Cellular and Molecular Life Sciences

, Volume 76, Issue 19, pp 3783–3800 | Cite as

pH and male fertility: making sense on pH homeodynamics throughout the male reproductive tract

  • Raquel L. Bernardino
  • David F. Carrageta
  • Mário Sousa
  • Marco G. Alves
  • Pedro F. OliveiraEmail author


In the male reproductive tract, ionic equilibrium is essential to maintain normal spermatozoa production and, hence, the reproductive potential. Among the several ions, HCO3 and H+ have a central role, mainly due to their role on pH homeostasis. In the male reproductive tract, the major players in pH regulation and homeodynamics are carbonic anhydrases (CAs), HCO3 membrane transporters (solute carrier 4—SLC4 and solute carrier 26—SLC26 family transporters), Na+–H+ exchangers (NHEs), monocarboxylate transporters (MCTs) and voltage-gated proton channels (Hv1). CAs and these membrane transporters are widely distributed throughout the male reproductive tract, where they play essential roles in the ionic balance of tubular fluids. CAs are the enzymes responsible for the production of HCO3 which is then transported by membrane transporters to ensure the maturation, storage, and capacitation of the spermatozoa. The transport of H+ is carried out by NHEs, Hv1, and MCTs and is essential for the electrochemical balance and for the maintenance of the pH within the physiological limits along the male reproductive tract. Alterations in HCO3 production and transport of ions have been associated with some male reproductive dysfunctions. Herein, we present an up-to-date review on the distribution and role of the main intervenient on pH homeodynamics in the fluids throughout the male reproductive tract. In addition, we discuss their relevance for the establishment of the male reproductive potential.


Spermatogenesis Sperm Seminiferous tubular fluid Ionic transporters Epididymal fluid 



This work was supported by “Fundação para a Ciência e a Tecnologia”—FCT to Raquel L. Bernardino (SFRH/BD/103105/2014). The work was co-funded by FEDER through the COMPETE/QREN, FSE/POPH to Marco G. Alves (IFCT 2015 and PTDC/BIM-MET/4712/2014); Pedro F. Oliveira (IFCT2015 and PTDC/BBB-BQB/1368/2014) and David F. Carrageta (PTDC/BBB-BQB/1368/2014); UMIB (PEst-OE/SAU/UI0215/2014); co-funded by the EU Framework Programme for Research and Innovation H2020 (POCI/COMPETE2020).

Compliance with ethical standards

Conflict of interest

The author declares that there are no conflicts of interest.


  1. 1.
    Rowe PJ, Comhaire FH, Hargreave TB, Mahmoud AM (2000) WHO manual for the standardized investigation and diagnosis of the infertile male. University Press, CambridgeGoogle Scholar
  2. 2.
    Brugh VM III, Lipshultz LI (2004) Male factor infertility: evaluation and management. Med Clin N Am 88(2):367–385Google Scholar
  3. 3.
    Gannon JR, Walsh TJ (2015) The epidemiology of male infertility. In: Carrel DT, Schlegel PN, Racowsky C, Gianaroli L (eds) Biennial review of infertility. Springer, Switzerland, pp 3–7Google Scholar
  4. 4.
    Hamilton BE, Ventura SJ (2006) Fertility and abortion rates in the United States, 1960–2002. Int J Androl 29(1):34–45Google Scholar
  5. 5.
    Lutz W (2006) Fertility rates and future population trends: will Europe’s birth rate recover or continue to decline? Int J Androl 29(1):25–33Google Scholar
  6. 6.
    Rato L, Alves MG, Socorro S, Duarte AI, Cavaco JE, Oliveira PF (2012) Metabolic regulation is important for spermatogenesis. Nat Rev Urol 9(6):330–338Google Scholar
  7. 7.
    Pastor-Soler N, Piétrement C, Breton S (2005) Role of acid/base transporters in the male reproductive tract and potential consequences of their malfunction. Physiology 20(6):417–428Google Scholar
  8. 8.
    Bernardino RL (2017) Formation and biochemistry of seminal plasma and male accessory fluids. In: Alves MG, Oliveira PF (eds) Andrology: current and future developments. Bentham Science Publishers, Sharjah, UAEGoogle Scholar
  9. 9.
    Rato L, Socorro S, Cavaco JE, Oliveira PF (2010) Tubular fluid secretion in the seminiferous epithelium: ion transporters and aquaporins in Sertoli cells. J Membr Biol 236(2):215–224Google Scholar
  10. 10.
    Bernardino RL, Jesus TT, Martins AD, Sousa M, Barros A, Cavaco JE, Socorro S, Alves MG, Oliveira PF (2013) Molecular basis of bicarbonate membrane transport in the male reproductive tract. Curr Med Chem 20(32):4037–4049Google Scholar
  11. 11.
    Martins AD, Bernardino RL, Neuhaus-Oliveira A, Sousa M, Sá R, Alves MG, Oliveira PF (2014) Physiology of Na+/H+ exchangers in the male reproductive tract: relevance for male fertility. Biol Reprod 91(1):11 (1–6) Google Scholar
  12. 12.
    Mann T, Lutwak-Mann C (eds) (1981) Testis and testicular semen. In: Male reproductive function and semen. Springer, London, pp 83–138Google Scholar
  13. 13.
    Stanton PG, Foo CF, Rainczuk A, Stephens AN, Condina M, O’Donnell L, Weidner W, Ishikawa T, Cruickshanks L, Smith LB (2016) Mapping the testicular interstitial fluid proteome from normal rats. Proteomics 16(17):2391–2402Google Scholar
  14. 14.
    Levine N, Marsh DJ (1971) Micropuncture studies of the electrochemical aspects of fluid and electrolyte transport in individual seminiferous tubules, the epididymis and the vas deferens in rats. J Physiol 213(3):557–570Google Scholar
  15. 15.
    Levine N, Kelly H (1978) Measurement of pH in the rat epididymis in vivo. J Reprod Fertil 52(2):333–335Google Scholar
  16. 16.
    Rodríguez CM, Hinton BT (2003) The testicular and epididymal luminal fluid microenvironment. In: Tulsiani DRP (ed) Introduction to mammalian reproduction. Springer, Boston, pp 61–77Google Scholar
  17. 17.
    Tao L, Zupp J, Setchell B (2000) Effect of efferent duct ligation on the function of the blood-testis barrier in rats. J Reprod Fertil 120(1):13–18Google Scholar
  18. 18.
    van Tilburg MF, Sousa SD, de Melo RBF, Moreno FB, Monteiro-Moreira AC, Moreira RA, de Alencar Moura A (2017) Proteome of the rete testis fluid from tropically-adapted Morada Nova rams. Anim Reprod Sci 176:20–31Google Scholar
  19. 19.
    Guyonnet B, Dacheux F, Dacheux JL, Gatti JL (2011) The epididymal transcriptome and proteome provide some insights into new epididymal regulations. J Androl 32(6):651–664Google Scholar
  20. 20.
    Elzanaty S, Richthoff J, Malm J, Giwercman A (2002) The impact of epididymal and accessory sex gland function on sperm motility. Hum Reprod 17(11):2904–2911Google Scholar
  21. 21.
    Marengo SR (2008) Maturing the sperm: unique mechanisms for modifying integral proteins in the sperm plasma membrane. Anim Reprod Sci 105(1):52–63Google Scholar
  22. 22.
    Turner T (2002) Necessity’s potion: inorganic ions and small organic molecules in the epididymal lumen. In: Robaire B, Hinton B (eds) The epididymis: from molecules to clinical practice. Springer, New York, pp 131–150Google Scholar
  23. 23.
    Asari M, Sasaki K, Miura K, Ichihara N, Nishita T (1996) Immunohistolocalization of the carbonic anhydrase isoenzymes (CA-I, CA-II, and CA-III) in the reproductive tract of male horses. Am J Vet Res 57(4):439–443Google Scholar
  24. 24.
    Brown D, Smith P, Breton S (1997) Role of V-ATPase-rich cells in acidification of the male reproductive tract. J Exp Biol 200(2):257–262Google Scholar
  25. 25.
    Zippin JH, Chen Y, Nahirney P, Kamenetsky M, Wuttke MS, Fischman DA, Levin LR, Buck J (2003) Compartmentalization of bicarbonate-sensitive adenylyl cyclase in distinct signaling microdomains. FASEB J 17(1):82–84Google Scholar
  26. 26.
    Dacheux J-L, Dacheux F (2014) New insights into epididymal function in relation to sperm maturation. Reproduction 147(2):R27–R42Google Scholar
  27. 27.
    Chen Y, Cann MJ, Litvin TN, Iourgenko V, Sinclair ML, Levin LR, Buck J (2000) Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 289(5479):625–628Google Scholar
  28. 28.
    Vishwakarma P (1962) The pH and bicarbonate-ion content of the oviduct and uterine fluids. Fertil Steril 13(5):481–485Google Scholar
  29. 29.
    Swietach P, Vaughan-Jones RD, Harris AL (2007) Regulation of tumor pH and the role of carbonic anhydrase 9. Cancer Metastasis Rev 26(2):299–310Google Scholar
  30. 30.
    Hewett-Emmett D (2000) Evolution and distribution of the carbonic anhydrase gene families. In: Chegwidden WR, Carter ND, Edwards YH (eds) The carbonic anhydrases New Horizons. Springer, Basel, pp 29–76Google Scholar
  31. 31.
    Supuran CT, Scozzafava A (2000) Carbonic anhydrase inhibitors and their therapeutic potential. Expert Opin Ther Pa 10(5):575–600Google Scholar
  32. 32.
    Nishimori I, Minakuchi T, Onishi S, Vullo D, Scozzafava A, Supuran CT (2007) Carbonic anhydrase inhibitors. DNA cloning, characterization, and inhibition studies of the human secretory isoform VI, a new target for sulfonamide and sulfamate inhibitors. J Med Chem 50(2):381–388Google Scholar
  33. 33.
    Setchell B, Brown B (1972) The effect of metabolic alkalosis, hypotension and inhibitors of carbonic anhydrase on fluid secretion by rat testes. J Reprod Fertil 28(2):235–240Google Scholar
  34. 34.
    Ekstedt E, Holm L, Ridderstråle Y (2004) Carbonic anhydrase in mouse testis and epididymis; transfer of isozyme IV to spermatozoa during passage. J Mol Histol 35(2):167–173Google Scholar
  35. 35.
    Waheed A, Zhu X, Sly W (1992) Membrane-associated carbonic anhydrase from rat lung. Purification, characterization, tissue distribution, and comparison with carbonic anhydrase IVs of other mammals. J Biol Chem 267(5):3308–3311Google Scholar
  36. 36.
    Parkkila S, Kaunisto K, Kellokumpu S, Rajaniemi H (1991) A high activity carbonic anhydrase isoenzyme (CA II) is present in mammalian spermatozoa. Histochem Cell Biol 95(5):477–482Google Scholar
  37. 37.
    Acott TS, Carr DW (1984) Inhibition of bovine spermatozoa by caudal epididymal fluid: II. Interaction of pH and a quiescence factor. Biol Reprod 30(4):926–935Google Scholar
  38. 38.
    Okamura N, Tajima Y, Ishikawa H, Yoshii S, Koiso K, Sugita Y (1986) Lowered levels of bicarbonate in seminal plasma cause the poor sperm motility in human infertile patients. Fertil Steril 45(2):265–272Google Scholar
  39. 39.
    Okamura N, Tajima Y, Soejima A, Masuda H, Sugita Y (1985) Sodium bicarbonate in seminal plasma stimulates the motility of mammalian spermatozoa through direct activation of adenylate cyclase. J Biol Chem 260(17):9699–9705Google Scholar
  40. 40.
    Au C, Wong P (1980) Luminal acidification by the perfused rat cauda epididymidis. J Physiol 309(1):419–427Google Scholar
  41. 41.
    Harris G, Goto K (1984) Carbonic anhydrase activity of the reproductive tract tissues of aged male fowls and its relationship to semen production. J Reprod Fertil 70(1):25–30Google Scholar
  42. 42.
    Hermo L, Chong DL, Moffatt P, Sly WS, Waheed A, Smith CE (2005) Region-and cell-specific differences in the distribution of carbonic anhydrases II, III, XII, and XIV in the adult rat epididymis. J Histochem Cytochem 53(6):699–713Google Scholar
  43. 43.
    Kaunisto K, Parkkila S, Parkkila A-K, Waheed A, Sly WS, Rajaniemi H (1995) Expression of carbonic anhydrase isoenzymes IV and II in rat epididymal duct. Biol Reprod 52(6):1350–1357Google Scholar
  44. 44.
    Cohen JP, Hoffer AP, Rosen S (1976) Carbonic anhydrase localization in the epididymis and testis of the rat: histochemical and biochemical analysis. Biol Reprod 14(3):339–346Google Scholar
  45. 45.
    Clulow J, Jones R, Hansen L (1994) Micropuncture and cannulation studies of fluid composition and transport in the ductuli efferentes testis of the rat: comparisons with the homologous metanephric proximal tubule. Exp Physiol 79(6):915–928Google Scholar
  46. 46.
    Karhumaa P, Kaunisto K, Parkkila S, Waheed A, Pastoreková S, Pastorek J, Sly WS, Rajaniemi H (2001) Expression of the transmembrane carbonic anhydrases, CA IX and CA XII, in the human male excurrent ducts. Mol Hum Reprod 7(7):611–616Google Scholar
  47. 47.
    Liu Y, Wang D-K, Chen L-M (2012) The physiology of bicarbonate transporters in mammalian reproduction. Biol Reprod 86(4):99 (1–13) Google Scholar
  48. 48.
    Jensen LJ, Stuart-Tilley AK, Peters LL, Lux SE, Alper SL, Breton S (1999) Immunolocalization of AE2 anion exchanger in rat and mouse epididymis. Biol Reprod 61(4):973–980Google Scholar
  49. 49.
    Ivanov S, Liao S-Y, Ivanova A, Danilkovitch-Miagkova A, Tarasova N, Weirich G, Merrill MJ, Proescholdt MA, Oldfield EH, Lee J (2001) Expression of hypoxia-inducible cell-surface transmembrane carbonic anhydrases in human cancer. Am J Pathol 158(3):905–919Google Scholar
  50. 50.
    Alper SL (2009) Molecular physiology and genetics of Na+-independent SLC4 anion exchangers. J Exp Biol 212(11):1672–1683Google Scholar
  51. 51.
    Sindic A, Chang M-H, Mount DB, Romero MF (2007) Renal physiology of SLC26 anion exchangers. Curr Opin Nephrol Hypertens 16(5):484–490Google Scholar
  52. 52.
    Ishiguro H, Steward MC, Naruse S, Ko SB, Goto H, Case RM, Kondo T, Yamamoto A (2009) CFTR functions as a bicarbonate channel in pancreatic duct cells. J Gen Physiol 133(3):315–326Google Scholar
  53. 53.
    Bernardino RL, Martins AD, Socorro S, Alves MG, Oliveira PF (2013) Effect of prediabetes on membrane bicarbonate transporters in testis and epididymis. J Membr Biol 246(12):877–883Google Scholar
  54. 54.
    Humphreys B, Jiang L, Chernova MN, Alper SL (1995) Hypertonic activation of AE2 anion exchanger in Xenopus oocytes via NHE-mediated intracellular alkalinization. Am J Physiol 268(1):C201–C209Google Scholar
  55. 55.
    Zhang Y, Chernova MN, Stuart-Tilley AK, Jiang L, Alper SL (1996) The cytoplasmic and transmembrane domains of AE2 both contribute to regulation of anion exchange by pH. J Biol Chem 271(10):5741–5749Google Scholar
  56. 56.
    Fujinaga J, Loiselle FB, Casey JR (2003) Transport activity of chimaeric AE2-AE3 chloride/bicarbonate anion exchange proteins. Biochem J 371(Pt 3):687Google Scholar
  57. 57.
    Stewart A, Chernova M, Kunes Y, Alper S (2001) Regulation of AE2 anion exchanger by intracellular pH: critical regions of the NH2-terminal cytoplasmic domain. Am J Physiol 281(4):C1344–C1354Google Scholar
  58. 58.
    Casey JR, Grinstein S, Orlowski J (2010) Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol 11(1):50Google Scholar
  59. 59.
    Marino CR, Jeanes V, Boron WF, Schmitt BM (1999) Expression and distribution of the Na+–HCO3 cotransporter in human pancreas. Am J Physiol Gastrointest Liver Physiol 277(2):G487–G494Google Scholar
  60. 60.
    Boron WF (2001) Sodium-coupled bicarbonate transporters. JOP 2(4 Suppl):176–181Google Scholar
  61. 61.
    Russell JM, Boron WF (1976) Role of chloride transport in regulation of intracellular pH. Nature 264(5581):73Google Scholar
  62. 62.
    Grichtchenko II, Choi I, Zhong X, Bray-Ward P, Russell JM, Boron WF (2001) Cloning, characterization, and chromosomal mapping of a human electroneutral Na+-driven Cl–HCO3 exchanger. J Biol Chem 276(11):8358–8363Google Scholar
  63. 63.
    Parker MD, Musa-Aziz R, Rojas JD, Choi I, Daly CM, Boron WF (2008) Characterization of human SLC4A10 as an electroneutral Na/HCO3 cotransporter (NBCn2) with Cl–self-exchange activity. J Biol Chem 283(19):12777–12788Google Scholar
  64. 64.
    Karniski LP, Lötscher M, Fucentese M, Hilfiker H, Jr Biber, Murer H (1998) Immunolocalization of sat-1 sulfate/oxalate/bicarbonate anion exchanger in the rat kidney. Am J Physiol 275(1):F79–F87Google Scholar
  65. 65.
    Mount DB, Romero MF (2004) The SLC26 gene family of multifunctional anion exchangers. Pflüg Arch 447(5):710–721Google Scholar
  66. 66.
    Ko SB, Shcheynikov N, Choi JY, Luo X, Ishibashi K, Thomas PJ, Kim JY, Kim KH, Lee MG, Naruse S (2002) A molecular mechanism for aberrant CFTR-dependent HCO3 transport in cystic fibrosis. The EMBO J 21(21):5662–5672Google Scholar
  67. 67.
    Shcheynikov N, Wang Y, Park M, Ko SB, Dorwart M, Naruse S, Thomas PJ, Muallem S (2006) Coupling modes and stoichiometry of Cl/HCO3 exchange by slc26a3 and slc26a6. J Gen Physiol 127(5):511–524Google Scholar
  68. 68.
    Simpson JE, Schweinfest CW, Shull GE, Gawenis LR, Walker NM, Boyle KT, Soleimani M, Clarke LL (2007) PAT-1 (Slc26a6) is the predominant apical membrane Cl/HCO3 exchanger in the upper villous epithelium of the murine duodenum. Am J Physiol 292(4):G1079–G1088Google Scholar
  69. 69.
    Kim KH, Shcheynikov N, Wang Y, Muallem S (2005) SLC26A7 is a Cl channel regulated by intracellular pH. J Biol Chem 280(8):6463–6470Google Scholar
  70. 70.
    Ousingsawat J, Schreiber R, Kunzelmann K (2012) Differential contribution of SLC26A9 to Cl conductance in polarized and non-polarized epithelial cells. J Cell Physiol 227(6):2323–2329Google Scholar
  71. 71.
    Avella M, Loriol C, Boulukos K, Borgese F, Ehrenfeld J (2011) SLC26A9 stimulates CFTR expression and function in human bronchial cell lines. J Cell Physiol 226(1):212–223Google Scholar
  72. 72.
    Bernardino RL, Martins AD, Jesus TT, Sá R, Sousa M, Alves MG, Oliveira PF (2015) Estrogenic regulation of bicarbonate transporters from SLC4 family in rat Sertoli cells. Mol Cell Biochem 408(1–2):47–54Google Scholar
  73. 73.
    Holappa K, Mustonen M, Parvinen M, Vihko P, Rajaniemi H, Kellokumpu S (1999) Primary structure of a sperm cell anion exchanger and its messenger ribonucleic acid expression during spermatogenesis. Biol Reprod 61(4):981–986Google Scholar
  74. 74.
    Chen LM, Liu Y, Boron WF (2011) Role of an extracellular loop in determining the stoichiometry of Na+–HCO3 cotransporters. J Physiol 589(4):877–890Google Scholar
  75. 75.
    Medina JF, Recalde S, Prieto J, Lecanda J, Sáez E, Funk CD, Vecino P, van Roon MA, Ottenhoff R, Bosma PJ (2003) Anion exchanger 2 is essential for spermiogenesis in mice. Proc Natl Acad Sci 100(26):15847–15852Google Scholar
  76. 76.
    Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, Zwahlen M, Kampf C, Wester K, Hober S (2010) Towards a knowledge-based human protein atlas. Nat Biotechnol 28(12):1248Google Scholar
  77. 77.
    Jensen LJ, Schmitt BM, Berger UV, Nsumu NN, Boron WF, Hediger MA, Brown D, Breton S (1999) Localization of sodium bicarbonate cotransporter (NBC) protein and messenger ribonucleic acid in rat epididymis. Biol Reprod 60(3):573–579Google Scholar
  78. 78.
    Liu Y, Xu J-Y, Wang D-K, Wang L, Chen L-M (2011) Cloning and identification of two novel NBCe1 splice variants from mouse reproductive tract tissues: a comparative study of NCBT genes. Genomics 98(2):112–119Google Scholar
  79. 79.
    Bernardino RL, Costa AR, Martins AD, Silva J, Barros A, Sousa M, Sá R, Alves MG, Oliveira PF (2016) Estradiol modulates Na+-dependent HCO3 transporters altering intracellular pH and ion transport in human Sertoli cells: a role on male fertility? Biol Cell 108(7):179–188Google Scholar
  80. 80.
    Chan H, Ko W, Zhao W, Fu W, Wong P (1996) Evidence for independent Cl and HCO3 secretion and involvement of an apical Na(+)-HCO3 cotransporter in cultured rat epididymal epithelia. Exp Physiol 81(3):515–524Google Scholar
  81. 81.
    Wang C-Z, Yano H, Nagashima K, Seino S (2000) The Na+-driven Cl/HCO3 exchanger cloning, tissue distribution, and functional characterization. J Biol Chem 275(45):35486–35490Google Scholar
  82. 82.
    Joseph A, Hess RA, Schaeffer DJ, Ko C, Hudgin-Spivey S, Chambon P, Shur BD (2010) Absence of estrogen receptor alpha leads to physiological alterations in the mouse epididymis and consequent defects in sperm function. Biol Reprod 82(5):948–957Google Scholar
  83. 83.
    Pierucci-Alves F, Akoyev V, Schultz BD (2015) Bicarbonate exchangers SLC26A3 and SLC26A6 are localized at the apical membrane of porcine vas deferens epithelium. Physiol Rep 3(4): e12380Google Scholar
  84. 84.
    Dirami T, Rode B, Jollivet M, Da Silva N, Escalier D, Gaitch N, Norez C, Tuffery P, Wolf J-P, Becq F (2013) Missense mutations in SLC26A8, encoding a sperm-specific activator of CFTR, are associated with human asthenozoospermia. Am J Hum Genet 92(5):760–766Google Scholar
  85. 85.
    Toure A, Lhuillier P, Gossen JA, Kuil CW, Lhôte D, Jégou B, Escalier D, Gacon G (2007) The testis anion transporter 1 (Slc26a8) is required for sperm terminal differentiation and male fertility in the mouse. Hum Mol Genet 16(15):1783–1793Google Scholar
  86. 86.
    Hernández-González EO, Treviño CL, Castellano LE, José L, Ocampo AY, Wertheimer E, Visconti PE, Darszon A (2007) Involvement of cystic fibrosis transmembrane conductance regulator in mouse sperm capacitation. J Biol Chem 282(33):24397–24406Google Scholar
  87. 87.
    Xu WM, Shi QX, Chen WY, Zhou CX, Ni Y, Rowlands DK, Liu GY, Zhu H, Ma ZG, Wang XF (2007) Cystic fibrosis transmembrane conductance regulator is vital to sperm fertilizing capacity and male fertility. Proc Natl Acad Sci 104(23):9816–9821Google Scholar
  88. 88.
    Chávez JC, Hernández-González EO, Wertheimer E, Visconti PE, Darszon A, Treviño CL (2012) Participation of the Cl/HCO3 exchangers SLC26A3 and SLC26A6, the Cl channel CFTR, and the regulatory factor SLC9A3R1 in mouse sperm capacitation. Biol Reprod 86(1):14 (1–14) Google Scholar
  89. 89.
    Hayashi H, Suruga K, Yamashita Y (2009) Regulation of intestinal Cl/HCO3 exchanger SLC26A3 by intracellular pH. Am J Physiol Cell Physiol 296(6):C1279–C1290Google Scholar
  90. 90.
    Chen WY, Xu WM, Chen ZH, Ni Y, Yuan YY, Zhou SC, Zhou WW, Tsang LL, Chung YW, Höglund P (2009) Cl is required for HCO3 entry necessary for sperm capacitation in guinea pig: involvement of a Cl/HCO3 exchanger (SLC26A3) and CFTR. Biol Reprod 80(1):115–123Google Scholar
  91. 91.
    Wedenoja S, Khamaysi A, Shimshilashvili L, Anbtawe-Jomaa S, Elomaa O, Toppari J, Höglund P, Aittomäki K, Holmberg C, Hovatta O (2017) A missense mutation in SLC26A3 is associated with human male subfertility and impaired activation of CFTR. Sci Rep 7(1):14208Google Scholar
  92. 92.
    Holmberg C, Perheentupa J, Launiala K (1975) Colonic electrolyte transport in health and in congenital chloride diarrhea. J Clin Investig 56(2):302–310Google Scholar
  93. 93.
    Höglund P, Hihnala S, Kujala M, Tiitinen A, Dunkel L, Holmberg C (2006) Disruption of the SLC26A3-mediated anion transport is associated with male subfertility. Fertil Steril 85(1):232–235Google Scholar
  94. 94.
    El Khouri E, Whitfield M, Stouvenel L, Kini A, Riederer B, Lores P, Roemermann D, di Stefano G, Drevet JR, Saez F (2018) Slc26a3 deficiency is associated with epididymis dysplasia and impaired sperm fertilization potential in the mouse. Mol Reprod Dev 85(8–9):682–695Google Scholar
  95. 95.
    Suarez SS (2008) Control of hyperactivation in sperm. Hum Reprod Update 14(6):647–657Google Scholar
  96. 96.
    Fuster DG, Alexander RT (2014) Traditional and emerging roles for the SLC9 Na+/H+ exchangers. Pflug Arch 466(1):61–76Google Scholar
  97. 97.
    Wakabayashi S, Shigekawa M, Pouyssegur J (1997) Molecular physiology of vertebrate Na+/H+ exchangers. Physiol Rev 77(1):51–74Google Scholar
  98. 98.
    Haworth R, Fröhlich O, Fliegel L (1993) Multiple carbohydrate moieties on the Na+/H+ exchanger. Biochem J 289(3):637–640Google Scholar
  99. 99.
    Grinstein S, Woodside M, Waddell T, Downey G, Orlowski J, Pouyssegur J, Wong D, Foskett J (1993) Focal localization of the NHE-1 isoform of the Na+/H+ antiport: assessment of effects on intracellular pH. EMBO J 12(13):5209–5218Google Scholar
  100. 100.
    Chambrey R, Warnock DG, Podevin R-A, Bruneval P, Mandet C, Bélair M-F, Bariéty J, Paillard M (1998) Immunolocalization of the Na+/H+ exchanger isoform NHE2 in rat kidney. Am J Physiol 275(3):F379–F386Google Scholar
  101. 101.
    Hoogerwerf WA, Tsao SC, Devuyst O, Levine SA, Yun C, Yip JW, Cohen ME, Wilson PD, Lazenby AJ, Tse C-M (1996) NHE2 and NHE3 are human and rabbit intestinal brush-border proteins. Am J Physiol 270(1):G29–G41Google Scholar
  102. 102.
    D’Souza S, Garcia-Cabado A, Yu F, Teter K, Lukacs G, Skorecki K, Moore H-P, Orlowski J, Grinstein S (1998) The epithelial sodium-hydrogen antiporter Na+/H+ exchanger 3 accumulates and is functional in recycling endosomes. J Biol Chem 273(4):2035–2043Google Scholar
  103. 103.
    Szászi K, Paulsen A, Szabó EZ, Numata M, Grinstein S, Orlowski J (2002) Clathrin-mediated endocytosis and recycling of the neuron-specific Na+/H+ exchanger NHE5 isoform. Regulation by phosphatidylinositol 3′-kinase and the actin cytoskeleton. J Biol Chem 277(45):42623–42632Google Scholar
  104. 104.
    Scott CC, Gruenberg J (2011) Ion flux and the function of endosomes and lysosomes: pH is just the start. BioEssays 33(2):103–110Google Scholar
  105. 105.
    Ohgaki R, van IJzendoorn SC, Matsushita M, Hoekstra D, Kanazawa H, Kanazawa H (2010) Organellar Na+/H+ exchangers: novel players in organelle pH regulation and their emerging functions. Biochemistry (Mosc) 50(4):443–450Google Scholar
  106. 106.
    Liu L, Schlesinger PH, Slack NM, Friedman PA, Blair HC (2011) High capacity Na+/H+ exchange activity in mineralizing osteoblasts. J Cell Physiol 226(6):1702–1712Google Scholar
  107. 107.
    Numata M, Orlowski J (2001) Molecular cloning and characterization of a novel (Na+, K+)/H+ exchanger localized to the trans-Golgi network. J Biol Chem 276(20):17387–17394Google Scholar
  108. 108.
    Becker AM, Zhang J, Goyal S, Dwarakanath V, Aronson PS, Moe OW, Baum M (2007) Ontogeny of NHE8 in the rat proximal tubule. Am J Physiol Ren Physiol 293(1):F255–F261Google Scholar
  109. 109.
    Bobulescu IA, Di Sole F, Moe OW (2005) Na+/H+ exchangers: physiology and link to hypertension and organ ischemia. Curr Opin Nephrol Hypertens 14(5):485Google Scholar
  110. 110.
    Brett CL, Tukaye DN, Mukherjee S, Rao R (2005) The yeast endosomal Na+(K+)/H+ exchanger Nhx1 regulates cellular pH to control vesicle trafficking. Mol Biol Cell 16(3):1396–1405Google Scholar
  111. 111.
    Kondapalli KC, Hack A, Schushan M, Landau M, Ben-Tal N, Rao R (2013) Functional evaluation of autism-associated mutations in NHE9. Nat Commun 4:2510Google Scholar
  112. 112.
    Deisl C, Simonin A, Anderegg M, Albano G, Kovacs G, Ackermann D, Moch H, Dolci W, Thorens B, Hediger MA (2013) Sodium/hydrogen exchanger NHA2 is critical for insulin secretion in β-cells. Proc Natl Acad Sci 110(24):10004–10009Google Scholar
  113. 113.
    Hofstetter W, Siegrist M, Simonin A, Bonny O, Fuster DG (2010) Sodium/hydrogen exchanger NHA2 in osteoclasts: subcellular localization and role in vitro and in vivo. Bone 47(2):331–340Google Scholar
  114. 114.
    Canessa M, Adragna N, Solomon HS, Connolly TM, Tosteson DC (1980) Increased sodium-lithium countertransport in red cells of patients with essential hypertension. N Engl J Med 302(14):772–776Google Scholar
  115. 115.
    Canessa M, Zerbini G, Laffel L (1992) Sodium activation kinetics of red blood cell Na+/Li+ countertransport in diabetes: methodology and controversy. J Am Soc Nephrol 3(4):S41Google Scholar
  116. 116.
    Wang D, Hu J, Bobulescu IA, Quill TA, McLeroy P, Moe OW, Garbers DL (2007) A sperm-specific Na+/H+ exchanger (sNHE) is critical for expression and in vivo bicarbonate regulation of the soluble adenylyl cyclase (sAC). Proc Natl Acad Sci 104(22):9325–9330Google Scholar
  117. 117.
    Lee SH, Kim T, Park E-S, Yang S, Jeong D, Choi Y, Rho J (2008) NHE10, a novel osteoclast-specific member of the Na+/H+ exchanger family, regulates osteoclast differentiation and survival. Biochem Biophys Res Commun 369(2):320–326Google Scholar
  118. 118.
    Chew SC, Leung G, Leung P, Tse C, Wong P (2000) Polarized distribution of NHE1 and NHE2 in the rat epididymis. Biol Reprod 62(3):755–758Google Scholar
  119. 119.
    Leung G, Tse C, Cheng Chew S, Wong P (2001) Expression of multiple Na+/H+ exchanger isoforms in cultured epithelial cells from rat efferent duct and cauda epididymidis. Biol Reprod 64(2):482–490Google Scholar
  120. 120.
    Woo AL, James PF, Lingrel JB (2002) Roles of the Na, K-ATPase α4 isoform and the Na+/H+ exchanger in sperm motility. Mol Reprod Dev 62(3):348–356Google Scholar
  121. 121.
    Yun C, Tse C-M, Nath SK, Levine SA, Brant SR, Donowitz M (1995) Mammalian Na+/H+ exchanger gene family: structure and function studies. Am J Physiol 269(1):G1–G11Google Scholar
  122. 122.
    Malakooti J, Dahdal RY, Schmidt L, Layden TJ, Dudeja PK, Ramaswamy K (1999) Molecular cloning, tissue distribution, and functional expression of the human Na+/H+ exchanger NHE2. Am J Physiol Gastrointest Liver Physiol 277(2):G383–G390Google Scholar
  123. 123.
    Zhou Q, Clarke L, Nie R, Carnes K, Lai LW, Lien YH, Verkman A, Lubahn D, Fisher JS, Katzenellenbogen BS, Hess RA (2001) Estrogen action and male fertility: roles of the sodium/hydrogen exchanger-3 and fluid reabsorption in reproductive tract function. Proc Natl Acad Sci USA 98(24):14132–14137Google Scholar
  124. 124.
    Gorczyńska-Fjälling E (2004) The role of calcium in signal transduction processes in Sertoli cells. Reprod Biol 4:219–241Google Scholar
  125. 125.
    Xu H, Chen H, Li J, Zhao Y, Ghishan FK (2014) Disruption of NHE8 expression impairs Leydig cell function in the testes. Am J Physiol 308(4):C330–C338Google Scholar
  126. 126.
    Oberheide K, Puchkov D, Jentsch TJ (2017) Loss of the Na+/H+ exchanger NHE8 causes male infertility in mice by disrupting acrosome formation. J Biol Chem M117:784108Google Scholar
  127. 127.
    Chen S-R, Chen M, Deng S, Hao X, Wang X, Liu Y (2016) Sodium–hydrogen exchanger NHA1 and NHA2 control sperm motility and male fertility. Cell Death Dis 7(3):e2152Google Scholar
  128. 128.
    Kumar PL, James PF (2015) Identification and characterization of methylation-dependent/independent DNA regulatory elements in the human SLC9B1 gene. Gene 561(2):235–248Google Scholar
  129. 129.
    Wang D, King SM, Quill TA, Doolittle LK, Garbers DL (2003) A new sperm-specific Na+/H+ exchanger required for sperm motility and fertility. Nat Cell Biol 5(12):1117Google Scholar
  130. 130.
    Windler F, Bönigk W, Körschen HG, Grahn E, Strünker T, Seifert R, Kaupp UB (2018) The solute carrier SLC9C1 is a Na+/H+-exchanger gated by an S4-type voltage-sensor and cyclic-nucleotide binding. Nat Commun 9(1):2809Google Scholar
  131. 131.
    Seifert R, Flick M, Bönigk W, Alvarez L, Trötschel C, Poetsch A, Müller A, Goodwin N, Pelzer P, Kashikar ND (2015) The CatSper channel controls chemosensation in sea urchin sperm. EMBO J 34(3):379–392Google Scholar
  132. 132.
    Thomas R, Meech R (1982) Hydrogen ion currents and intracellular pH in depolarized voltage-clamped snail neurones. Nature 299(5886):826Google Scholar
  133. 133.
    Ramsey IS, Mokrab Y, Carvacho I, Sands ZA, Sansom MS, Clapham DE (2010) An aqueous H+ permeation pathway in the voltage-gated proton channel Hv1. Nat Struct Mol Biol 17(7):869Google Scholar
  134. 134.
    DeCoursey TE (2008) Voltage-gated proton channels. Cell Mol Life Sci 65(16):2554–2573Google Scholar
  135. 135.
    Lishko PV, Kirichok Y (2010) The role of Hv1 and CatSper channels in sperm activation. J Physiol 588(23):4667–4672Google Scholar
  136. 136.
    Nixon B, Aitken RJ (2009) The biological significance of detergent-resistant membranes in spermatozoa. J Reprod Immunol 83(1–2):8–13Google Scholar
  137. 137.
    Fraser LR (2010) The “switching on” of mammalian spermatozoa: molecular events involved in promotion and regulation of capacitation. Mol Reprod Dev 77(3):197–208Google Scholar
  138. 138.
    Lishko PV, Kirichok Y, Ren D, Navarro B, Chung J-J, Clapham DE (2012) The control of male fertility by spermatozoan ion channels. Annu Rev Physiol 74:453–475Google Scholar
  139. 139.
    Saaranen M, Suistomaa U, Kantola M, Saarikoski S, Vanha-Perttula T (1987) Lead, magnesium, selenium and zinc in human seminal fluid: comparison with semen parameters and fertility. Hum Reprod 2(6):475–479Google Scholar
  140. 140.
    Ehrenwald E, Foote RH, Parks JE (1990) Bovine oviductal fluid components and their potential role in sperm cholesterol efflux. Mol Reprod Dev 25(2):195–204Google Scholar
  141. 141.
    Gunn SA, Gould TC (1958) Role of zinc in fertility and fecundity in the rat. Am J Physiol 193(3):505–508Google Scholar
  142. 142.
    Halestrap AP, Price NT (1999) The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J 343(2):281–299Google Scholar
  143. 143.
    Morris ME, Felmlee MA (2008) Overview of the proton-coupled MCT (SLC16A) family of transporters: characterization, function and role in the transport of the drug of abuse γ-hydroxybutyric acid. AAPS J 10(2):311Google Scholar
  144. 144.
    Halestrap AP, Meredith D (2004) The SLC16 gene family—from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflüg Arch 447(5):619–628Google Scholar
  145. 145.
    Halestrap AP, Wilson MC (2012) The monocarboxylate transporter family—role and regulation. IUBMB Life 64(2):109–119Google Scholar
  146. 146.
    Juel C, Halestrap AP (1999) Lactate transport in skeletal muscle—role and regulation of the monocarboxylate transporter. J Physiol 517(3):633–642Google Scholar
  147. 147.
    Brahimi-Horn MC, Chiche J, Pouyssegur J (2007) Hypoxia signalling controls metabolic demand. Curr Opin Cell Biol 19(2):223–229Google Scholar
  148. 148.
    Cuff MA, Shirazi-Beechey SP (2002) The human monocarboxylate transporter, MCT1: genomic organization and promoter analysis. Biochem Biophys Res Commun 292(4):1048–1056Google Scholar
  149. 149.
    Enoki T, Yoshida Y, Lally J, Hatta H, Bonen A (2006) Testosterone increases lactate transport, monocarboxylate transporter (MCT) 1 and MCT4 in rat skeletal muscle. J Physiol 577(1):433–443Google Scholar
  150. 150.
    Poole RC, Halestrap AP (1993) Transport of lactate and other monocarboxylates across mammalian plasma membranes. Am J Physiol 264(4):C761–C782Google Scholar
  151. 151.
    Deuticke B (1982) Monocarboxylate transport in erythrocytes. J Membr Biol 70(2):89–103Google Scholar
  152. 152.
    Garcia CK, Brown MS, Pathak RK, Goldstein JL (1995) cDNA cloning of MCT2, a second monocarboxylate transporter expressed in different cells than MCT1. J Biol Chem 270(4):1843–1849Google Scholar
  153. 153.
    Broer S, Broer A, Schneider H-P, Stegen C, Halestrap AP, Deitmer JW (1999) Characterization of the high-affinity monocarboxylate transporter MCT2 in Xenopus laevis oocytes. Biochem J 341(3):529–535Google Scholar
  154. 154.
    Philp NJ, Yoon H, Lombardi L (2001) Mouse MCT3 gene is expressed preferentially in retinal pigment and choroid plexus epithelia. Am J Physiol Cell Physiol 280(5):C1319–C1326Google Scholar
  155. 155.
    Yoon H, Fanelli A, Grollman EF, Philp NJ (1997) Identification of a unique monocarboxylate transporter (MCT3) in retinal pigment epithelium. Biochem Biophys Res Commun 234(1):90–94Google Scholar
  156. 156.
    Philp NJ, Yoon H, Grollman EF (1998) Monocarboxylate transporter MCT1 is located in the apical membrane and MCT3 in the basal membrane of rat RPE. Am J Physio 274(6):R1824–R1828Google Scholar
  157. 157.
    Grollman EF, Philp NJ, McPhie P, Ward RD, Sauer B (2000) Determination of transport kinetics of chick MCT3 monocarboxylate transporter from retinal pigment epithelium by expression in genetically modified yeast. Biochemistry (Mosc) 39(31):9351–9357Google Scholar
  158. 158.
    Fox JEM, Meredith D, Halestrap AP (2000) Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle. J Physiol 529(2):285–293Google Scholar
  159. 159.
    Becker HM, Klier M, Schüler C, McKenna R, Deitmer JW (2011) Intramolecular proton shuttle supports not only catalytic but also noncatalytic function of carbonic anhydrase II. Proc Natl Acad Sci 108(7):3071–3076Google Scholar
  160. 160.
    Klier M, Schüler C, Halestrap AP, Sly WS, Deitmer JW, Becker HM (2011) Transport activity of the high-affinity monocarboxylate transporter MCT2 is enhanced by extracellular carbonic anhydrase IV but not by intracellular carbonic anhydrase II. J Biol Chem 286(31):27781–27791Google Scholar
  161. 161.
    Oliveira P, Alves M, Rato L, Silva J, Sa R, Barros A, Sousa M, Carvalho R, Cavaco J, Socorro S (2011) Influence of 5α-dihydrotestosterone and 17β-estradiol on human Sertoli cells metabolism. Int J Androl 34(6pt2):e612–e620Google Scholar
  162. 162.
    Galardo MN, Riera MF, Pellizzari EH, Cigorraga SB, Meroni SB (2007) The AMP-activated protein kinase activator, 5-aminoimidazole-4-carboxamide-1-bD-ribonucleoside, regulates lactate production in rat Sertoli cells. J Mol Endocrinol 39(4):279–288Google Scholar
  163. 163.
    Chen C, Maekawa M, Yamatoya K, Nozaki M, Ito C, Iwanaga T, Toshimori K (2016) Interaction between basigin and monocarboxylate transporter 2 in the mouse testes and spermatozoa. Asian J Androl 18(4):600Google Scholar
  164. 164.
    Kishimoto A, Ishiguro-Oonuma T, Takahashi R, Maekawa M, Toshimori K, Twatanabe M, Iwanaga T (2015) Immunohistochemical localization of GLUT3, MCT1, and MCT2 in the testes of mice and rats: the use of different energy sources in spermatogenesis. Biomed Res 36(4):225–234Google Scholar
  165. 165.
    Nakai M, Chen L, Nowak RA (2006) Tissue distribution of basigin and monocarboxylate transporter 1 in the adult male mouse: a study using the wild-type and basigin gene knockout mice. Anat Rec 288(5):527–535Google Scholar
  166. 166.
    Lee K-H, Choi I, Chung C, Chang J (2007) Expression of monocarboxylate transporters (MCTs) and basigin and estrogen receptor α (ERα)-mediated regulation of MCT1 expression in the efferent ductules of male reproductive tract during postnatal development. J Anim Sci Technol 49(3):309–320Google Scholar
  167. 167.
    Lee K (2008) Postnatal ontogeny of expression of monocarboxylate transporters (MCTs) and two regulatory proteins, basigin and embigin, in the epididymis of male rat. J Anim Sci Technol 50(1):45–56Google Scholar
  168. 168.
    Rato L, Alves MG, Socorro S, Carvalho RA, Cavaco JE, Oliveira PF (2012) Metabolic modulation induced by oestradiol and DHT in immature rat Sertoli cells cultured in vitro. Biosci Rep 32(1):61–69Google Scholar
  169. 169.
    Boussouar F, Mauduit C, Tabone E, Pellerin L, Magistretti PJ, Benahmed M (2003) Developmental and hormonal regulation of the monocarboxylate transporter 2 (MCT2) expression in the mouse germ cells. Biol Reprod 69(3):1069–1078Google Scholar
  170. 170.
    Oliveira P, Alves M, Rato L, Laurentino S, Silva J, Sa R, Barros A, Sousa M, Carvalho R, Cavaco J (2012) Effect of insulin deprivation on metabolism and metabolism-associated gene transcript levels of in vitro cultured human Sertoli cells. Biochim Biophys Acta Gen Subj 1820 2:84–89Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in BiomedicineUniversity of PortoPortoPortugal
  2. 2.Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in BiomedicineUniversity of PortoPortoPortugal
  3. 3.i3S-Institute for Innovation and Health ResearchUniversity of PortoPortoPortugal
  4. 4.Department of Genetics, Faculty of MedicineUniversity of PortoPortoPortugal

Personalised recommendations