Skip to main content
Log in

Regulation of AMPK activity by type 10 adenylyl cyclase: contribution to the mitochondrial biology, cellular redox and energy homeostasis

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The downregulation of AMP-activated protein kinase (AMPK) activity contributes to numerous pathologies. Recent reports suggest that the elevation of cellular cAMP promotes AMPK activity. However, the source of the cAMP pool that controls AMPK activity remains unknown. Mammalian cells possess two cAMP sources: membrane-bound adenylyl cyclase (tmAC) and intracellularly localized, type 10 soluble adenylyl cyclase (sAC). Due to the localization of sAC and AMPK in similar intracellular compartments, we hypothesized that sAC may control AMPK activity. In this study, sAC expression and activity were manipulated in H9C2 cells, adult rat cardiomyocytes or endothelial cells. sAC knockdown depleted the cellular cAMP content and decreased AMPK activity in an EPAC-dependent manner. Functionally, sAC knockdown reduced cellular ATP content, increased mitochondrial ROS formation and led to mitochondrial depolarization. Furthermore, sAC downregulation led to EPAC-dependent mitophagy disturbance, indicated by an increased mitochondrial mass and unaffected mitochondrial biogenesis. Consistently, sAC overexpression or stimulation with bicarbonate significantly increased AMPK activity and cellular ATP content. In contrast, tmAC inhibition or stimulation produced no effect on AMPK activity. Therefore, the sAC–EPAC axis may regulate basal and induced AMPK activity and support mitophagy, cellular energy and redox homeostasis. The study argues for sAC as a potential target in treating pathologies associated with AMPK downregulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ACC:

Acetyl-CoA carboxylase

AMP:

Adenosine monophosphate

ADP:

Adenosine diphosphate

AMPK:

AMP-activated protein kinase

ATP:

Adenosine triphosphate

cAMP:

3′-5′-Cyclic adenosine monophosphate

CFP:

Cyan fluorescence protein

Drp1:

Dynamin-like protein 1

EPAC:

Exchange protein activated by cAMP

FRET:

Föster resonance energy transfer

GFP:

Green fluorescence protein

LKB1:

Liver kinase B1

MFF:

Mitochondrial fission factor

PDE:

Phosphodiesterase

PGC1α:

Peroxisome proliferator-activated receptor‑γ co-activator 1α

PKA:

Protein kinase A

ROS:

Reactive oxygen species

sAC:

Soluble adenylyl cyclase

TFAM:

Mitochondrial transcription factor A

tmAC:

Transmembrane adenylyl cyclase

ULK1:

unc-51 like autophagy activating kinase 1

YFP:

Yellow fluorescence protein

References

  1. Jeon S-M (2016) Regulation and function of AMPK in physiology and diseases. Exp Mol Med 48(7):e245–e245. https://doi.org/10.1038/emm.2016.81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Herzig S, Shaw RJ (2018) AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol 19(2):121–135. https://doi.org/10.1038/nrm.2017.95

    Article  CAS  PubMed  Google Scholar 

  3. Fryer LG, Parbu-Patel A, Carling D (2002) The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J Biol Chem 277(28):25226–25232. https://doi.org/10.1074/jbc.M202489200

    Article  CAS  PubMed  Google Scholar 

  4. Hawley SA, Gadalla AE, Olsen GS, Hardie DG (2002) The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes 51(8):2420

    Article  CAS  PubMed  Google Scholar 

  5. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, Kahn BB, Kadowaki T (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8:1288. https://doi.org/10.1038/nm788; https://www.nature.com/articles/nm788. Accessed 29 Mar 2019

    Article  CAS  PubMed  Google Scholar 

  6. Dagon Y, Hur E, Zheng B, Wellenstein K, Cantley LC, Kahn BB (2012) p70S6 kinase phosphorylates AMPK on serine 491 to mediate Leptin’s effect on food intake. Cell Metab 16(1):104–112. https://doi.org/10.1016/j.cmet.2012.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hawley SA, Ross FA, Gowans GJ, Tibarewal P, Leslie NR, Hardie DG (2014) Phosphorylation by Akt within the ST loop of AMPK-α1 down-regulates its activation in tumour cells. Biochem J 459(2):275–287. https://doi.org/10.1042/BJ20131344

    Article  CAS  PubMed  Google Scholar 

  8. Sinha RA, Singh BK, Zhou J, Wu Y, Farah BL, Ohba K, Lesmana R, Gooding J, Bay B-H, Yen PM (2015) Thyroid hormone induction of mitochondrial activity is coupled to mitophagy via ROS-AMPK-ULK1 signaling. Autophagy 11(8):1341–1357. https://doi.org/10.1080/15548627.2015.1061849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Coughlan KA, Valentine RJ, Sudit BS, Allen K, Dagon Y, Kahn BB, Ruderman NB, Saha AK (2016) PKD1 inhibits AMPKα2 through phosphorylation of serine 491 and impairs insulin signaling in skeletal muscle cells. J Biol Chem 291(11):5664–5675. https://doi.org/10.1074/jbc.M115.696849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. M-l Chen, Yi L, Jin X, X-y Liang, Zhou Y, Zhang T, Xie Q, Zhou X, Chang H, Y-j Fu, J-d Zhu, Q-y Zhang, M-t Mi (2013) Resveratrol attenuates vascular endothelial inflammation by inducing autophagy through the cAMP signaling pathway. Autophagy 9(12):2033–2045. https://doi.org/10.4161/auto.26336

    Article  CAS  Google Scholar 

  11. Park S-J, Ahmad F, Philp A, Baar K, Williams T, Luo H, Ke H, Rehmann H, Taussig R, Brown AL, Kim MK, Beaven MA, Burgin AB, Manganiello V, Chung JH (2012) Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148(3):421–433. https://doi.org/10.1016/j.cell.2012.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Omar B, Zmuda-Trzebiatowska E, Manganiello V, Göransson O, Degerman E (2009) Regulation of AMP-activated protein kinase by cAMP in adipocytes: roles for phosphodiesterases, protein kinase B, protein kinase A, Epac and lipolysis. Cell Signal 21(5):760–766. https://doi.org/10.1016/j.cellsig.2009.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ferretti AC, Tonucci FM, Hidalgo F, Almada E, Larocca MC, Favre C (2016) AMPK and PKA interaction in the regulation of survival of liver cancer cells subjected to glucose starvation. Oncotarget 7(14):17815–17828. https://doi.org/10.18632/oncotarget.7404

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hurley RL, Barre LK, Wood SD, Anderson KA, Kemp BE, Means AR, Witters LA (2006) Regulation of AMP-activated protein kinase by multisite phosphorylation in response to agents that elevate cellular cAMP. J Biol Chem 281(48):36662–36672. https://doi.org/10.1074/jbc.M606676200

    Article  CAS  PubMed  Google Scholar 

  15. Kimball SR, Siegfried BA, Jefferson LS (2004) Glucagon represses signaling through the mammalian target of rapamycin in rat liver by activating AMP-activated protein kinase. J Biol Chem 279(52):54103–54109. https://doi.org/10.1074/jbc.M410755200

    Article  CAS  PubMed  Google Scholar 

  16. Damm E, Buech TRH, Gudermann T, Breit A (2012) Melanocortin-induced PKA activation inhibits AMPK activity via ERK-1/2 and LKB-1 in hypothalamic GT1-7 cells. Mol Endocrinol (Baltimore, Md) 26(4):643–654. https://doi.org/10.1210/me.2011-1218

    Article  CAS  Google Scholar 

  17. Agarwal SR, Clancy CE, Harvey RD (2016) Mechanisms restricting diffusion of intracellular cAMP. Sci Rep 6:19577. https://doi.org/10.1038/srep19577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zippin JH, Chen Y, Nahirney P, Kamenetsky M, Wuttke MS, Fischman DA, Levin LR, Buck J (2002) Compartmentalization of bicarbonate-sensitive adenylyl cyclase in distinct signaling microdomains. FASEB J 17(1):82–84. https://doi.org/10.1096/fj.02-0598fje

    Article  CAS  PubMed  Google Scholar 

  19. Rahman N, Ramos-Espiritu L, Milner TA, Buck J, Levin LR (2016) Soluble adenylyl cyclase is essential for proper lysosomal acidification. J Gen Physiol 148(4):325–339. https://doi.org/10.1085/jgp.201611606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kumar S, Kostin S, Flacke J-P, Reusch HP, Ladilov Y (2009) Soluble adenylyl cyclase controls mitochondria-dependent apoptosis in coronary endothelial cells. J Biol Chem 284(22):14760–14768. https://doi.org/10.1074/jbc.M900925200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Klarenbeek J, Goedhart J, van Batenburg A, Groenewald D, Jalink K (2015) Fourth-generation epac-based FRET sensors for cAMP feature exceptional brightness, photostability and dynamic range: characterization of dedicated sensors for FLIM, for ratiometry and with high affinity. PLoS One 10(4):e0122513–e0122513. https://doi.org/10.1371/journal.pone.0122513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pozdniakova S, Guitart-Mampel M, Garrabou G, Di Benedetto G, Ladilov Y, Regitz-Zagrosek V (2018) 17beta-Estradiol reduces mitochondrial cAMP content and cytochrome oxidase activity in a phosphodiesterase 2-dependent manner. Br J Pharmacol 175(20):3876–3890. https://doi.org/10.1111/bph.14455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pendergrass W, Wolf N, Poot M (2004) Efficacy of MitoTracker Green and CMXrosamine to measure changes in mitochondrial membrane potentials in living cells and tissues. Cytom A 61(2):162–169. https://doi.org/10.1002/cyto.a.20033

    Article  CAS  Google Scholar 

  24. Appukuttan A, Kasseckert SA, Micoogullari M, Flacke J-P, Kumar S, Woste A, Abdallah Y, Pott L, Reusch HP, Ladilov Y (2012) Type 10 adenylyl cyclase mediates mitochondrial Bax translocation and apoptosis of adult rat cardiomyocytes under simulated ischaemia/reperfusion. Cardiovasc Res 93(2):340–349. https://doi.org/10.1093/cvr/cvr306

    Article  CAS  PubMed  Google Scholar 

  25. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Investig 108(8):1167–1174. https://doi.org/10.1172/JCI13505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Djouder N, Tuerk RD, Suter M, Salvioni P, Thali RF, Scholz R, Vaahtomeri K, Auchli Y, Rechsteiner H, Brunisholz RA, Viollet B, Mäkelä TP, Wallimann T, Neumann D, Krek W (2010) PKA phosphorylates and inactivates AMPKalpha to promote efficient lipolysis. EMBO J 29(2):469–481. https://doi.org/10.1038/emboj.2009.339

    Article  CAS  PubMed  Google Scholar 

  27. Chen Y, Cann MJ, Litvin TN, Iourgenko V, Sinclair ML, Levin LR, Buck J (2000) Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 289(5479):625–628. https://doi.org/10.1126/science.289.5479.625

    Article  CAS  PubMed  Google Scholar 

  28. Steegborn C (2014) Structure, mechanism, and regulation of soluble adenylyl cyclases—similarities and differences to transmembrane adenylyl cyclases. Biochim Biophys Acta Mol Basis Dis 1842(12, Part B):2535–2547. https://doi.org/10.1016/j.bbadis.2014.08.012

    Article  CAS  Google Scholar 

  29. Pozdniakova S, Ladilov Y (2018) Functional significance of the Adcy10-dependent intracellular cAMP compartments. J Cardiovasc Dev Dis 5(2):29. https://doi.org/10.3390/jcdd5020029

    Article  CAS  PubMed Central  Google Scholar 

  30. Litvin TN, Kamenetsky M, Zarifyan A, Buck J, Levin LR (2003) Kinetic properties of “soluble” adenylyl cyclase: synergism between calcium and bicarbonate. J Biol Chem 278(18):15922–15926. https://doi.org/10.1074/jbc.m212475200

    Article  CAS  PubMed  Google Scholar 

  31. Zippin JH, Chen Y, Straub SG, Hess KC, Diaz A, Lee D, Tso P, Holz GG, Sharp GWG, Levin LR, Buck J (2013) CO2/HCO3(-)- and calcium-regulated soluble adenylyl cyclase as a physiological ATP sensor. J Biol Chem 288(46):33283–33291. https://doi.org/10.1074/jbc.M113.510073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zippin JH, Farrell J, Huron D, Kamenetsky M, Hess KC, Fischman DA, Levin LR, Buck J (2004) Bicarbonate-responsive “soluble” adenylyl cyclase defines a nuclear cAMP microdomain. J Cell Biol 164(4):527–534. https://doi.org/10.1083/jcb.200311119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Valsecchi F, Konrad C, D’Aurelio M, Ramos-Espiritu LS, Stepanova A, Burstein SR, Galkin A, Magranè J, Starkov A, Buck J, Levin LR, Manfredi G (2017) Distinct intracellular sAC-cAMP domains regulate ER Ca(2+) signaling and OXPHOS function. J Cell Sci 130(21):3713–3727. https://doi.org/10.1242/jcs.206318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Acin-Perez R, Salazar E, Kamenetsky M, Buck J, Levin LR, Manfredi G (2009) Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation. Cell Metab 9(3):265–276. https://doi.org/10.1016/j.cmet.2009.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Laurent A-C, Bisserier M, Lucas A, Tortosa F, Roumieux M, De Régibus A, Swiader A, Sainte-Marie Y, Heymes C, Vindis C, Lezoualc’h F (2015) Exchange protein directly activated by cAMP 1 promotes autophagy during cardiomyocyte hypertrophy. Cardiovasc Res 105(1):55–64. https://doi.org/10.1093/cvr/cvu242

    Article  CAS  PubMed  Google Scholar 

  36. Cool B, Zinker B, Chiou W, Kifle L, Cao N, Perham M, Dickinson R, Adler A, Gagne G, Iyengar R, Zhao G, Marsh K, Kym P, Jung P, Camp HS, Frevert E (2006) Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab 3(6):403–416. https://doi.org/10.1016/j.cmet.2006.05.005

    Article  CAS  PubMed  Google Scholar 

  37. Myers RW, Guan H-P, Ehrhart J, Petrov A, Prahalada S, Tozzo E, Yang X, Kurtz MM, Trujillo M, Gonzalez Trotter D, Feng D, Xu S, Eiermann G, Holahan MA, Rubins D, Conarello S, Niu X, Souza SC, Miller C, Liu J, Lu K, Feng W, Li Y, Painter RE, Milligan JA, He H, Liu F, Ogawa A, Wisniewski D, Rohm RJ, Wang L, Bunzel M, Qian Y, Zhu W, Wang H, Bennet B, LaFranco Scheuch L, Fernandez GE, Li C, Klimas M, Zhou G, van Heek M, Biftu T, Weber A, Kelley DE, Thornberry N, Erion MD, Kemp DM, Sebhat IK (2017) Systemic pan-AMPK activator MK-8722 improves glucose homeostasis but induces cardiac hypertrophy. Science 357(6350):507–511. https://doi.org/10.1126/science.aah5582

    Article  CAS  PubMed  Google Scholar 

  38. Xiao B, Sanders MJ, Carmena D, Bright NJ, Haire LF, Underwood E, Patel BR, Heath RB, Walker PA, Hallen S, Giordanetto F, Martin SR, Carling D, Gamblin SJ (2013) Structural basis of AMPK regulation by small molecule activators. Nat Commun 4:3017. https://doi.org/10.1038/ncomms4017

    Article  CAS  PubMed  Google Scholar 

  39. Jaitovich A, Angulo M, Lecuona E, Dada LA, Welch LC, Cheng Y, Gusarova G, Ceco E, Liu C, Shigemura M, Barreiro E, Patterson C, Nader GA, Sznajder JI (2015) High CO2 levels cause skeletal muscle atrophy via AMP-activated kinase (AMPK), FoxO3a protein, and muscle-specific Ring finger protein 1 (MuRF1). J Biol Chem 290(14):9183–9194. https://doi.org/10.1074/jbc.M114.625715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen J, Lecuona E, Briva A, Welch LC, Sznajder JI (2008) Carbonic anhydrase II and alveolar fluid reabsorption during hypercapnia. Am J Respir Cell Mol Biol 38(1):32–37. https://doi.org/10.1165/rcmb.2007-0121OC

    Article  CAS  PubMed  Google Scholar 

  41. De Rasmo D, Signorile A, Santeramo A, Larizza M, Lattanzio P, Capitanio G, Papa S (2015) Intramitochondrial adenylyl cyclase controls the turnover of nuclear-encoded subunits and activity of mammalian complex I of the respiratory chain. Biochim Biophys Acta Mol Cell Res 1853(1):183–191. https://doi.org/10.1016/j.bbamcr.2014.10.016

    Article  CAS  Google Scholar 

  42. Toyama EQ, Herzig S, Courchet J, Lewis TL Jr, Losón OC, Hellberg K, Young NP, Chen H, Polleux F, Chan DC, Shaw RJ (2016) Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science (New York, NY) 351(6270):275–281. https://doi.org/10.1126/science.aab4138

    Article  CAS  Google Scholar 

  43. Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor R, Asara JM, Fitzpatrick J, Dillin A, Viollet B, Kundu M, Hansen M, Shaw RJ (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science (New York, NY) 331(6016):456–461. https://doi.org/10.1126/science.1196371

    Article  CAS  Google Scholar 

  44. Chang CR, Blackstone C (2007) Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. J Biol Chem 282(30):21583–21587. https://doi.org/10.1074/jbc.C700083200

    Article  CAS  PubMed  Google Scholar 

  45. Cribbs JT, Strack S (2007) Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep 8(10):939–944. https://doi.org/10.1038/sj.embor.7401062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dagda RK, Gusdon AM, Pien I, Strack S, Green S, Li C, Van Houten B, Cherra SJ 3rd, Chu CT (2011) Mitochondrially localized PKA reverses mitochondrial pathology and dysfunction in a cellular model of Parkinson’s disease. Cell Death Differ 18(12):1914–1923. https://doi.org/10.1038/cdd.2011.74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Akabane S, Uno M, Tani N, Shimazaki S, Ebara N, Kato H, Kosako H, Oka T (2016) PKA regulates PINK1 stability and parkin recruitment to damaged mitochondria through phosphorylation of MIC60. Mol Cell 62(3):371–384. https://doi.org/10.1016/j.molcel.2016.03.037

    Article  CAS  PubMed  Google Scholar 

  48. Twig G, Elorza A, Molina AJA, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, Alroy J, Wu M, Py BF, Yuan J, Deeney JT, Corkey BE, Shirihai OS (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27(2):433–446. https://doi.org/10.1038/sj.emboj.7601963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang H, Robichaux WG, Wang Z, Mei FC, Cai M, Du G, Chen J, Cheng X (2016) Inhibition of Epac1 suppresses mitochondrial fission and reduces neointima formation induced by vascular injury. Sci Rep 6:36552. https://doi.org/10.1038/srep36552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chagtoo M, George N, Pathak N, Tiwari S, Godbole MM, Ladilov Y (2018) Inhibition of intracellular type 10 adenylyl cyclase protects cortical neurons against reperfusion-induced mitochondrial injury and apoptosis. Mol Neurobiol 55(3):2471–2482. https://doi.org/10.1007/s12035-017-0473-y

    Article  CAS  PubMed  Google Scholar 

  51. Rinaldi L, Pozdniakova S, Jayarajan V, Troidl C, Abdallah Y, Aslam M, Ladilov Y (2019) Protective role of soluble adenylyl cyclase against reperfusion-induced injury of cardiac cells. Biochim Biophys Acta Mol Basis Dis 1865(1):252–260. https://doi.org/10.1016/j.bbadis.2018.07.021

    Article  CAS  PubMed  Google Scholar 

  52. Flacke J-P, Flacke H, Appukuttan A, Palisaar R-J, Noldus J, Robinson BD, Reusch HP, Zippin JH, Ladilov Y (2013) Type 10 soluble adenylyl cyclase is overexpressed in prostate carcinoma and controls proliferation of prostate cancer cells. J Biol Chem 288(5):3126–3135. https://doi.org/10.1074/jbc.M112.403279

    Article  CAS  PubMed  Google Scholar 

  53. Schirmer I, Bualeong T, Budde H, Cimiotti D, Appukuttan A, Klein N, Steinwascher P, Reusch P, Mügge A, Meyer R, Ladilov Y, Jaquet K (2018) Soluble adenylyl cyclase: a novel player in cardiac hypertrophy induced by isoprenaline or pressure overload. PLoS One 13(2):e0192322–e0192322. https://doi.org/10.1371/journal.pone.0192322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang Z, Liu D, Varin A, Nicolas V, Courilleau D, Mateo P, Caubere C, Rouet P, Gomez AM, Vandecasteele G, Fischmeister R, Brenner C (2016) A cardiac mitochondrial cAMP signaling pathway regulates calcium accumulation, permeability transition and cell death. Cell Death Dis 7:e2198. https://doi.org/10.1038/cddis.2016.106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to N. Haritonow, A. Kuehne, V. Riese, S. Pozdniakova and E. Dworatzek for their assistance with the theoretical and technical components of this research. This study was supported by the European Union (Radox Grant FP7-PEOPLE-2012-ITN) to VRZ, by DZHK (German Centre for Cardiovascular Research) partner site Berlin (Grant 81Z2100201) to VRZ and by Margarete-Ammon foundation to VRZ. Parts of the study were part of V. Jayarajan’s thesis project submitted in fulfillment of the requirements for the degree of Doctor of Philosophy at the Freie Universität Berlin (Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yury Ladilov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 496 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayarajan, V., Appukuttan, A., Aslam, M. et al. Regulation of AMPK activity by type 10 adenylyl cyclase: contribution to the mitochondrial biology, cellular redox and energy homeostasis. Cell. Mol. Life Sci. 76, 4945–4959 (2019). https://doi.org/10.1007/s00018-019-03152-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03152-y

Keywords