Abstract
In the presence of chromatin bridges, mammalian cells delay completion of cytokinesis (abscission) to prevent chromatin breakage or tetraploidization by regression of the cleavage furrow. This abscission delay is called “the abscission checkpoint” and is dependent on Aurora B kinase. Furthermore, cells stabilize the narrow cytoplasmic canal between the two daughter cells until the DNA bridges are resolved. Impaired abscission checkpoint signaling or unstable intercellular canals can lead to accumulation of DNA damage, aneuploidy, or generation of polyploid cells which are associated with tumourigenesis. However, the molecular mechanisms involved have only recently started to emerge. In this review, we focus on the molecular pathways of the abscission checkpoint and describe newly identified triggers, Aurora B-regulators and effector proteins in abscission checkpoint signaling. We also describe mechanisms that control intercellular bridge stabilization, DNA bridge resolution, or abscission checkpoint silencing upon satisfaction, and discuss how abscission checkpoint proteins can be targeted to potentially improve cancer therapy.






Similar content being viewed by others
References
Hoffelder DR, Luo L, Burke NA, Watkins SC, Gollin SM et al (2004) Resolution of anaphase bridges in cancer cells. Chromosoma 112:389–397
Rudolph KL, Millard M, Bosenberg MW, DePinho RA (2001) Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nat Genet 28:155–159
Ying S, Minocherhomji S, Chan KL, Palmai-Pallag T, Chu WK et al (2013) MUS81 promotes common fragile site expression. Nat Cell Biol 15:1001–1007
Wang LHC, Mayer B, Stemmann O, Nigg EA (2010) Centromere DNA decatenation depends on cohesin removal and is required for mammalian cell division. J Cell Sci 123:806–813
Gisselsson D (2008) Classification of chromosome segregation errors in cancer. Chromosoma 117:511–519
Norden C, Mendoza M, Dobbelaere J, Kotwaliwale CV, Biggins S et al (2006) The NoCut pathway links completion of cytokinesis to spindle midzone function to prevent chromosome breakage. Cell 125:85–98
Steigemann P, Wurzenberger C, Schmitz MH, Held M, Guizetti J et al (2009) Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell 136:473–484
Mierzwa B, Gerlich DW (2014) Cytokinetic abscission: molecular mechanisms and temporal control. Dev Cell 31:525–538
Carlton JG, Caballe A, Agromayor M, Kloc M, Martin-Serrano J (2012) ESCRT-III governs the Aurora B-mediated abscission checkpoint through CHMP4C. Science 336:220–225
Capalbo L, Montembault E, Takeda T, Bassi ZI, Glover DM et al (2012) The chromosomal passenger complex controls the function of endosomal sorting complex required for transport-III Snf7 proteins during cytokinesis. Open Biol 2:120070
Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674
Ganem NJ, Pellman D (2012) Linking abnormal mitosis to the acquisition of DNA damage. J Cell Biol 199:871–881
Lens SMA, Medema RH (2019) Cytokinesis defects and cancer. Nat Rev Cancer 19:32–45
Mackay DR, Makise M, Ullman KS (2010) Defects in nuclear pore assembly lead to activation of an Aurora B-mediated abscission checkpoint. J Cell Biol 191:923–931
Lafaurie-Janvore J, Maiuri P, Wang I, Pinot M, Manneville JB et al (2013) ESCRT-III assembly and cytokinetic abscission are induced by tension release in the intercellular bridge. Science 339:1625–1629
Mackay DR, Ullman KS (2015) ATR and a Chk1-Aurora B pathway coordinate postmitotic genome surveillance with cytokinetic abscission. Mol Biol Cell 26:2217–2226
Agromayor M, Martin-Serrano J (2013) Knowing when to but and run: mechanisms that control cytokinetic abscission. Trends Cell Biol 23:433–441
Nähse V, Christ L, Stenmark H, Campsteijn C (2017) The abscission checkpoint: making it to the final cut. Trends Cell Biol 27:1–11
Addi C, Bai J, Echard A (2018) Actin, microtubule, septin and ESCRT filament remodeling during late steps of cytokinesis. Curr Opin Cell Biol 50:27–34
Hu CK, Coughlin M, Mitchison TJ (2012) Midbody assembly and its regulation during cytokinesis. Mol Biol Cell 23:1024–1034
Hurley JH (2015) ESCRTs are everywhere. EMBO J 34:2398–2407
Christ L, Raiborg C, Wenzel EM, Campsteijn C, Stenmark H (2017) Cellular functions and molecular mechanisms of the ESCRT membrane-scission machinery. Trends Biochem Sci 42:42–56
Zhao WM, Seki A, Fang GW (2006) Cep55, a microtubule-bundling protein, associates with centralspindlin to control the midbody integrity and cell abscission during cytokinesis. Mol Biol Cell 17:3881–3896
Bastos RN, Barr FA (2010) Plk1 negatively regulates Cep55 recruitment to the midbody to ensure orderly abscission. J Cell Biol 191:751–760
Morita E, Sandrin V, Chung HY, Morham SG, Gygi SP et al (2007) Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J 26:4215–4227
Carlton JG, Martin-Serrano J (2007) Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 316:1908–1912
Lee HH, Elia N, Ghirlando R, Lippincott-Schwartz J, Hurley JH (2008) Midbody targeting of the ESCRT machinery by a noncanonical coiled coil in CEP55. Science 322:576–580
Hurley JH, Hanson PI (2010) Membrane budding and scission by the ESCRT machinery: it’s all in the neck. Nature Reviews Mol Cell Biol 11:556–566
Goliand I, Nachmias D, Gershony O, Elia N (2014) Inhibition of ESCRT-II-CHMP6 interactions impedes cytokinetic abscission and leads to cell death. Mol Biol Cell 25:3740–3748
Christ L, Wenzel EM, Liestol K, Raiborg C, Campsteijn C et al (2016) ALIX and ESCRT-I/II function as parallel ESCRT-III recruiters in cytokinetic abscission. J Cell Biol 212:499–513
Guizetti J, Schermelleh L, Mantler J, Maar S, Poser I et al (2011) Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments. Science 331:1616–1620
McCullough J, Clippinger AK, Talledge N, Skowyra ML, Saunders MG et al (2015) Structure and membrane remodeling activity of ESCRT-III helical polymers. Science 350:1548–1551
Tang SG, Henne WM, Borbat PP, Buchkovich NJ, Freed JH et al (2015) Structural basis for activation, assembly and membrane binding of ESCRT-III Snf7 filaments. Elife 4:e12548
Mierzwa BE, Chiaruttini N, Redondo-Morata L, von Filseck JM, Konig J et al (2017) Dynamic subunit turnover in ESCRT-III assemblies is regulated by Vps4 to mediate membrane remodelling during cytokinesis. Nat Cell Biol 19:787–798
Schiel JA, Park K, Morphew MK, Reid E, Hoenger A et al (2011) Endocytic membrane fusion and buckling-induced microtubule severing mediate cell abscission. J Cell Sci 124:1411–1424
Schiel JA, Simon GC, Zaharris C, Weisz J, Castle D et al (2012) FIP3-endosome-dependent formation of the secondary ingression mediates ESCRT-III recruitment during cytokinesis. Nat Cell Biol 14:1068–1078
Dambournet D, Machicoane M, Chesneau L, Sachse M, Rocancourt M et al (2011) Rab35 GTPase and OCRL phosphatase remodel lipids and F-actin for successful cytokinesis. Nat Cell Biol 13:981–988
Terry SJ, Dona F, Osenberg P, Carlton JG, Eggert US (2018) Capping protein regulates actin dynamics during cytokinetic midbody maturation. Proc Nat Acad Sci USA 115:2138–2143
Fremont S, Hammich H, Bai J, Wioland H, Klinkert K et al (2017) Oxidation of F-actin controls the terminal steps of cytokinesis. Nat Commun 8:1–16
Yang D, Rismanchi N, Renvoise B, Lippincott-Schwartz J, Blackstone C et al (2008) Structural basis for midbody targeting of spastin by the ESCRT-III protein CHMP1B. Nat Struct Mol Biol 15:1278–1286
Connell JW, Lindon C, Luzio JP, Reid E (2009) Spastin couples microtubule severing to membrane traffic in completion of cytokinesis and secretion. Traffic 10:42–56
Thoresen SB, Campsteijn C, Vietri M, Schink KO, Liestol K et al (2014) ANCHR mediates Aurora-B-dependent abscission checkpoint control through retention of VPS4. Nat Cell Biol 16:550–560
Mendoza M, Norden C, Durrer K, Rauter H, Uhlmann F et al (2009) A mechanism for chromosome segregation sensing by the NoCut checkpoint. Nat Cell Biol 11:477–483
Amaral N, Vendrell A, Funaya C, Idrissi FZ, Maier M et al (2016) The Aurora-B-dependent NoCut checkpoint prevents damage of anaphase bridges after DNA replication stress. Nat Cell Biol 18:516–526
Petsalaki E, Zachos G (2016) Clks 1, 2 and 4 prevent chromatin breakage by regulating the Aurora B-dependent abscission checkpoint. Nat Commun 7:11451
Lukas C, Savic V, Bekker-Jensen S, Doil C, Neumann B et al (2011) 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress. Nat Cell Biol 13:243–253
Bhowmick R, Thakur RS, Venegas AB, Liu Y, Nilsson J et al (2019) The RIF1-PP1 axis controls abscission timing in human cells. Curr Biol 29:1232–1242
Chan KL, Palmai-Pallag T, Ying SM, Hickson ID (2009) Replication stress induces sister-chromatid bridging at fragile site loci in mitosis. Nat Cell Biol 11:753–760
Burrell RA, McClelland SE, Endesfelder D, Groth P, Weller MC et al (2013) Replication stress links structural and numerical cancer chromosomal instability. Nature 494:492–496
Germann SM, Schramke V, Pedersen RT, Gallina I, Eckert-Boulet N et al (2014) TopBP1/Dpb11 binds DNA anaphase bridges to prevent genome instability. J Cell Biol 204:45–59
Caballe A, Wenzel DM, Agromayor M, Alam SL, Skalicky JJ et al (2015) ULK3 regulates cytokinetic abscission by phosphorylating ESCRT-III proteins. Elife 4:e06547
Booth A, Marklew CJ, Ciani B, Beales PA (2019) In vitro membrane remodeling by ESCRT is regulated by negative feedback from membrane tension. iScience 15:173–184
Carmena M, Wheelock M, Funabiki H, Earnshaw WC (2012) The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis. Nat Rev Mol Cell Biol 13:789–803
van der Waal MS, Hengeveld RC, van der Horst A, Lens SM (2012) Cell division control by the chromosomal passenger complex. Exp Cell Res 318:1407–1420
Krenn V, Musacchio A (2015) The aurora B kinase in chromosome bi-orientation and spindle checkpoint signaling. Front Oncol 5:225
Hindriksen S, Lens SMA, Hadders MA (2017) The ins and outs of aurora B inner centromere localization. Front Cell Dev Biol 5:112
Petsalaki E, Akoumianaki T, Black EJ, Gillespie DA, Zachos G (2011) Phosphorylation at serine 331 is required for aurora B activation. J Cell Biol 195:449–466
Caldas GV, DeLuca KF, DeLuca JG (2013) KNL1 facilitates phosphorylation of outer kinetochore proteins by promoting aurora B kinase activity. J Cell Biol 203:957–969
Gruneberg U, Neef R, Honda R, Nigg EA, Barr FA (2004) Relocation of aurora B from centromeres to the central spindle at the metaphase to anaphase transition requires MKlp2. J Cell Biol 166:167–172
Hummer S, Mayer TU (2009) Cdk1 negatively regulates midzone localization of the mitotic kinesin Mklp2 and the chromosomal passenger complex. Curr Biol 19:607–612
Kitagawa M, Fung SYS, Hameed UFS, Goto H, Inagaki M et al (2014) Cdk1 coordinates timely activation of MKlp2 kinesin with relocation of the chromosome passenger complex for cytokinesis. Cell Rep 7:166–179
van der Horst A, Vromans MJM, Bouwman K, van der Waal MS, Hadders MA et al (2015) Inter-domain cooperation in INCENP promotes aurora B relocation from centromeres to microtubules. Cell Rep 12:380–387
Elia N, Sougrat R, Spurlin TA, Hurley JH, Lippincott-Schwartz J (2011) Dynamics of endosomal sorting complex required for transport (ESCRT) machinery during cytokinesis and its role in abscission. Proc Natl Acad Sci USA 108:4846–4851
Honda R, Korner R, Nigg EA (2003) Exploring the functional interactions between aurora B, INCENP, and survivin in mitosis. Mol Biol Cell 14:3325–3341
Yasui Y, Urano T, Kawajiri A, Nagata K, Tatsuka M et al (2004) Autophosphorylation of a newly identified site of aurora-B is indispensable for cytokinesis. J Biol Chem 279:12997–13003
Sessa F, Mapelli M, Ciferri C, Tarricone C, Areces LB et al (2005) Mechanism of aurora B activation by INCENP and inhibition by hesperadin. Mol Cell 18:379–391
Bishop JD, Schumacher JM (2002) Phosphorylation of the carboxyl terminus of inner centromere protein (INCENP) by the aurora B kinase stimulates aurora B kinase activity. J Biol Chem 277:27577–27580
Mo F et al (2016) Acetylation of Aurora B by TIP60 ensures accurate chromosomal segregation. Nat Chem Biol 12:226–232
Smith J, Tho LM, Xu N, Gillespie DA (2010) The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv Cancer Res 108:73–112
Zachos G, Black EJ, Walker M, Scott MT, Vagnarelli P et al (2007) Chk1 is required for spindle checkpoint function. Dev Cell 12:247–260
Petsalaki E, Zachos G (2013) Chk1 and Mps1 jointly regulate correction of merotelic kinetochore attachments. J Cell Sci 126:1235–1246
Petsalaki E, Zachos G (2014) Chk2 prevents mitotic exit when the majority of kinetochores are unattached. J Cell Biol 205:339–356
Capalbo L, Mela I, Abad MA, Jeyaprakash AA, Edwardson JM et al (2016) Coordinated regulation of the ESCRT-III component CHMP4C by the chromosomal passenger complex and centralspindlin during cytokinesis. Open Biol 6:160248
Dimaano C, Jones CB, Hanono A, Curtiss M, Babst M (2008) Ist1 regulates Vps4 localization and assembly. Mol Biol Cell 19:465–474
Frankel EB, Shankar R, Moresco JJ, Yates JR, Volkmann N et al (2017) Ist1 regulates ESCRT-III assembly and function during multivesicular endosome biogenesis in Caenorhabditis elegans embryos. Nat Commun 8:1439
Rue SM, Mattei S, Saksena S, Emr SD (2008) Novel Ist1-Did2 complex functions at a late step in multivesicular body sorting. Mol Biol Cell 19:475–484
Bajorek M, Morita E, Skalicky JJ, Morham SG, Babst M et al (2009) Biochemical analyses of human IST1 and its function in cytokinesis. Mol Biol Cell 20:1360–1373
Zabludoff SD, Deng C, Grondine MR, Sheehy AM, Ashwell S et al (2008) AZD7762, a novel checkpoint kinase inhibitor, drives checkpoint abrogation and potentiates DNA-targeted therapies. Mol Cancer Ther 7:2955–2966
Dandoulaki M, Petsalaki E, Sumpton D, Zanivan S, Zachos G (2018) Src activation by Chk1 promotes actin patch formation and prevents chromatin bridge breakage in cytokinesis. J Cell Biol 217:3071–3089
Peddibhotla S, Lam MH, Gonzalez-Rimbau M, Rosen JM (2009) The DNA-damage effector checkpoint kinase 1 is essential for chromosome segregation and cytokinesis. Proc Natl Acad Sci USA 106:5159–5164
Li Z, Li XY, Nai SS, Geng QZ, Liao J et al (2017) Checkpoint kinase 1-induced phosphorylation of O-linked-N-acetylglucosamine transferase regulates the intermediate filament network during cytokinesis. J Biol Chem 292:19548–19555
Yang C, Tang X, Guo X, Niikura Y, Kitagawa K et al (2011) Aurora-B mediated ATM serine 1403 phosphorylation is required for mitotic ATM activation and the spindle checkpoint. Mol Cell 44:597–608
Tsvetkov L, Xu X, Li J, Stern DF (2003) Polo-like kinase 1 and Chk2 interact and co-localize to centrosomes and the midbody. J Biol Chem 278:8468–8475
Gershony O, Pe’er T, Noach-Hirsh M, Elia N, Tzur A (2014) Cytokinetic abscission is an acute G1 event. Cell Cycle 13:3436–3441
Playford MP, Schaller MD (2004) The interplay between Src and integrins in normal and tumor biology. Oncogene 23:7928–7946
Maciejowski J, Li YL, Bosco N, Campbell PJ, de Lange T (2015) Chromothripsis and kataegis induced by telomere crisis. Cell 163:1641–1654
Lopez V, Barinova N, Onishi M, Pobiega S, Pringle JR et al (2015) Cytokinesis breaks dicentric chromosomes preferentially at pericentromeric regions and telomere fusions. Genes Dev 29:322–336
Fletcher DA, Mullins D (2010) Cell mechanics and the cytoskeleton. Nature 463:485–492
Lekomtsev S, Su KC, Pye VE, Blight K, Sundaramoorthy S et al (2012) Centralspindlin links the mitotic spindle to the plasma membrane during cytokinesis. Nature 492:276–279
Bassi ZI, Audusseau M, Riparbelli MG, Callaini G, D’Avino PP (2013) Citron kinase controls a molecular network required for midbody formation in cytokinesis. Proc Nat Acad Sci USA 110:9782–9787
Watanabe S, De Zan T, Ishizaki T, Narumiya S (2013) Citron kinase mediates transition from constriction to abscission through its coiled-coil domain. J Cell Sci 126:1773–1784
Guse A, Mishima M, Glotzer M (2005) Phosphorylation of ZEN-4/MKLP1 by aurora B regulates completion of cytokinesis. Curr Biol 15:778–786
Neef R, Klein UR, Kopajtich R, Barr FA (2006) Cooperation between mitotic kinesins controls the late stages of cytokinesis. Curr Biol 16:301–307
Hadders MA, Agromayor M, Obita T, Perisic O, Caballe A et al (2012) ESCRT-III binding protein MITD1 is involved in cytokinesis and has an unanticipated PLD fold that binds membranes. Proc Nat Acad Sci USA 109:17424–17429
Chan KL, Hickson ID (2011) New insights into the formation and resolution of ultra-fine anaphase bridges. Semin Cell Dev Biol 22:906–912
Petsalaki E, Dandoulaki M, Morrice N, Zachos G (2014) Chk1 protects against chromatin bridges by constitutively phosphorylating BLM serine 502 to inhibit BLM degradation. J Cell Sci 127:3902–3908
Hong Y, Sonneville R, Wang B, Scheidt V, Meier B et al (2018) LEM-3 is a midbody-tethered DNA nuclease that resolves chromatin bridges during late mitosis. Nat Commun 9:728
Stephens PJ, Greenman CD, Fu BY, Yang FT, Bignell GR et al (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144:27–40
Roberts SA, Sterling J, Thompson C, Harris S, Mav D et al (2012) Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions. Mol Cell 46:424–435
Roberts SA, Lawrence MS, Klimczak LJ, Grimm SA, Fargo D et al (2013) An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat Genet 45:970–976
Gisselsson D, Pettersson L, Hoglund M, Heidenblad M, Gorunova L et al (2000) Chromosomal breakage-fusion-bridge events cause genetic intratumor heterogeneity. Proc Nat Acad Sci USA 97:5357–5362
Forment JV, Kaidi A, Jackson SP (2012) Chromothripsis and cancer: causes and consequences of chromosome shattering. Nat Rev Cancer 12:663–670
Roberts SA, Gordenin DA (2014) Hypermutation in human cancer genomes: footprints and mechanisms. Nat Rev Cancer 14:786–800
Shi QH, King RW (2005) Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines. Nature 437:1038–1042
Pampalona J, Frias C, Genesca A, Tusell L (2012) Progressive telomere dysfunction causes cytokinesis failure and leads to the accumulation of polyploid cells. PLoS Genet 8:601–611
Baumann C, Korner R, Hofmann K, Nigg EA (2007) PICH, a centromere-associated SNF2 family ATPase, is regulated by Plk1 and required for the spindle checkpoint. Cell 128:101–114
Chan KL, North PS, Hickson ID (2007) BLM is required for faithful chromosome segregation and its localization defines a class of ultrafine anaphase bridges. EMBO J 26:3397–3409
Ke Y, Huh JW, Warrington R, Li B, Wu N et al (2011) PICH and BLM limit histone association with anaphase centromeric DNA threads and promote their resolution. EMBO J 30:3309–3321
Hengeveld RCC, de Boer HR, Schoonen PM, de Vries EGE, Lens SMA et al (2015) rif1 is required for resolution of ultrafine DNA bridges in anaphase to ensure genomic stability. Dev Cell 34:466–474
Zaaijer S, Shaikh N, Nageshan RK, Cooper JP (2016) Rif1 regulates the fate of DNA entanglements during mitosis. Cell Rep 16:148–160
Pike T, Brownlow N, Kjaer S, Carlton J, Parker PJ (2016) PKC epsilon switches aurora B specificity to exit the abscission checkpoint. Nature Commun 7:13853
Saurin AT, Durgan J, Cameron AJ, Faisal A, Marber MS et al (2008) The regulated assembly of a PKC epsilon complex controls the completion of cytokinesis. Nat Cell Biol 10:891–901
Li YL, Schwab C, Ryan SL, Papaemmanuil E, Robinson HM et al (2014) Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia. Nature 508:98–102
Nones K, Waddell N, Wayte N, Patch AM, Bailey P et al (2014) Genomic catastrophes frequently arise in esophageal adenocarcinoma and drive tumorigenesis. Nat Commun 5:5224
Waddell N, Pajic M, Patch AM, Chang DK, Kassahn KS et al (2015) Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 518:495–501
Pharoah PDP, Tsai YY, Ramus SJ, Phelan CM, Goode EL et al (2013) GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. Nat Genet 45:362–370
Sadler JBA, Wenzel DM, Williams LK, Guindo-Martinez M, Alam SL et al (2018) A cancer-associated polymorphism in ESCRT-III disrupts the abscission checkpoint and promotes genome instability. Proc Nat Acad Sci USA 115:8900–8908
Petsalaki E, Dandoulaki M, Zachos G (2018) The ESCRT protein Chmp4c regulates mitotic spindle checkpoint signaling. J Cell Biol 217:861–876
Bakhoum SF, Compton DA (2012) Chromosomal instability and cancer: a complex relationship with therapeutic potential. J Clin Invest 122:1138–1143
Birkbak NJ, Eklund AC, Li QY, McClelland SE, Endesfelder D et al (2011) Paradoxical relationship between chromosomal instability and survival outcome in cancer. Cancer Res 71:3447–3452
Halazonetis TD, Gorgoulis VG, Bartek J (2008) An oncogene-induced DNA damage model for cancer development. Science 319:1352–1355
Funk LC, Zasadil LM, Weaver BA (2016) Living in CIN: mitotic infidelity and its consequences for tumor promotion and suppression. Dev Cell 39:638–652
Li K, Liu JX, Tian M, Gao G, Qi XS et al (2016) CHMP4C disruption sensitizes the human lung cancer cells to irradiation. Int J Mol Sci 17:E18
Acknowledgements
The authors wish to acknowledge Fondation Santé for supporting their work.
Author information
Authors and Affiliations
Contributions
EP wrote the paper; GZ edited the paper and reviewed its final version.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Petsalaki, E., Zachos, G. Building bridges between chromosomes: novel insights into the abscission checkpoint. Cell. Mol. Life Sci. 76, 4291–4307 (2019). https://doi.org/10.1007/s00018-019-03224-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00018-019-03224-z


