 2016 update of the PRIDE database and its related tools. Nucleic Acids Res 44(22):11033. https://doi.org/10.1093/nar/gkw880
- 24.
Huang DW, Sherman BT, Lempicki RA (2008) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57. https://doi.org/10.1038/nprot.2008.211
- 25.
da Huang W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1):1–13. https://doi.org/10.1093/nar/gkn923
- 26.
Croft D, Mundo AF, Haw R, Milacic M, Weiser J, Wu G, Caudy M, Garapati P, Gillespie M, Kamdar MR, Jassal B, Jupe S, Matthews L, May B, Palatnik S, Rothfels K, Shamovsky V, Song H, Williams M, Birney E, Hermjakob H, Stein L, D’Eustachio P (2014) The reactome pathway knowledgebase. Nucleic Acids Res 42:472–477. https://doi.org/10.1093/nar/gkt1102
- 27.
Novikova IV, Hennelly SP, Sanbonmatsu KY (2013) Tackling structures of long noncoding RNAs. Int J Mol Sci 14(12):23672–23684. https://doi.org/10.3390/ijms141223672
- 28.
Rosic S, Kohler F, Erhardt S (2014) Repetitive centromeric satellite RNA is essential for kinetochore formation and cell division. J Cell Biol 207(3):335–349. https://doi.org/10.1083/jcb.201404097
- 29.
Jolly C, Metz A, Govin J, Vigneron M, Turner BM, Khochbin S, Vourc’h C (2004) Stress-induced transcription of satellite III repeats. J Cell Biol 164(1):25–33. https://doi.org/10.1083/jcb.200306104
- 30.
Bouzinba-Segard H, Guais A, Francastel C (2006) Accumulation of small murine minor satellite transcripts leads to impaired centromeric architecture and function. Proc Natl Acad Sci USA 103(23):8709–8714. https://doi.org/10.1073/pnas.0508006103
- 31.
Valgardsdottir R, Chiodi I, Giordano M, Rossi A, Bazzini S, Ghigna C, Riva S, Biamonti G (2008) Transcription of satellite III non-coding RNAs is a general stress response in human cells. Nucleic Acids Res 36(2):423–434. https://doi.org/10.1093/nar/gkm1056
- 32.
Sengupta S, Parihar R, Ganesh S (2009) Satellite III non-coding RNAs show distinct and stress-specific patterns of induction. Biochem Biophys Res Commun 382(1):102–107. https://doi.org/10.1016/j.bbrc.2009.02.137
- 33.
Pezer Z, Ugarkovic D (2012) Satellite DNA-associated siRNAs as mediators of heat shock response in insects. RNA Biol 9(5):587–595. https://doi.org/10.4161/rna.20019
- 34.
Tilman G, Arnoult N, Lenglez S, Van Beneden A, Loriot A, De Smet C, Decottignies A (2012) Cancer-linked satellite 2 DNA hypomethylation does not regulate Sat2 non-coding RNA expression and is initiated by heat shock pathway activation. Epigenetics 7(8):903–913. https://doi.org/10.4161/epi.21107
- 35.
de Barros FR, Goissis MD, Caetano HV, Paula-Lopes FF, Peres MA, Assumpcao ME, Visintin JA (2010) Serum starvation and full confluency for cell cycle synchronization of domestic cat (Felis catus) foetal fibroblasts. Reprod Domest Anim 45(1):38–41. https://doi.org/10.1111/j.1439-0531.2008.01201.x
- 36.
Bertero T, Gastaldi C, Bourget-Ponzio I, Mari B, Meneguzzi G, Barbry P, Ponzio G, Rezzonico R (2013) CDC25A targeting by miR-483-3p decreases CCND-CDK4/6 assembly and contributes to cell cycle arrest. Cell Death Differ 20(6):800–811. https://doi.org/10.1038/cdd.2013.5
- 37.
Cirillo D, Blanco M, Armaos A, Buness A, Avner P, Guttman M, Cerase A, Tartaglia GG (2016) Quantitative predictions of protein interactions with long noncoding RNAs. Nat Methods 14(1):5–6. https://doi.org/10.1038/nmeth.4100
- 38.
Kauppinen S, Vester B, Wengel J (2005) Locked nucleic acid (LNA): high affinity targeting of RNA for diagnostics and therapeutics. Drug Discov Today Technol 2(3):287–290. https://doi.org/10.1016/j.ddtec.2005.08.012
- 39.
Goldberg MS, Sharp PA (2012) Pyruvate kinase M2-specific siRNA induces apoptosis and tumor regression. J Exp Med 209(2):217–224. https://doi.org/10.1084/jem.20111487
- 40.
Kwon OH, Kang TW, Kim JH, Kim M, Noh SM, Song KS, Yoo HS, Kim WH, Xie Z, Pocalyko D, Kim SY, Kim YS (2012) Pyruvate kinase M2 promotes the growth of gastric cancer cells via regulation of Bcl-xL expression at transcriptional level. Biochem Biophys Res Commun 423(1):38–44. https://doi.org/10.1016/j.bbrc.2012.05.063
- 41.
Lu L, Wang L, Jiang GS, Zhang CH, Zeng FQ (2013) Silencing pyruvate kinase M2 sensitizes human prostate cancer PC3 cells to gambogic acid-induced apoptosis. Natl J Androl 19(2):102–106
- 42.
Chu B, Wang J, Wang Y, Yang G (2015) Knockdown of PKM2 induces apoptosis and autophagy in human A549 alveolar adenocarcinoma cells. Mol Med Rep 12(3):4358–4363. https://doi.org/10.3892/mmr.2015.3943
- 43.
Hu W, Lu SX, Li M, Zhang C, Liu LL, Fu J, Jin JT, Luo RZ, Zhang CZ, Yun JP (2015) Pyruvate kinase M2 prevents apoptosis via modulating Bim stability and associates with poor outcome in hepatocellular carcinoma. Oncotarget 6(9):6570–6583. https://doi.org/10.18632/oncotarget.3262
- 44.
Miao Y, Lu M, Yan Q, Li S, Feng Y (2016) Inhibition of proliferation, migration, and invasion by knockdown of pyruvate kinase-M2 (PKM2) in ovarian cancer SKOV3 and OVCAR3 cells. Oncol Res Featur Preclin Clin Cancer Ther 24(6):463–475. https://doi.org/10.3727/096504016X14685034103671
- 45.
Yang J, Yu Z, Li J, Zhang A, Zhang X, Kan Q (2016) Impact of PKM2 gene silencing on biological behavior of HepG2 cells. Int J Clin Exp Med 7(9):13475–13483
- 46.
Zhou CF, Li XB, Sun H, Zhang B, Han YS, Jiang Y, Zhuang QL, Fang J, Wu GH (2012) Pyruvate kinase type M2 is upregulated in colorectal cancer and promotes proliferation and migration of colon cancer cells. IUBMB Life 64(9):775–782. https://doi.org/10.1002/iub.1066
- 47.
Lu J, Gilbert DM (2007) Proliferation-dependent and cell cycle regulated transcription of mouse pericentric heterochromatin. J Cell Biol 179(3):411–421. https://doi.org/10.1083/jcb.200706176
- 48.
Chen ES, Zhang K, Nicolas E, Cam HP, Zofall M, Grewal SI (2008) Cell cycle control of centromeric repeat transcription and heterochromatin assembly. Nature 451(7179):734–737. https://doi.org/10.1038/nature06561
- 49.
Ferri F, Bouzinba-Segard H, Velasco G, Hube F, Francastel C (2009) Non-coding murine centromeric transcripts associate with and potentiate Aurora B kinase. Nucleic Acids Res 37(15):5071–5080. https://doi.org/10.1093/nar/gkp529
- 50.
Trofimova I, Popova D, Vasilevskaya E, Krasikova A (2014) Non-coding RNA derived from a conservative subtelomeric tandem repeat in chicken and Japanese quail somatic cells. Mol Cytogenet 7(1):102. https://doi.org/10.1186/s13039-014-0102-7
- 51.
Lee S, Kopp F, Chang TC, Sataluri A, Chen B, Sivakumar S, Yu H, Xie Y, Mendell JT (2016) Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins. Cell 164(1–2):69–80. https://doi.org/10.1016/j.cell.2015.12.017
- 52.
Liang Y, Chen X, Wu Y, Li J, Zhang S, Wang K, Guan X, Yang K, Bai Y (2018) LncRNA CASC9 promotes esophageal squamous cell carcinoma metastasis through upregulating LAMC2 expression by interacting with the CREB-binding protein. Cell Death Differ. https://doi.org/10.1038/s41418-018-0084-9
- 53.
Castello A, Fischer B, Eichelbaum K, Horos R, Beckmann BM, Strein C, Davey NE, Humphreys DT, Preiss T, Steinmetz LM, Krijgsveld J, Hentze MW (2012) Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149(6):1393–1406. https://doi.org/10.1016/j.cell.2012.04.031
- 54.
Beckmann BM, Horos R, Fischer B, Castello A, Eichelbaum K, Alleaume AM, Schwarzl T, Curk T, Foehr S, Huber W, Krijgsveld J, Hentze MW (2015) The RNA-binding proteomes from yeast to man harbour conserved enigmRBPs. Nat Commun 6:10127. https://doi.org/10.1038/ncomms10127
- 55.
Yang W, Zheng Y, Xia Y, Ji H, Chen X, Guo F, Lyssiotis CA, Aldape K, Cantley LC, Lu Z (2012) ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat Cell Biol 14(12):1295–1304. https://doi.org/10.1038/ncb2629
- 56.
Yang W, Xia Y, Ji H, Zheng Y, Liang J, Huang W, Gao X, Aldape K, Lu Z (2011) Nuclear PKM2 regulates beta-catenin transactivation upon EGFR activation. Nature 480(7375):118–122. https://doi.org/10.1038/nature10598
- 57.
Yang W, Xia Y, Hawke D, Li X, Liang J, Xing D, Aldape K, Hunter T, Alfred Yung WK, Lu Z (2012) PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 150(4):685–696. https://doi.org/10.1016/j.cell.2012.07.018
- 58.
Kitagawa M, Kitagawa K, Kotake Y, Niida H, Ohhata T (2013) Cell cycle regulation by long non-coding RNAs. Cell Mol Life Sci 70(24):4785–4794. https://doi.org/10.1007/s00018-013-1423-0
Acknowledgements
This work was supported by the PhD Grants (SFRH/BD/80446/2011, SFRH/BD/98122/2013, SFRH/BD/81495/2011) all from the Science and Technology Foundation (FCT) from Portugal and for the projects with the reference PTDC/NEU-NMC/0205/2012, PTDC/NEU-SCC/7051/2014, UID/NEU/04539/2013 and POCI-01-0145-FEDER-007440, also from FCT and co-financed by “COMPETE Programa Operacional Factores de Competitividade” QREN, the European Union (FEDER—Fundo Europeu de Desenvolvimento Regional) and UID/MULTI/04046/2019 Research Unit grant from FCT (to BioISI). We also want to acknowledge to Raúl Pérez (from CITAB, Vila Real) for the technical support in Flow Cytometry, Elsa Logarinho (PI of the Aging and Aneuploidy group from I3S, Porto) for the support in the lentivirus production and Paula Lopes (from BioISI, Vila Real) for the English revision.
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Ferreira, D., Escudeiro, A., Adega, F. et al. FA-SAT ncRNA interacts with PKM2 protein: depletion of this complex induces a switch from cell proliferation to apoptosis. Cell. Mol. Life Sci. 77, 1371–1386 (2020). https://doi.org/10.1007/s00018-019-03234-x
Received:
Revised:
Accepted:
Published:
Issue Date:
Keywords
- FA-SAT
- Non-coding RNA
- Satellite RNA
- PKM2
- Apoptosis