Skip to main content

Advertisement

Log in

Requirement of NPHP5 in the hierarchical assembly of basal feet associated with basal bodies of primary cilia

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

During ciliogenesis, the mother centriole transforms into a basal body competent to nucleate a cilium. The mother centriole and basal body possess sub-distal appendages (SDAs) and basal feet (BF), respectively. SDAs and BF are thought to be equivalent structures. In contrast to SDA assembly, little is known about the players involved in BF assembly and its assembly order. Furthermore, the contribution of BF to ciliogenesis is not understood. Here, we found that SDAs are distinguishable from BF and that the protein NPHP5 is a novel SDA and BF component. Remarkably, NPHP5 is specifically required for BF assembly in cells able to form basal bodies but is dispensable for SDA assembly. Determination of the hierarchical assembly reveals that NPHP5 cooperates with a subset of SDA/BF proteins to organize BF. The assembly pathway of BF is similar but not identical to that of SDA. Loss of NPHP5 or a BF protein simultaneously inhibits BF assembly and primary ciliogenesis, and these phenotypes could be rescued by manipulating the expression of certain components in the BF assembly pathway. These findings define a novel role for NPHP5 in specifically regulating BF assembly, a process which is tightly coupled to primary ciliogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

3D-SIM:

Three dimensional-structured illumination microscopy

BF:

Basal feet

DAs:

Distal appendages

DT:

Anti-detyrosinated tubulin

EM:

Electron microscopy

GT335:

Anti-glutamylated tubulin

IFT:

Intraflagellar transport

NS:

Non-specific

PCM:

Pericentriolar material

PLA:

Proximity ligation assay

RPE-1:

Retinal pigmented epithelial cells

SDAs:

Sub-distal appendages

TFs:

Transition fibers

References

  1. Bornens M (2012) The centrosome in cells and organisms. Science 335(6067):422–426. https://doi.org/10.1126/science.1209037

    Article  CAS  PubMed  Google Scholar 

  2. Kobayashi T, Dynlacht BD (2011) Regulating the transition from centriole to basal body. J Cell Biol 193(3):435–444. https://doi.org/10.1083/jcb.201101005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nigg EA, Stearns T (2011) The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol 13(10):1154–1160. https://doi.org/10.1038/ncb2345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Seeley ES, Nachury MV (2010) The perennial organelle: assembly and disassembly of the primary cilium. J Cell Sci 123(Pt 4):511–518. https://doi.org/10.1242/jcs.061093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Goetz SC, Liem KF Jr, Anderson KV (2012) The spinocerebellar ataxia-associated gene Tau tubulin kinase 2 controls the initiation of ciliogenesis. Cell 151(4):847–858. https://doi.org/10.1016/j.cell.2012.10.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vorobjev IA, Chentsov Y (1982) Centrioles in the cell cycle. I. Epithelial cells. J Cell Biol 93(3):938–949

    Article  CAS  Google Scholar 

  7. Ibrahim R, Messaoudi C, Chichon FJ, Celati C, Marco S (2009) Electron tomography study of isolated human centrioles. Microsc Res Tech 72(1):42–48. https://doi.org/10.1002/jemt.20637

    Article  PubMed  Google Scholar 

  8. Anderson RG (1972) The three-dimensional structure of the basal body from the rhesus monkey oviduct. J Cell Biol 54(2):246–265

    Article  CAS  Google Scholar 

  9. Kunimoto K, Yamazaki Y, Nishida T, Shinohara K, Ishikawa H, Hasegawa T, Okanoue T, Hamada H, Noda T, Tamura A, Tsukita S (2012) Coordinated ciliary beating requires Odf2-mediated polarization of basal bodies via basal feet. Cell 148(1–2):189–200. https://doi.org/10.1016/j.cell.2011.10.052

    Article  CAS  PubMed  Google Scholar 

  10. Kodani A, Salome Sirerol-Piquer M, Seol A, Garcia-Verdugo JM, Reiter JF (2013) Kif3a interacts with Dynactin subunit p150 Glued to organize centriole subdistal appendages. EMBO J 32(4):597–607. https://doi.org/10.1038/emboj.2013.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Odor DL, Blandau RJ (1985) Observations on the solitary cilium of rabbit oviductal epithelium: its motility and ultrastructure. Am J Anat 174(4):437–453. https://doi.org/10.1002/aja.1001740407

    Article  CAS  PubMed  Google Scholar 

  12. Hagiwara H, Ohwada N, Aoki T, Suzuki T, Takata K (2008) The primary cilia of secretory cells in the human oviduct mucosa. Med Mol Morphol 41(4):193–198. https://doi.org/10.1007/s00795-008-0421-z

    Article  PubMed  Google Scholar 

  13. Delgehyr N, Sillibourne J, Bornens M (2005) Microtubule nucleation and anchoring at the centrosome are independent processes linked by ninein function. J Cell Sci 118(Pt 8):1565–1575. https://doi.org/10.1242/jcs.02302

    Article  CAS  PubMed  Google Scholar 

  14. Gordon RE (1982) Three-dimensional organization of microtubules and microfilaments of the basal body apparatus of ciliated respiratory epithelium. Cell Motil 2(4):385–391

    Article  CAS  Google Scholar 

  15. Ishikawa H, Kubo A, Tsukita S (2005) Odf2-deficient mother centrioles lack distal/subdistal appendages and the ability to generate primary cilia. Nat Cell Biol 7(5):517–524. https://doi.org/10.1038/ncb1251

    Article  CAS  PubMed  Google Scholar 

  16. Mogensen MM, Malik A, Piel M, Bouckson-Castaing V, Bornens M (2000) Microtubule minus-end anchorage at centrosomal and non-centrosomal sites: the role of ninein. J Cell Sci 113(Pt 17):3013–3023

    CAS  PubMed  Google Scholar 

  17. Guarguaglini G, Duncan PI, Stierhof YD, Holmstrom T, Duensing S, Nigg EA (2005) The forkhead-associated domain protein Cep170 interacts with Polo-like kinase 1 and serves as a marker for mature centrioles. Mol Biol Cell 16(3):1095–1107. https://doi.org/10.1091/mbc.e04-10-0939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang N, Xia Y, Zhang D, Wang S, Bao Y, He R, Teng J, Chen J (2017) Hierarchical assembly of centriole subdistal appendages via centrosome binding proteins CCDC120 and CCDC68. Nat Commun 8:15057. https://doi.org/10.1038/ncomms15057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gromley A, Jurczyk A, Sillibourne J, Halilovic E, Mogensen M, Groisman I, Blomberg M, Doxsey S (2003) A novel human protein of the maternal centriole is required for the final stages of cytokinesis and entry into S phase. J Cell Biol 161(3):535–545. https://doi.org/10.1083/jcb.200301105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chang P, Giddings TH Jr, Winey M, Stearns T (2003) Epsilon-tubulin is required for centriole duplication and microtubule organization. Nat Cell Biol 5(1):71–76. https://doi.org/10.1038/ncb900

    Article  CAS  PubMed  Google Scholar 

  21. Veleri S, Manjunath SH, Fariss RN, May-Simera H, Brooks M, Foskett TA, Gao C, Longo TA, Liu P, Nagashima K, Rachel RA, Li T, Dong L, Swaroop A (2014) Ciliopathy-associated gene Cc2d2a promotes assembly of subdistal appendages on the mother centriole during cilia biogenesis. Nat Commun 5:4207. https://doi.org/10.1038/ncomms5207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mazo G, Soplop N, Wang WJ, Uryu K, Tsou MF (2016) Spatial control of primary ciliogenesis by subdistal appendages alters sensation-associated properties of cilia. Dev Cell 39(4):424–437. https://doi.org/10.1016/j.devcel.2016.10.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hehnly H, Chen CT, Powers CM, Liu HL, Doxsey S (2012) The centrosome regulates the Rab11- dependent recycling endosome pathway at appendages of the mother centriole. Curr Biol 22(20):1944–1950. https://doi.org/10.1016/j.cub.2012.08.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ibi M, Zou P, Inoko A, Shiromizu T, Matsuyama M, Hayashi Y, Enomoto M, Mori D, Hirotsune S, Kiyono T, Tsukita S, Goto H, Inagaki M (2011) Trichoplein controls microtubule anchoring at the centrosome by binding to Odf2 and ninein. J Cell Sci 124(Pt 6):857–864. https://doi.org/10.1242/jcs.075705

    Article  CAS  PubMed  Google Scholar 

  25. Inoko A, Matsuyama M, Goto H, Ohmuro-Matsuyama Y, Hayashi Y, Enomoto M, Ibi M, Urano T, Yonemura S, Kiyono T, Izawa I, Inagaki M (2012) Trichoplein and Aurora A block aberrant primary cilia assembly in proliferating cells. J Cell Biol 197(3):391–405. https://doi.org/10.1083/jcb.201106101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Graser S, Stierhof YD, Lavoie SB, Gassner OS, Lamla S, Le Clech M, Nigg EA (2007) Cep164, a novel centriole appendage protein required for primary cilium formation. J Cell Biol 179(2):321–330. https://doi.org/10.1083/jcb.200707181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tateishi K, Yamazaki Y, Nishida T, Watanabe S, Kunimoto K, Ishikawa H, Tsukita S (2013) Two appendages homologous between basal bodies and centrioles are formed using distinct Odf2 domains. J Cell Biol 203(3):417–425. https://doi.org/10.1083/jcb.201303071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chang J, Seo SG, Lee KH, Nagashima K, Bang JK, Kim BY, Erikson RL, Lee KW, Lee HJ, Park JE, Lee KS (2013) Essential role of Cenexin1, but not Odf2, in ciliogenesis. Cell Cycle 12(4):655–662. https://doi.org/10.4161/cc.23585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hung HF, Hehnly H, Doxsey S (2016) The mother centriole appendage protein cenexin modulates lumen formation through spindle orientation. Curr Biol 26(9):1248. https://doi.org/10.1016/j.cub.2016.04.033

    Article  CAS  PubMed  Google Scholar 

  30. Marszalek JR, Ruiz-Lozano P, Roberts E, Chien KR, Goldstein LS (1999) Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the KIF3A subunit of kinesin-II. Proc Natl Acad Sci USA 96(9):5043–5048

    Article  CAS  Google Scholar 

  31. Takeda S, Yonekawa Y, Tanaka Y, Okada Y, Nonaka S, Hirokawa N (1999) Left-right asymmetry and kinesin superfamily protein KIF3A: new insights in determination of laterality and mesoderm induction by kif3A−/− mice analysis. J Cell Biol 145(4):825–836

    Article  CAS  Google Scholar 

  32. Hossain D, Javadi Esfehani Y, Das A, Tsang WY (2017) Cep78 controls centrosome homeostasis by inhibiting EDD-DYRK2-DDB1(Vpr)(BP). EMBO Rep 18(4):632–644. https://doi.org/10.15252/embr.201642377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sonnen KF, Schermelleh L, Leonhardt H, Nigg EA (2012) 3D-structured illumination microscopy provides novel insight into architecture of human centrosomes. Biol Open 1(10):965–976. https://doi.org/10.1242/bio.20122337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mojarad BA, Gupta GD, Hasegan M, Goudiam O, Basto R, Gingras AC, Pelletier L (2017) CEP19 cooperates with FOP and CEP350 to drive early steps in the ciliogenesis programme. Open Biol 7(6):170114. https://doi.org/10.1098/rsob.170114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kobayashi T, Kim S, Lin YC, Inoue T, Dynlacht BD (2014) The CP110-interacting proteins Talpid3 and Cep290 play overlapping and distinct roles in cilia assembly. J Cell Biol 204(2):215–229. https://doi.org/10.1083/jcb.201304153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Barbelanne M, Song J, Ahmadzai M, Tsang WY (2013) Pathogenic NPHP5 mutations impair protein interaction with Cep290, a prerequisite for ciliogenesis. Hum Mol Genet 22(12):2482–2494. https://doi.org/10.1093/hmg/ddt100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Das A, Qian J, Tsang WY (2017) USP9X counteracts differential ubiquitination of NPHP5 by MARCH7 and BBS11 to regulate ciliogenesis. PLoS Genet 13(5):e1006791. https://doi.org/10.1371/journal.pgen.1006791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sang L, Miller JJ, Corbit KC, Giles RH, Brauer MJ, Otto EA, Baye LM, Wen X, Scales SJ, Kwong M, Huntzicker EG, Sfakianos MK, Sandoval W, Bazan JF, Kulkarni P, Garcia-Gonzalo FR, Seol AD, O’Toole JF, Held S, Reutter HM, Lane WS, Rafiq MA, Noor A, Ansar M, Devi AR, Sheffield VC, Slusarski DC, Vincent JB, Doherty DA, Hildebrandt F, Reiter JF, Jackson PK (2011) Mapping the NPHP-JBTS-MKS protein network reveals ciliopathy disease genes and pathways. Cell 145(4):513–528. https://doi.org/10.1016/j.cell.2011.04.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Barbelanne M, Hossain D, Chan DP, Peranen J, Tsang WY (2015) Nephrocystin proteins NPHP5 and Cep290 regulate BBSome integrity, ciliary trafficking and cargo delivery. Hum Mol Genet 24(8):2185–2200. https://doi.org/10.1093/hmg/ddu738

    Article  CAS  PubMed  Google Scholar 

  40. Uzbekov R, Prigent C (2007) Clockwise or anticlockwise? Turning the centriole triplets in the right direction! FEBS Lett 581(7):1251–1254. https://doi.org/10.1016/j.febslet.2007.02.069

    Article  CAS  PubMed  Google Scholar 

  41. Otto EA, Loeys B, Khanna H, Hellemans J, Sudbrak R, Fan S, Muerb U, O’Toole JF, Helou J, Attanasio M, Utsch B, Sayer JA, Lillo C, Jimeno D, Coucke P, De Paepe A, Reinhardt R, Klages S, Tsuda M, Kawakami I, Kusakabe T, Omran H, Imm A, Tippens M, Raymond PA, Hill J, Beales P, He S, Kispert A, Margolis B, Williams DS, Swaroop A, Hildebrandt F (2005) Nephrocystin-5, a ciliary IQ domain protein, is mutated in Senior-Loken syndrome and interacts with RPGR and calmodulin. Nat Genet 37(3):282–288. https://doi.org/10.1038/ng1520

    Article  CAS  PubMed  Google Scholar 

  42. Craige B, Tsao CC, Diener DR, Hou Y, Lechtreck KF, Rosenbaum JL, Witman GB (2010) CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content. J Cell Biol 190(5):927–940. https://doi.org/10.1083/jcb.201006105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang TT, Su J, Wang WJ, Craige B, Witman GB, Tsou MF, Liao JC (2015) Superresolution pattern recognition reveals the architectural map of the ciliary transition zone. Sci Rep 5:14096. https://doi.org/10.1038/srep14096

    Article  CAS  PubMed  Google Scholar 

  44. Kasahara K, Kawakami Y, Kiyono T, Yonemura S, Kawamura Y, Era S, Matsuzaki F, Goshima N, Inagaki M (2014) Ubiquitin-proteasome system controls ciliogenesis at the initial step of axoneme extension. Nat Commun 5:5081. https://doi.org/10.1038/ncomms6081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Inaba H, Goto H, Kasahara K, Kumamoto K, Yonemura S, Inoko A, Yamano S, Wanibuchi H, He D, Goshima N, Kiyono T, Hirotsune S, Inagaki M (2016) Ndel1 suppresses ciliogenesis in proliferating cells by regulating the trichoplein-Aurora A pathway. J Cell Biol 212(4):409–423. https://doi.org/10.1083/jcb.201507046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kasahara K, Aoki H, Kiyono T, Wang S, Kagiwada H, Yuge M, Tanaka T, Nishimura Y, Mizoguchi A, Goshima N, Inagaki M (2018) EGF receptor kinase suppresses ciliogenesis through activation of USP8 deubiquitinase. Nat Commun 9(1):758. https://doi.org/10.1038/s41467-018-03117-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nishimura Y, Kasahara K, Shiromizu T, Watanabe M, Inagaki M (2019) Primary cilia as signaling hubs in health and disease. Adv Sci (Weinh) 6(1):1801138. https://doi.org/10.1002/advs.201801138

    Article  CAS  Google Scholar 

  48. Loukil A, Tormanen K, Sutterlin C (2017) The daughter centriole controls ciliogenesis by regulating Neurl-4 localization at the centrosome. J Cell Biol 216(5):1287–1300. https://doi.org/10.1083/jcb.201608119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pugacheva EN, Jablonski SA, Hartman TR, Henske EP, Golemis EA (2007) HEF1-dependent Aurora A activation induces disassembly of the primary cilium. Cell 129(7):1351–1363. https://doi.org/10.1016/j.cell.2007.04.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all members of the Tsang laboratory for constructive advice, and L. Wordeman, K. Lee, and E. Nigg for providing antibodies and plasmids. We are indebted to A. Das and J. Qian for their assistance on this project, H. Vali, K. Sears and J. Mui for their help with EM data acquisition and analysis, and D. Filion, E. Wee and M. Fu for their guidance with super-resolution microscopy. WYT was a Canadian Institutes of Health Research New Investigator and a Fonds de recherche Santé Junior 2 Research Scholar. This work was supported by the Canadian Institutes of Health Research and the Natural Sciences and Engineering Research Council of Canada to WYT.

Author information

Authors and Affiliations

Authors

Contributions

WYT designed all experiments with input from DH and MB. DH and MB performed the experiments and analyzed the results. WYT and DH wrote the paper, and all authors reviewed the paper.

Corresponding author

Correspondence to William Y. Tsang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1030 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, D., Barbelanne, M. & Tsang, W.Y. Requirement of NPHP5 in the hierarchical assembly of basal feet associated with basal bodies of primary cilia. Cell. Mol. Life Sci. 77, 195–212 (2020). https://doi.org/10.1007/s00018-019-03181-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03181-7

Keywords

Navigation