Building bridges between chromosomes: novel insights into the abscission checkpoint

  • Eleni Petsalaki
  • George ZachosEmail author


In the presence of chromatin bridges, mammalian cells delay completion of cytokinesis (abscission) to prevent chromatin breakage or tetraploidization by regression of the cleavage furrow. This abscission delay is called “the abscission checkpoint” and is dependent on Aurora B kinase. Furthermore, cells stabilize the narrow cytoplasmic canal between the two daughter cells until the DNA bridges are resolved. Impaired abscission checkpoint signaling or unstable intercellular canals can lead to accumulation of DNA damage, aneuploidy, or generation of polyploid cells which are associated with tumourigenesis. However, the molecular mechanisms involved have only recently started to emerge. In this review, we focus on the molecular pathways of the abscission checkpoint and describe newly identified triggers, Aurora B-regulators and effector proteins in abscission checkpoint signaling. We also describe mechanisms that control intercellular bridge stabilization, DNA bridge resolution, or abscission checkpoint silencing upon satisfaction, and discuss how abscission checkpoint proteins can be targeted to potentially improve cancer therapy.


CPC ESCRT Chmp4 Chk1 Src Midbody 



The authors wish to acknowledge Fondation Santé for supporting their work.

Author contributions

EP wrote the paper; GZ edited the paper and reviewed its final version.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Hoffelder DR, Luo L, Burke NA, Watkins SC, Gollin SM et al (2004) Resolution of anaphase bridges in cancer cells. Chromosoma 112:389–397CrossRefPubMedGoogle Scholar
  2. 2.
    Rudolph KL, Millard M, Bosenberg MW, DePinho RA (2001) Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nat Genet 28:155–159CrossRefPubMedGoogle Scholar
  3. 3.
    Ying S, Minocherhomji S, Chan KL, Palmai-Pallag T, Chu WK et al (2013) MUS81 promotes common fragile site expression. Nat Cell Biol 15:1001–1007CrossRefPubMedGoogle Scholar
  4. 4.
    Wang LHC, Mayer B, Stemmann O, Nigg EA (2010) Centromere DNA decatenation depends on cohesin removal and is required for mammalian cell division. J Cell Sci 123:806–813CrossRefPubMedGoogle Scholar
  5. 5.
    Gisselsson D (2008) Classification of chromosome segregation errors in cancer. Chromosoma 117:511–519CrossRefPubMedGoogle Scholar
  6. 6.
    Norden C, Mendoza M, Dobbelaere J, Kotwaliwale CV, Biggins S et al (2006) The NoCut pathway links completion of cytokinesis to spindle midzone function to prevent chromosome breakage. Cell 125:85–98CrossRefPubMedGoogle Scholar
  7. 7.
    Steigemann P, Wurzenberger C, Schmitz MH, Held M, Guizetti J et al (2009) Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell 136:473–484CrossRefPubMedGoogle Scholar
  8. 8.
    Mierzwa B, Gerlich DW (2014) Cytokinetic abscission: molecular mechanisms and temporal control. Dev Cell 31:525–538CrossRefPubMedGoogle Scholar
  9. 9.
    Carlton JG, Caballe A, Agromayor M, Kloc M, Martin-Serrano J (2012) ESCRT-III governs the Aurora B-mediated abscission checkpoint through CHMP4C. Science 336:220–225CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Capalbo L, Montembault E, Takeda T, Bassi ZI, Glover DM et al (2012) The chromosomal passenger complex controls the function of endosomal sorting complex required for transport-III Snf7 proteins during cytokinesis. Open Biol 2:120070CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674CrossRefPubMedGoogle Scholar
  12. 12.
    Ganem NJ, Pellman D (2012) Linking abnormal mitosis to the acquisition of DNA damage. J Cell Biol 199:871–881CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lens SMA, Medema RH (2019) Cytokinesis defects and cancer. Nat Rev Cancer 19:32–45CrossRefPubMedGoogle Scholar
  14. 14.
    Mackay DR, Makise M, Ullman KS (2010) Defects in nuclear pore assembly lead to activation of an Aurora B-mediated abscission checkpoint. J Cell Biol 191:923–931CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lafaurie-Janvore J, Maiuri P, Wang I, Pinot M, Manneville JB et al (2013) ESCRT-III assembly and cytokinetic abscission are induced by tension release in the intercellular bridge. Science 339:1625–1629CrossRefPubMedGoogle Scholar
  16. 16.
    Mackay DR, Ullman KS (2015) ATR and a Chk1-Aurora B pathway coordinate postmitotic genome surveillance with cytokinetic abscission. Mol Biol Cell 26:2217–2226CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Agromayor M, Martin-Serrano J (2013) Knowing when to but and run: mechanisms that control cytokinetic abscission. Trends Cell Biol 23:433–441CrossRefPubMedGoogle Scholar
  18. 18.
    Nähse V, Christ L, Stenmark H, Campsteijn C (2017) The abscission checkpoint: making it to the final cut. Trends Cell Biol 27:1–11CrossRefPubMedGoogle Scholar
  19. 19.
    Addi C, Bai J, Echard A (2018) Actin, microtubule, septin and ESCRT filament remodeling during late steps of cytokinesis. Curr Opin Cell Biol 50:27–34CrossRefPubMedGoogle Scholar
  20. 20.
    Hu CK, Coughlin M, Mitchison TJ (2012) Midbody assembly and its regulation during cytokinesis. Mol Biol Cell 23:1024–1034CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hurley JH (2015) ESCRTs are everywhere. EMBO J 34:2398–2407CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Christ L, Raiborg C, Wenzel EM, Campsteijn C, Stenmark H (2017) Cellular functions and molecular mechanisms of the ESCRT membrane-scission machinery. Trends Biochem Sci 42:42–56CrossRefPubMedGoogle Scholar
  23. 23.
    Zhao WM, Seki A, Fang GW (2006) Cep55, a microtubule-bundling protein, associates with centralspindlin to control the midbody integrity and cell abscission during cytokinesis. Mol Biol Cell 17:3881–3896CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Bastos RN, Barr FA (2010) Plk1 negatively regulates Cep55 recruitment to the midbody to ensure orderly abscission. J Cell Biol 191:751–760CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Morita E, Sandrin V, Chung HY, Morham SG, Gygi SP et al (2007) Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J 26:4215–4227CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Carlton JG, Martin-Serrano J (2007) Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 316:1908–1912CrossRefPubMedGoogle Scholar
  27. 27.
    Lee HH, Elia N, Ghirlando R, Lippincott-Schwartz J, Hurley JH (2008) Midbody targeting of the ESCRT machinery by a noncanonical coiled coil in CEP55. Science 322:576–580CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hurley JH, Hanson PI (2010) Membrane budding and scission by the ESCRT machinery: it’s all in the neck. Nature Reviews Mol Cell Biol 11:556–566CrossRefGoogle Scholar
  29. 29.
    Goliand I, Nachmias D, Gershony O, Elia N (2014) Inhibition of ESCRT-II-CHMP6 interactions impedes cytokinetic abscission and leads to cell death. Mol Biol Cell 25:3740–3748CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Christ L, Wenzel EM, Liestol K, Raiborg C, Campsteijn C et al (2016) ALIX and ESCRT-I/II function as parallel ESCRT-III recruiters in cytokinetic abscission. J Cell Biol 212:499–513CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Guizetti J, Schermelleh L, Mantler J, Maar S, Poser I et al (2011) Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments. Science 331:1616–1620CrossRefPubMedGoogle Scholar
  32. 32.
    McCullough J, Clippinger AK, Talledge N, Skowyra ML, Saunders MG et al (2015) Structure and membrane remodeling activity of ESCRT-III helical polymers. Science 350:1548–1551CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Tang SG, Henne WM, Borbat PP, Buchkovich NJ, Freed JH et al (2015) Structural basis for activation, assembly and membrane binding of ESCRT-III Snf7 filaments. Elife 4:e12548CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Mierzwa BE, Chiaruttini N, Redondo-Morata L, von Filseck JM, Konig J et al (2017) Dynamic subunit turnover in ESCRT-III assemblies is regulated by Vps4 to mediate membrane remodelling during cytokinesis. Nat Cell Biol 19:787–798CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Schiel JA, Park K, Morphew MK, Reid E, Hoenger A et al (2011) Endocytic membrane fusion and buckling-induced microtubule severing mediate cell abscission. J Cell Sci 124:1411–1424CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Schiel JA, Simon GC, Zaharris C, Weisz J, Castle D et al (2012) FIP3-endosome-dependent formation of the secondary ingression mediates ESCRT-III recruitment during cytokinesis. Nat Cell Biol 14:1068–1078CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Dambournet D, Machicoane M, Chesneau L, Sachse M, Rocancourt M et al (2011) Rab35 GTPase and OCRL phosphatase remodel lipids and F-actin for successful cytokinesis. Nat Cell Biol 13:981–988CrossRefPubMedGoogle Scholar
  38. 38.
    Terry SJ, Dona F, Osenberg P, Carlton JG, Eggert US (2018) Capping protein regulates actin dynamics during cytokinetic midbody maturation. Proc Nat Acad Sci USA 115:2138–2143CrossRefPubMedGoogle Scholar
  39. 39.
    Fremont S, Hammich H, Bai J, Wioland H, Klinkert K et al (2017) Oxidation of F-actin controls the terminal steps of cytokinesis. Nat Commun 8:1–16CrossRefGoogle Scholar
  40. 40.
    Yang D, Rismanchi N, Renvoise B, Lippincott-Schwartz J, Blackstone C et al (2008) Structural basis for midbody targeting of spastin by the ESCRT-III protein CHMP1B. Nat Struct Mol Biol 15:1278–1286CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Connell JW, Lindon C, Luzio JP, Reid E (2009) Spastin couples microtubule severing to membrane traffic in completion of cytokinesis and secretion. Traffic 10:42–56CrossRefPubMedGoogle Scholar
  42. 42.
    Thoresen SB, Campsteijn C, Vietri M, Schink KO, Liestol K et al (2014) ANCHR mediates Aurora-B-dependent abscission checkpoint control through retention of VPS4. Nat Cell Biol 16:550–560CrossRefPubMedGoogle Scholar
  43. 43.
    Mendoza M, Norden C, Durrer K, Rauter H, Uhlmann F et al (2009) A mechanism for chromosome segregation sensing by the NoCut checkpoint. Nat Cell Biol 11:477–483CrossRefPubMedGoogle Scholar
  44. 44.
    Amaral N, Vendrell A, Funaya C, Idrissi FZ, Maier M et al (2016) The Aurora-B-dependent NoCut checkpoint prevents damage of anaphase bridges after DNA replication stress. Nat Cell Biol 18:516–526CrossRefPubMedGoogle Scholar
  45. 45.
    Petsalaki E, Zachos G (2016) Clks 1, 2 and 4 prevent chromatin breakage by regulating the Aurora B-dependent abscission checkpoint. Nat Commun 7:11451CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Lukas C, Savic V, Bekker-Jensen S, Doil C, Neumann B et al (2011) 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress. Nat Cell Biol 13:243–253CrossRefPubMedGoogle Scholar
  47. 47.
    Bhowmick R, Thakur RS, Venegas AB, Liu Y, Nilsson J et al (2019) The RIF1-PP1 axis controls abscission timing in human cells. Curr Biol 29:1232–1242CrossRefPubMedGoogle Scholar
  48. 48.
    Chan KL, Palmai-Pallag T, Ying SM, Hickson ID (2009) Replication stress induces sister-chromatid bridging at fragile site loci in mitosis. Nat Cell Biol 11:753–760CrossRefPubMedGoogle Scholar
  49. 49.
    Burrell RA, McClelland SE, Endesfelder D, Groth P, Weller MC et al (2013) Replication stress links structural and numerical cancer chromosomal instability. Nature 494:492–496CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Germann SM, Schramke V, Pedersen RT, Gallina I, Eckert-Boulet N et al (2014) TopBP1/Dpb11 binds DNA anaphase bridges to prevent genome instability. J Cell Biol 204:45–59CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Caballe A, Wenzel DM, Agromayor M, Alam SL, Skalicky JJ et al (2015) ULK3 regulates cytokinetic abscission by phosphorylating ESCRT-III proteins. Elife 4:e06547CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Booth A, Marklew CJ, Ciani B, Beales PA (2019) In vitro membrane remodeling by ESCRT is regulated by negative feedback from membrane tension. iScience 15:173–184CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Carmena M, Wheelock M, Funabiki H, Earnshaw WC (2012) The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis. Nat Rev Mol Cell Biol 13:789–803CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    van der Waal MS, Hengeveld RC, van der Horst A, Lens SM (2012) Cell division control by the chromosomal passenger complex. Exp Cell Res 318:1407–1420CrossRefPubMedGoogle Scholar
  55. 55.
    Krenn V, Musacchio A (2015) The aurora B kinase in chromosome bi-orientation and spindle checkpoint signaling. Front Oncol 5:225CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Hindriksen S, Lens SMA, Hadders MA (2017) The ins and outs of aurora B inner centromere localization. Front Cell Dev Biol 5:112CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Petsalaki E, Akoumianaki T, Black EJ, Gillespie DA, Zachos G (2011) Phosphorylation at serine 331 is required for aurora B activation. J Cell Biol 195:449–466CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Caldas GV, DeLuca KF, DeLuca JG (2013) KNL1 facilitates phosphorylation of outer kinetochore proteins by promoting aurora B kinase activity. J Cell Biol 203:957–969CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Gruneberg U, Neef R, Honda R, Nigg EA, Barr FA (2004) Relocation of aurora B from centromeres to the central spindle at the metaphase to anaphase transition requires MKlp2. J Cell Biol 166:167–172CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Hummer S, Mayer TU (2009) Cdk1 negatively regulates midzone localization of the mitotic kinesin Mklp2 and the chromosomal passenger complex. Curr Biol 19:607–612CrossRefPubMedGoogle Scholar
  61. 61.
    Kitagawa M, Fung SYS, Hameed UFS, Goto H, Inagaki M et al (2014) Cdk1 coordinates timely activation of MKlp2 kinesin with relocation of the chromosome passenger complex for cytokinesis. Cell Rep 7:166–179CrossRefPubMedGoogle Scholar
  62. 62.
    van der Horst A, Vromans MJM, Bouwman K, van der Waal MS, Hadders MA et al (2015) Inter-domain cooperation in INCENP promotes aurora B relocation from centromeres to microtubules. Cell Rep 12:380–387CrossRefPubMedGoogle Scholar
  63. 63.
    Elia N, Sougrat R, Spurlin TA, Hurley JH, Lippincott-Schwartz J (2011) Dynamics of endosomal sorting complex required for transport (ESCRT) machinery during cytokinesis and its role in abscission. Proc Natl Acad Sci USA 108:4846–4851CrossRefPubMedGoogle Scholar
  64. 64.
    Honda R, Korner R, Nigg EA (2003) Exploring the functional interactions between aurora B, INCENP, and survivin in mitosis. Mol Biol Cell 14:3325–3341CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Yasui Y, Urano T, Kawajiri A, Nagata K, Tatsuka M et al (2004) Autophosphorylation of a newly identified site of aurora-B is indispensable for cytokinesis. J Biol Chem 279:12997–13003CrossRefPubMedGoogle Scholar
  66. 66.
    Sessa F, Mapelli M, Ciferri C, Tarricone C, Areces LB et al (2005) Mechanism of aurora B activation by INCENP and inhibition by hesperadin. Mol Cell 18:379–391CrossRefPubMedGoogle Scholar
  67. 67.
    Bishop JD, Schumacher JM (2002) Phosphorylation of the carboxyl terminus of inner centromere protein (INCENP) by the aurora B kinase stimulates aurora B kinase activity. J Biol Chem 277:27577–27580CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Mo F et al (2016) Acetylation of Aurora B by TIP60 ensures accurate chromosomal segregation. Nat Chem Biol 12:226–232CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Smith J, Tho LM, Xu N, Gillespie DA (2010) The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv Cancer Res 108:73–112CrossRefPubMedGoogle Scholar
  70. 70.
    Zachos G, Black EJ, Walker M, Scott MT, Vagnarelli P et al (2007) Chk1 is required for spindle checkpoint function. Dev Cell 12:247–260CrossRefPubMedGoogle Scholar
  71. 71.
    Petsalaki E, Zachos G (2013) Chk1 and Mps1 jointly regulate correction of merotelic kinetochore attachments. J Cell Sci 126:1235–1246CrossRefPubMedGoogle Scholar
  72. 72.
    Petsalaki E, Zachos G (2014) Chk2 prevents mitotic exit when the majority of kinetochores are unattached. J Cell Biol 205:339–356CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Capalbo L, Mela I, Abad MA, Jeyaprakash AA, Edwardson JM et al (2016) Coordinated regulation of the ESCRT-III component CHMP4C by the chromosomal passenger complex and centralspindlin during cytokinesis. Open Biol 6:160248CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Dimaano C, Jones CB, Hanono A, Curtiss M, Babst M (2008) Ist1 regulates Vps4 localization and assembly. Mol Biol Cell 19:465–474CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Frankel EB, Shankar R, Moresco JJ, Yates JR, Volkmann N et al (2017) Ist1 regulates ESCRT-III assembly and function during multivesicular endosome biogenesis in Caenorhabditis elegans embryos. Nat Commun 8:1439CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Rue SM, Mattei S, Saksena S, Emr SD (2008) Novel Ist1-Did2 complex functions at a late step in multivesicular body sorting. Mol Biol Cell 19:475–484CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Bajorek M, Morita E, Skalicky JJ, Morham SG, Babst M et al (2009) Biochemical analyses of human IST1 and its function in cytokinesis. Mol Biol Cell 20:1360–1373CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Zabludoff SD, Deng C, Grondine MR, Sheehy AM, Ashwell S et al (2008) AZD7762, a novel checkpoint kinase inhibitor, drives checkpoint abrogation and potentiates DNA-targeted therapies. Mol Cancer Ther 7:2955–2966CrossRefPubMedGoogle Scholar
  79. 79.
    Dandoulaki M, Petsalaki E, Sumpton D, Zanivan S, Zachos G (2018) Src activation by Chk1 promotes actin patch formation and prevents chromatin bridge breakage in cytokinesis. J Cell Biol 217:3071–3089CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Peddibhotla S, Lam MH, Gonzalez-Rimbau M, Rosen JM (2009) The DNA-damage effector checkpoint kinase 1 is essential for chromosome segregation and cytokinesis. Proc Natl Acad Sci USA 106:5159–5164CrossRefPubMedGoogle Scholar
  81. 81.
    Li Z, Li XY, Nai SS, Geng QZ, Liao J et al (2017) Checkpoint kinase 1-induced phosphorylation of O-linked-N-acetylglucosamine transferase regulates the intermediate filament network during cytokinesis. J Biol Chem 292:19548–19555CrossRefPubMedGoogle Scholar
  82. 82.
    Yang C, Tang X, Guo X, Niikura Y, Kitagawa K et al (2011) Aurora-B mediated ATM serine 1403 phosphorylation is required for mitotic ATM activation and the spindle checkpoint. Mol Cell 44:597–608CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Tsvetkov L, Xu X, Li J, Stern DF (2003) Polo-like kinase 1 and Chk2 interact and co-localize to centrosomes and the midbody. J Biol Chem 278:8468–8475CrossRefPubMedGoogle Scholar
  84. 84.
    Gershony O, Pe’er T, Noach-Hirsh M, Elia N, Tzur A (2014) Cytokinetic abscission is an acute G1 event. Cell Cycle 13:3436–3441CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Playford MP, Schaller MD (2004) The interplay between Src and integrins in normal and tumor biology. Oncogene 23:7928–7946CrossRefPubMedGoogle Scholar
  86. 86.
    Maciejowski J, Li YL, Bosco N, Campbell PJ, de Lange T (2015) Chromothripsis and kataegis induced by telomere crisis. Cell 163:1641–1654CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Lopez V, Barinova N, Onishi M, Pobiega S, Pringle JR et al (2015) Cytokinesis breaks dicentric chromosomes preferentially at pericentromeric regions and telomere fusions. Genes Dev 29:322–336CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Fletcher DA, Mullins D (2010) Cell mechanics and the cytoskeleton. Nature 463:485–492CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Lekomtsev S, Su KC, Pye VE, Blight K, Sundaramoorthy S et al (2012) Centralspindlin links the mitotic spindle to the plasma membrane during cytokinesis. Nature 492:276–279CrossRefPubMedGoogle Scholar
  90. 90.
    Bassi ZI, Audusseau M, Riparbelli MG, Callaini G, D’Avino PP (2013) Citron kinase controls a molecular network required for midbody formation in cytokinesis. Proc Nat Acad Sci USA 110:9782–9787CrossRefPubMedGoogle Scholar
  91. 91.
    Watanabe S, De Zan T, Ishizaki T, Narumiya S (2013) Citron kinase mediates transition from constriction to abscission through its coiled-coil domain. J Cell Sci 126:1773–1784CrossRefPubMedGoogle Scholar
  92. 92.
    Guse A, Mishima M, Glotzer M (2005) Phosphorylation of ZEN-4/MKLP1 by aurora B regulates completion of cytokinesis. Curr Biol 15:778–786CrossRefPubMedGoogle Scholar
  93. 93.
    Neef R, Klein UR, Kopajtich R, Barr FA (2006) Cooperation between mitotic kinesins controls the late stages of cytokinesis. Curr Biol 16:301–307CrossRefPubMedGoogle Scholar
  94. 94.
    Hadders MA, Agromayor M, Obita T, Perisic O, Caballe A et al (2012) ESCRT-III binding protein MITD1 is involved in cytokinesis and has an unanticipated PLD fold that binds membranes. Proc Nat Acad Sci USA 109:17424–17429CrossRefPubMedGoogle Scholar
  95. 95.
    Chan KL, Hickson ID (2011) New insights into the formation and resolution of ultra-fine anaphase bridges. Semin Cell Dev Biol 22:906–912CrossRefPubMedGoogle Scholar
  96. 96.
    Petsalaki E, Dandoulaki M, Morrice N, Zachos G (2014) Chk1 protects against chromatin bridges by constitutively phosphorylating BLM serine 502 to inhibit BLM degradation. J Cell Sci 127:3902–3908CrossRefPubMedGoogle Scholar
  97. 97.
    Hong Y, Sonneville R, Wang B, Scheidt V, Meier B et al (2018) LEM-3 is a midbody-tethered DNA nuclease that resolves chromatin bridges during late mitosis. Nat Commun 9:728CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Stephens PJ, Greenman CD, Fu BY, Yang FT, Bignell GR et al (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144:27–40CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Roberts SA, Sterling J, Thompson C, Harris S, Mav D et al (2012) Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions. Mol Cell 46:424–435CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Roberts SA, Lawrence MS, Klimczak LJ, Grimm SA, Fargo D et al (2013) An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat Genet 45:970–976CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Gisselsson D, Pettersson L, Hoglund M, Heidenblad M, Gorunova L et al (2000) Chromosomal breakage-fusion-bridge events cause genetic intratumor heterogeneity. Proc Nat Acad Sci USA 97:5357–5362CrossRefPubMedGoogle Scholar
  102. 102.
    Forment JV, Kaidi A, Jackson SP (2012) Chromothripsis and cancer: causes and consequences of chromosome shattering. Nat Rev Cancer 12:663–670CrossRefPubMedGoogle Scholar
  103. 103.
    Roberts SA, Gordenin DA (2014) Hypermutation in human cancer genomes: footprints and mechanisms. Nat Rev Cancer 14:786–800CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Shi QH, King RW (2005) Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines. Nature 437:1038–1042CrossRefPubMedGoogle Scholar
  105. 105.
    Pampalona J, Frias C, Genesca A, Tusell L (2012) Progressive telomere dysfunction causes cytokinesis failure and leads to the accumulation of polyploid cells. PLoS Genet 8:601–611CrossRefGoogle Scholar
  106. 106.
    Baumann C, Korner R, Hofmann K, Nigg EA (2007) PICH, a centromere-associated SNF2 family ATPase, is regulated by Plk1 and required for the spindle checkpoint. Cell 128:101–114CrossRefPubMedGoogle Scholar
  107. 107.
    Chan KL, North PS, Hickson ID (2007) BLM is required for faithful chromosome segregation and its localization defines a class of ultrafine anaphase bridges. EMBO J 26:3397–3409CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Ke Y, Huh JW, Warrington R, Li B, Wu N et al (2011) PICH and BLM limit histone association with anaphase centromeric DNA threads and promote their resolution. EMBO J 30:3309–3321CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Hengeveld RCC, de Boer HR, Schoonen PM, de Vries EGE, Lens SMA et al (2015) rif1 is required for resolution of ultrafine DNA bridges in anaphase to ensure genomic stability. Dev Cell 34:466–474CrossRefPubMedGoogle Scholar
  110. 110.
    Zaaijer S, Shaikh N, Nageshan RK, Cooper JP (2016) Rif1 regulates the fate of DNA entanglements during mitosis. Cell Rep 16:148–160CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Pike T, Brownlow N, Kjaer S, Carlton J, Parker PJ (2016) PKC epsilon switches aurora B specificity to exit the abscission checkpoint. Nature Commun 7:13853CrossRefGoogle Scholar
  112. 112.
    Saurin AT, Durgan J, Cameron AJ, Faisal A, Marber MS et al (2008) The regulated assembly of a PKC epsilon complex controls the completion of cytokinesis. Nat Cell Biol 10:891–901CrossRefPubMedGoogle Scholar
  113. 113.
    Li YL, Schwab C, Ryan SL, Papaemmanuil E, Robinson HM et al (2014) Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia. Nature 508:98–102CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Nones K, Waddell N, Wayte N, Patch AM, Bailey P et al (2014) Genomic catastrophes frequently arise in esophageal adenocarcinoma and drive tumorigenesis. Nat Commun 5:5224CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Waddell N, Pajic M, Patch AM, Chang DK, Kassahn KS et al (2015) Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 518:495–501CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Pharoah PDP, Tsai YY, Ramus SJ, Phelan CM, Goode EL et al (2013) GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. Nat Genet 45:362–370CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Sadler JBA, Wenzel DM, Williams LK, Guindo-Martinez M, Alam SL et al (2018) A cancer-associated polymorphism in ESCRT-III disrupts the abscission checkpoint and promotes genome instability. Proc Nat Acad Sci USA 115:8900–8908CrossRefGoogle Scholar
  118. 118.
    Petsalaki E, Dandoulaki M, Zachos G (2018) The ESCRT protein Chmp4c regulates mitotic spindle checkpoint signaling. J Cell Biol 217:861–876CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Bakhoum SF, Compton DA (2012) Chromosomal instability and cancer: a complex relationship with therapeutic potential. J Clin Invest 122:1138–1143CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Birkbak NJ, Eklund AC, Li QY, McClelland SE, Endesfelder D et al (2011) Paradoxical relationship between chromosomal instability and survival outcome in cancer. Cancer Res 71:3447–3452CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Halazonetis TD, Gorgoulis VG, Bartek J (2008) An oncogene-induced DNA damage model for cancer development. Science 319:1352–1355CrossRefPubMedGoogle Scholar
  122. 122.
    Funk LC, Zasadil LM, Weaver BA (2016) Living in CIN: mitotic infidelity and its consequences for tumor promotion and suppression. Dev Cell 39:638–652CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Li K, Liu JX, Tian M, Gao G, Qi XS et al (2016) CHMP4C disruption sensitizes the human lung cancer cells to irradiation. Int J Mol Sci 17:E18CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of BiologyUniversity of CreteHeraklionGreece

Personalised recommendations