Abstract
The downregulation of AMP-activated protein kinase (AMPK) activity contributes to numerous pathologies. Recent reports suggest that the elevation of cellular cAMP promotes AMPK activity. However, the source of the cAMP pool that controls AMPK activity remains unknown. Mammalian cells possess two cAMP sources: membrane-bound adenylyl cyclase (tmAC) and intracellularly localized, type 10 soluble adenylyl cyclase (sAC). Due to the localization of sAC and AMPK in similar intracellular compartments, we hypothesized that sAC may control AMPK activity. In this study, sAC expression and activity were manipulated in H9C2 cells, adult rat cardiomyocytes or endothelial cells. sAC knockdown depleted the cellular cAMP content and decreased AMPK activity in an EPAC-dependent manner. Functionally, sAC knockdown reduced cellular ATP content, increased mitochondrial ROS formation and led to mitochondrial depolarization. Furthermore, sAC downregulation led to EPAC-dependent mitophagy disturbance, indicated by an increased mitochondrial mass and unaffected mitochondrial biogenesis. Consistently, sAC overexpression or stimulation with bicarbonate significantly increased AMPK activity and cellular ATP content. In contrast, tmAC inhibition or stimulation produced no effect on AMPK activity. Therefore, the sAC–EPAC axis may regulate basal and induced AMPK activity and support mitophagy, cellular energy and redox homeostasis. The study argues for sAC as a potential target in treating pathologies associated with AMPK downregulation.








Similar content being viewed by others
Abbreviations
- ACC:
-
Acetyl-CoA carboxylase
- AMP:
-
Adenosine monophosphate
- ADP:
-
Adenosine diphosphate
- AMPK:
-
AMP-activated protein kinase
- ATP:
-
Adenosine triphosphate
- cAMP:
-
3′-5′-Cyclic adenosine monophosphate
- CFP:
-
Cyan fluorescence protein
- Drp1:
-
Dynamin-like protein 1
- EPAC:
-
Exchange protein activated by cAMP
- FRET:
-
Föster resonance energy transfer
- GFP:
-
Green fluorescence protein
- LKB1:
-
Liver kinase B1
- MFF:
-
Mitochondrial fission factor
- PDE:
-
Phosphodiesterase
- PGC1α:
-
Peroxisome proliferator-activated receptor‑γ co-activator 1α
- PKA:
-
Protein kinase A
- ROS:
-
Reactive oxygen species
- sAC:
-
Soluble adenylyl cyclase
- TFAM:
-
Mitochondrial transcription factor A
- tmAC:
-
Transmembrane adenylyl cyclase
- ULK1:
-
unc-51 like autophagy activating kinase 1
- YFP:
-
Yellow fluorescence protein
References
Jeon S-M (2016) Regulation and function of AMPK in physiology and diseases. Exp Mol Med 48(7):e245–e245. https://doi.org/10.1038/emm.2016.81
Herzig S, Shaw RJ (2018) AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol 19(2):121–135. https://doi.org/10.1038/nrm.2017.95
Fryer LG, Parbu-Patel A, Carling D (2002) The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J Biol Chem 277(28):25226–25232. https://doi.org/10.1074/jbc.M202489200
Hawley SA, Gadalla AE, Olsen GS, Hardie DG (2002) The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes 51(8):2420
Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, Kahn BB, Kadowaki T (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8:1288. https://doi.org/10.1038/nm788; https://www.nature.com/articles/nm788. Accessed 29 Mar 2019
Dagon Y, Hur E, Zheng B, Wellenstein K, Cantley LC, Kahn BB (2012) p70S6 kinase phosphorylates AMPK on serine 491 to mediate Leptin’s effect on food intake. Cell Metab 16(1):104–112. https://doi.org/10.1016/j.cmet.2012.05.010
Hawley SA, Ross FA, Gowans GJ, Tibarewal P, Leslie NR, Hardie DG (2014) Phosphorylation by Akt within the ST loop of AMPK-α1 down-regulates its activation in tumour cells. Biochem J 459(2):275–287. https://doi.org/10.1042/BJ20131344
Sinha RA, Singh BK, Zhou J, Wu Y, Farah BL, Ohba K, Lesmana R, Gooding J, Bay B-H, Yen PM (2015) Thyroid hormone induction of mitochondrial activity is coupled to mitophagy via ROS-AMPK-ULK1 signaling. Autophagy 11(8):1341–1357. https://doi.org/10.1080/15548627.2015.1061849
Coughlan KA, Valentine RJ, Sudit BS, Allen K, Dagon Y, Kahn BB, Ruderman NB, Saha AK (2016) PKD1 inhibits AMPKα2 through phosphorylation of serine 491 and impairs insulin signaling in skeletal muscle cells. J Biol Chem 291(11):5664–5675. https://doi.org/10.1074/jbc.M115.696849
M-l Chen, Yi L, Jin X, X-y Liang, Zhou Y, Zhang T, Xie Q, Zhou X, Chang H, Y-j Fu, J-d Zhu, Q-y Zhang, M-t Mi (2013) Resveratrol attenuates vascular endothelial inflammation by inducing autophagy through the cAMP signaling pathway. Autophagy 9(12):2033–2045. https://doi.org/10.4161/auto.26336
Park S-J, Ahmad F, Philp A, Baar K, Williams T, Luo H, Ke H, Rehmann H, Taussig R, Brown AL, Kim MK, Beaven MA, Burgin AB, Manganiello V, Chung JH (2012) Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148(3):421–433. https://doi.org/10.1016/j.cell.2012.01.017
Omar B, Zmuda-Trzebiatowska E, Manganiello V, Göransson O, Degerman E (2009) Regulation of AMP-activated protein kinase by cAMP in adipocytes: roles for phosphodiesterases, protein kinase B, protein kinase A, Epac and lipolysis. Cell Signal 21(5):760–766. https://doi.org/10.1016/j.cellsig.2009.01.015
Ferretti AC, Tonucci FM, Hidalgo F, Almada E, Larocca MC, Favre C (2016) AMPK and PKA interaction in the regulation of survival of liver cancer cells subjected to glucose starvation. Oncotarget 7(14):17815–17828. https://doi.org/10.18632/oncotarget.7404
Hurley RL, Barre LK, Wood SD, Anderson KA, Kemp BE, Means AR, Witters LA (2006) Regulation of AMP-activated protein kinase by multisite phosphorylation in response to agents that elevate cellular cAMP. J Biol Chem 281(48):36662–36672. https://doi.org/10.1074/jbc.M606676200
Kimball SR, Siegfried BA, Jefferson LS (2004) Glucagon represses signaling through the mammalian target of rapamycin in rat liver by activating AMP-activated protein kinase. J Biol Chem 279(52):54103–54109. https://doi.org/10.1074/jbc.M410755200
Damm E, Buech TRH, Gudermann T, Breit A (2012) Melanocortin-induced PKA activation inhibits AMPK activity via ERK-1/2 and LKB-1 in hypothalamic GT1-7 cells. Mol Endocrinol (Baltimore, Md) 26(4):643–654. https://doi.org/10.1210/me.2011-1218
Agarwal SR, Clancy CE, Harvey RD (2016) Mechanisms restricting diffusion of intracellular cAMP. Sci Rep 6:19577. https://doi.org/10.1038/srep19577
Zippin JH, Chen Y, Nahirney P, Kamenetsky M, Wuttke MS, Fischman DA, Levin LR, Buck J (2002) Compartmentalization of bicarbonate-sensitive adenylyl cyclase in distinct signaling microdomains. FASEB J 17(1):82–84. https://doi.org/10.1096/fj.02-0598fje
Rahman N, Ramos-Espiritu L, Milner TA, Buck J, Levin LR (2016) Soluble adenylyl cyclase is essential for proper lysosomal acidification. J Gen Physiol 148(4):325–339. https://doi.org/10.1085/jgp.201611606
Kumar S, Kostin S, Flacke J-P, Reusch HP, Ladilov Y (2009) Soluble adenylyl cyclase controls mitochondria-dependent apoptosis in coronary endothelial cells. J Biol Chem 284(22):14760–14768. https://doi.org/10.1074/jbc.M900925200
Klarenbeek J, Goedhart J, van Batenburg A, Groenewald D, Jalink K (2015) Fourth-generation epac-based FRET sensors for cAMP feature exceptional brightness, photostability and dynamic range: characterization of dedicated sensors for FLIM, for ratiometry and with high affinity. PLoS One 10(4):e0122513–e0122513. https://doi.org/10.1371/journal.pone.0122513
Pozdniakova S, Guitart-Mampel M, Garrabou G, Di Benedetto G, Ladilov Y, Regitz-Zagrosek V (2018) 17beta-Estradiol reduces mitochondrial cAMP content and cytochrome oxidase activity in a phosphodiesterase 2-dependent manner. Br J Pharmacol 175(20):3876–3890. https://doi.org/10.1111/bph.14455
Pendergrass W, Wolf N, Poot M (2004) Efficacy of MitoTracker Green and CMXrosamine to measure changes in mitochondrial membrane potentials in living cells and tissues. Cytom A 61(2):162–169. https://doi.org/10.1002/cyto.a.20033
Appukuttan A, Kasseckert SA, Micoogullari M, Flacke J-P, Kumar S, Woste A, Abdallah Y, Pott L, Reusch HP, Ladilov Y (2012) Type 10 adenylyl cyclase mediates mitochondrial Bax translocation and apoptosis of adult rat cardiomyocytes under simulated ischaemia/reperfusion. Cardiovasc Res 93(2):340–349. https://doi.org/10.1093/cvr/cvr306
Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Investig 108(8):1167–1174. https://doi.org/10.1172/JCI13505
Djouder N, Tuerk RD, Suter M, Salvioni P, Thali RF, Scholz R, Vaahtomeri K, Auchli Y, Rechsteiner H, Brunisholz RA, Viollet B, Mäkelä TP, Wallimann T, Neumann D, Krek W (2010) PKA phosphorylates and inactivates AMPKalpha to promote efficient lipolysis. EMBO J 29(2):469–481. https://doi.org/10.1038/emboj.2009.339
Chen Y, Cann MJ, Litvin TN, Iourgenko V, Sinclair ML, Levin LR, Buck J (2000) Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 289(5479):625–628. https://doi.org/10.1126/science.289.5479.625
Steegborn C (2014) Structure, mechanism, and regulation of soluble adenylyl cyclases—similarities and differences to transmembrane adenylyl cyclases. Biochim Biophys Acta Mol Basis Dis 1842(12, Part B):2535–2547. https://doi.org/10.1016/j.bbadis.2014.08.012
Pozdniakova S, Ladilov Y (2018) Functional significance of the Adcy10-dependent intracellular cAMP compartments. J Cardiovasc Dev Dis 5(2):29. https://doi.org/10.3390/jcdd5020029
Litvin TN, Kamenetsky M, Zarifyan A, Buck J, Levin LR (2003) Kinetic properties of “soluble” adenylyl cyclase: synergism between calcium and bicarbonate. J Biol Chem 278(18):15922–15926. https://doi.org/10.1074/jbc.m212475200
Zippin JH, Chen Y, Straub SG, Hess KC, Diaz A, Lee D, Tso P, Holz GG, Sharp GWG, Levin LR, Buck J (2013) CO2/HCO3(-)- and calcium-regulated soluble adenylyl cyclase as a physiological ATP sensor. J Biol Chem 288(46):33283–33291. https://doi.org/10.1074/jbc.M113.510073
Zippin JH, Farrell J, Huron D, Kamenetsky M, Hess KC, Fischman DA, Levin LR, Buck J (2004) Bicarbonate-responsive “soluble” adenylyl cyclase defines a nuclear cAMP microdomain. J Cell Biol 164(4):527–534. https://doi.org/10.1083/jcb.200311119
Valsecchi F, Konrad C, D’Aurelio M, Ramos-Espiritu LS, Stepanova A, Burstein SR, Galkin A, Magranè J, Starkov A, Buck J, Levin LR, Manfredi G (2017) Distinct intracellular sAC-cAMP domains regulate ER Ca(2+) signaling and OXPHOS function. J Cell Sci 130(21):3713–3727. https://doi.org/10.1242/jcs.206318
Acin-Perez R, Salazar E, Kamenetsky M, Buck J, Levin LR, Manfredi G (2009) Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation. Cell Metab 9(3):265–276. https://doi.org/10.1016/j.cmet.2009.01.012
Laurent A-C, Bisserier M, Lucas A, Tortosa F, Roumieux M, De Régibus A, Swiader A, Sainte-Marie Y, Heymes C, Vindis C, Lezoualc’h F (2015) Exchange protein directly activated by cAMP 1 promotes autophagy during cardiomyocyte hypertrophy. Cardiovasc Res 105(1):55–64. https://doi.org/10.1093/cvr/cvu242
Cool B, Zinker B, Chiou W, Kifle L, Cao N, Perham M, Dickinson R, Adler A, Gagne G, Iyengar R, Zhao G, Marsh K, Kym P, Jung P, Camp HS, Frevert E (2006) Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab 3(6):403–416. https://doi.org/10.1016/j.cmet.2006.05.005
Myers RW, Guan H-P, Ehrhart J, Petrov A, Prahalada S, Tozzo E, Yang X, Kurtz MM, Trujillo M, Gonzalez Trotter D, Feng D, Xu S, Eiermann G, Holahan MA, Rubins D, Conarello S, Niu X, Souza SC, Miller C, Liu J, Lu K, Feng W, Li Y, Painter RE, Milligan JA, He H, Liu F, Ogawa A, Wisniewski D, Rohm RJ, Wang L, Bunzel M, Qian Y, Zhu W, Wang H, Bennet B, LaFranco Scheuch L, Fernandez GE, Li C, Klimas M, Zhou G, van Heek M, Biftu T, Weber A, Kelley DE, Thornberry N, Erion MD, Kemp DM, Sebhat IK (2017) Systemic pan-AMPK activator MK-8722 improves glucose homeostasis but induces cardiac hypertrophy. Science 357(6350):507–511. https://doi.org/10.1126/science.aah5582
Xiao B, Sanders MJ, Carmena D, Bright NJ, Haire LF, Underwood E, Patel BR, Heath RB, Walker PA, Hallen S, Giordanetto F, Martin SR, Carling D, Gamblin SJ (2013) Structural basis of AMPK regulation by small molecule activators. Nat Commun 4:3017. https://doi.org/10.1038/ncomms4017
Jaitovich A, Angulo M, Lecuona E, Dada LA, Welch LC, Cheng Y, Gusarova G, Ceco E, Liu C, Shigemura M, Barreiro E, Patterson C, Nader GA, Sznajder JI (2015) High CO2 levels cause skeletal muscle atrophy via AMP-activated kinase (AMPK), FoxO3a protein, and muscle-specific Ring finger protein 1 (MuRF1). J Biol Chem 290(14):9183–9194. https://doi.org/10.1074/jbc.M114.625715
Chen J, Lecuona E, Briva A, Welch LC, Sznajder JI (2008) Carbonic anhydrase II and alveolar fluid reabsorption during hypercapnia. Am J Respir Cell Mol Biol 38(1):32–37. https://doi.org/10.1165/rcmb.2007-0121OC
De Rasmo D, Signorile A, Santeramo A, Larizza M, Lattanzio P, Capitanio G, Papa S (2015) Intramitochondrial adenylyl cyclase controls the turnover of nuclear-encoded subunits and activity of mammalian complex I of the respiratory chain. Biochim Biophys Acta Mol Cell Res 1853(1):183–191. https://doi.org/10.1016/j.bbamcr.2014.10.016
Toyama EQ, Herzig S, Courchet J, Lewis TL Jr, Losón OC, Hellberg K, Young NP, Chen H, Polleux F, Chan DC, Shaw RJ (2016) Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science (New York, NY) 351(6270):275–281. https://doi.org/10.1126/science.aab4138
Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor R, Asara JM, Fitzpatrick J, Dillin A, Viollet B, Kundu M, Hansen M, Shaw RJ (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science (New York, NY) 331(6016):456–461. https://doi.org/10.1126/science.1196371
Chang CR, Blackstone C (2007) Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. J Biol Chem 282(30):21583–21587. https://doi.org/10.1074/jbc.C700083200
Cribbs JT, Strack S (2007) Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep 8(10):939–944. https://doi.org/10.1038/sj.embor.7401062
Dagda RK, Gusdon AM, Pien I, Strack S, Green S, Li C, Van Houten B, Cherra SJ 3rd, Chu CT (2011) Mitochondrially localized PKA reverses mitochondrial pathology and dysfunction in a cellular model of Parkinson’s disease. Cell Death Differ 18(12):1914–1923. https://doi.org/10.1038/cdd.2011.74
Akabane S, Uno M, Tani N, Shimazaki S, Ebara N, Kato H, Kosako H, Oka T (2016) PKA regulates PINK1 stability and parkin recruitment to damaged mitochondria through phosphorylation of MIC60. Mol Cell 62(3):371–384. https://doi.org/10.1016/j.molcel.2016.03.037
Twig G, Elorza A, Molina AJA, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, Alroy J, Wu M, Py BF, Yuan J, Deeney JT, Corkey BE, Shirihai OS (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27(2):433–446. https://doi.org/10.1038/sj.emboj.7601963
Wang H, Robichaux WG, Wang Z, Mei FC, Cai M, Du G, Chen J, Cheng X (2016) Inhibition of Epac1 suppresses mitochondrial fission and reduces neointima formation induced by vascular injury. Sci Rep 6:36552. https://doi.org/10.1038/srep36552
Chagtoo M, George N, Pathak N, Tiwari S, Godbole MM, Ladilov Y (2018) Inhibition of intracellular type 10 adenylyl cyclase protects cortical neurons against reperfusion-induced mitochondrial injury and apoptosis. Mol Neurobiol 55(3):2471–2482. https://doi.org/10.1007/s12035-017-0473-y
Rinaldi L, Pozdniakova S, Jayarajan V, Troidl C, Abdallah Y, Aslam M, Ladilov Y (2019) Protective role of soluble adenylyl cyclase against reperfusion-induced injury of cardiac cells. Biochim Biophys Acta Mol Basis Dis 1865(1):252–260. https://doi.org/10.1016/j.bbadis.2018.07.021
Flacke J-P, Flacke H, Appukuttan A, Palisaar R-J, Noldus J, Robinson BD, Reusch HP, Zippin JH, Ladilov Y (2013) Type 10 soluble adenylyl cyclase is overexpressed in prostate carcinoma and controls proliferation of prostate cancer cells. J Biol Chem 288(5):3126–3135. https://doi.org/10.1074/jbc.M112.403279
Schirmer I, Bualeong T, Budde H, Cimiotti D, Appukuttan A, Klein N, Steinwascher P, Reusch P, Mügge A, Meyer R, Ladilov Y, Jaquet K (2018) Soluble adenylyl cyclase: a novel player in cardiac hypertrophy induced by isoprenaline or pressure overload. PLoS One 13(2):e0192322–e0192322. https://doi.org/10.1371/journal.pone.0192322
Wang Z, Liu D, Varin A, Nicolas V, Courilleau D, Mateo P, Caubere C, Rouet P, Gomez AM, Vandecasteele G, Fischmeister R, Brenner C (2016) A cardiac mitochondrial cAMP signaling pathway regulates calcium accumulation, permeability transition and cell death. Cell Death Dis 7:e2198. https://doi.org/10.1038/cddis.2016.106
Acknowledgements
We would like to express our gratitude to N. Haritonow, A. Kuehne, V. Riese, S. Pozdniakova and E. Dworatzek for their assistance with the theoretical and technical components of this research. This study was supported by the European Union (Radox Grant FP7-PEOPLE-2012-ITN) to VRZ, by DZHK (German Centre for Cardiovascular Research) partner site Berlin (Grant 81Z2100201) to VRZ and by Margarete-Ammon foundation to VRZ. Parts of the study were part of V. Jayarajan’s thesis project submitted in fulfillment of the requirements for the degree of Doctor of Philosophy at the Freie Universität Berlin (Germany).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Jayarajan, V., Appukuttan, A., Aslam, M. et al. Regulation of AMPK activity by type 10 adenylyl cyclase: contribution to the mitochondrial biology, cellular redox and energy homeostasis. Cell. Mol. Life Sci. 76, 4945–4959 (2019). https://doi.org/10.1007/s00018-019-03152-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00018-019-03152-y


