Advertisement

Antiviral peptides as promising therapeutic drugs

  • Liana Costa Pereira Vilas Boas
  • Marcelo Lattarulo Campos
  • Rhayfa Lorrayne Araujo Berlanda
  • Natan de Carvalho Neves
  • Octávio Luiz FrancoEmail author
Review
  • 160 Downloads

Abstract

While scientific advances have led to large-scale production and widespread distribution of vaccines and antiviral drugs, viruses still remain a major cause of human diseases today. The ever-increasing reports of viral resistance and the emergence and re-emergence of viral epidemics pressure the health and scientific community to constantly find novel molecules with antiviral potential. This search involves numerous different approaches, and the use of antimicrobial peptides has presented itself as an interesting alternative. Even though the number of antimicrobial peptides with antiviral activity is still low, they already show immense potential to become pharmaceutically available antiviral drugs. Such peptides can originate from natural sources, such as those isolated from mammals and from animal venoms, or from artificial sources, when bioinformatics tools are used. This review aims to shed some light on antimicrobial peptides with antiviral activities against human viruses and update the data about the already well-known peptides that are still undergoing studies, emphasizing the most promising ones that may become medicines for clinical use.

Keywords

Natural peptides Rational design Human diseases Human viruses Drugs 

Notes

Acknowledgements

This work was supported by fellowships from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil (LCPVB and RLAB), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil (NCN), Fundação de Amparo a Pesquisa do Distrito Federal (FAPDF), and Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul (FUNDECT). Authors declare no conflict of interest.

References

  1. 1.
    Mahmoud A (2016) New vaccines: challenges of discovery. Microb Biotechnol 9:549–552.  https://doi.org/10.1111/1751-7915.12397 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Enquist LW (2009) Virology in the 21st Century. J Virol 83:5296–5308.  https://doi.org/10.1128/jvi.00151-09 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Lou Z, Sun Y, Rao Z (2014) Current progress in antiviral strategies. Trends Pharmacol Sci 35:86–102.  https://doi.org/10.1016/j.tips.2013.11.006 CrossRefPubMedGoogle Scholar
  4. 4.
    McDonald CK, Kuritzkes DR (1997) Human immunodeficiency virus type 1 protease inhibitors. Arch Intern Med 157:951.  https://doi.org/10.1001/archinte.1997.00440300037003 CrossRefPubMedGoogle Scholar
  5. 5.
    Kiser JJ, Flexner C (2013) Direct-acting antiviral agents for hepatitis C virus infection. Annu Rev Pharmacol Toxicol 53:427–449.  https://doi.org/10.1146/annurev-pharmtox-011112-140254 CrossRefPubMedGoogle Scholar
  6. 6.
    Yu F, Lu L, Du L et al (2013) Approaches for identification of HIV-1 entry inhibitors targeting gp41 pocket. Viruses 5:127–149CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    El Raziky M, Fathalah WF, El-Akel WA et al (2013) The effect of peginterferon Alpha-2a vs. Peginterferon Alpha-2b in treatment of naive chronic HCV genotype-4 patients: a single centre Egyptian study. Hepat Mon 13:10069.  https://doi.org/10.5812/hepatmon.10069 CrossRefGoogle Scholar
  8. 8.
    Fching Lin, Young HA (2014) Interferons: Success in anti-viral immunotherapy. Cytokine Growth Factor Rev 25:369–376CrossRefGoogle Scholar
  9. 9.
    Buttinelli G, Donati V, Fiore S et al (2003) Nucleotide variation in Sabin type 2 poliovirus from an immunodeficient patient with poliomyelitis. J Gen Virol 84:1215–1221.  https://doi.org/10.1099/vir.0.18974-0 CrossRefPubMedGoogle Scholar
  10. 10.
    Thompson C, Whitley R (2011) Neonatal herpes simplex virus infections: where are we now? Adv Exp Med Biol 697:221–230.  https://doi.org/10.1007/978-1-4419-7185-2_15 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Elion GB (1982) Mechanism of action and selectivity of acyclovir. Am J Med 73:7–13.  https://doi.org/10.1016/0002-9343(82)90055-9 CrossRefPubMedGoogle Scholar
  12. 12.
    Duraffour S, Andrei G, Topalis D et al (2012) Mutations conferring resistance to viral DNA polymerase inhibitors in camelpox virus give different drug-susceptibility profiles in vaccinia virus. J Virol 86:7310–7325.  https://doi.org/10.1128/jvi.00355-12 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Le Page AK, Jager MM, Iwasenko JM et al (2013) Clinical aspects of cytomegalovirus antiviral resistance in solid organ transplant recipients. Clin Infect Dis 56:1018–1029.  https://doi.org/10.1093/cid/cis1035 CrossRefPubMedGoogle Scholar
  14. 14.
    Musiime V, Kaudha E, Kayiwa J et al (2013) Antiretroviral drug resistance profiles and response to second-line therapy among HIV type 1-infected ugandan children. AIDS Res Hum Retroviruses 29:449–455.  https://doi.org/10.1089/aid.2012.0283 CrossRefPubMedGoogle Scholar
  15. 15.
    Deming P, McNicholl IR (2011) Coinfection with human immunodeficiency virus and hepatitis C virus: challenges and therapeutic advances—insights from the society of infectious diseases pharmacists. Pharmacotherapy 4:357–368.  https://doi.org/10.1592/phco.31.4.357 CrossRefGoogle Scholar
  16. 16.
    Hui DSC, Lee N, Chan PKS (2017) A clinical approach to the threat of emerging influenza viruses in the Asia–Pacific region. Respirology 22:1300–1312.  https://doi.org/10.1111/resp.13114 CrossRefPubMedGoogle Scholar
  17. 17.
    Marston BJ, Dokubo EK, van Steelandt A et al (2017) Ebola response impact on public health programs, West Africa, 2014–2017. Emerg Infect Dis 23:S25–S32.  https://doi.org/10.3201/eid2313.170727 CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Suijkerbuijk AWM, Swaan CM, Mangen M-JJ et al (2017) Ebola in the Netherlands, 2014–2015: costs of preparedness and response. Eur J Heal Econ 19:1–9.  https://doi.org/10.1007/s10198-017-0940-4 CrossRefGoogle Scholar
  19. 19.
    De Souza WV, De Albuquerque MDFPM, Vazquez E et al (2018) Microcephaly epidemic related to the Zika virus and living conditions in Recife, Northeast Brazil. BMC Public Health 18:1–7.  https://doi.org/10.1186/s12889-018-5039-z CrossRefGoogle Scholar
  20. 20.
    Lowe R, Barcellos C, Brasil P et al (2018) The zika virus epidemic in brazil: from discovery to future implications. Int J Environ Res Public Health 15:1–18.  https://doi.org/10.3390/ijerph15010096 CrossRefGoogle Scholar
  21. 21.
    Da ZhuJ, Meng W, Wang XJ, Wang HCR (2015) Broad-spectrum antiviral agents. Front Microbiol 6:1–15.  https://doi.org/10.3389/fmicb.2015.00517 CrossRefGoogle Scholar
  22. 22.
    Wang G, Watson KM, Peterkofsky A, Buckheit RW (2010) Identification of novel human immunodeficiency virus type 1-inhibitory peptides based on the antimicrobial peptide database. Antimicrob Agents Chemother 54:1343–1346.  https://doi.org/10.1128/aac.01448-09 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Jesus T, Rogelio L, Abraham C et al (2012) Prediction of antiviral peptides derived from viral fusion proteins potentially active against herpes simplex and influenza A viruses. Bioinformation 8:870–874.  https://doi.org/10.6026/97320630008870 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Elshabrawy HA, Fan J, Haddad CS et al (2014) Identification of a broad-spectrum antiviral small molecule against severe acute respiratory syndrome coronavirus and ebola, hendra, and nipah viruses by using a novel high-throughput screening assay. J Virol 88:4353–4365.  https://doi.org/10.1128/jvi.03050-13 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Martins FO, da Rocha Gomes MM, Pereira Nogueira FL et al (2009) In vitro inhibitory effect of Urera baccifera (L.) Gaudich. extracts against herpes simplex. African J Pharm Pharmacol 3:581–584Google Scholar
  26. 26.
    Cantatore A, Randall SD, Traum D, Adams SD (2013) Effect of black tea extract on herpes simplex virus-1 infection of cultured cells. BMC Compl Altern Med 13:1–10.  https://doi.org/10.1186/1472-6882-13-139 CrossRefGoogle Scholar
  27. 27.
    Rothan HA, Bahrani H, Rahman NA, Yusof R (2014) Identification of natural antimicrobial agents to treat dengue infection: in vitro analysis of latarcin peptide activity against dengue virus. BMC Microbiol 14:1–10.  https://doi.org/10.1186/1471-2180-14-140 CrossRefGoogle Scholar
  28. 28.
    Rothan HA, Abdulrahman AY, Sasikumer PG et al (2012) Protegrin-1 inhibits dengue NS2B-NS3 serine protease and viral replication in MK2 cells. J Biomed Biotechnol 2012:1–6.  https://doi.org/10.1155/2012/251482 CrossRefGoogle Scholar
  29. 29.
    Rothan HA, Han HC, Ramasamy TS et al (2012) Inhibition of dengue NS2B-NS3 protease and viral replication in Vero cells by recombinant retrocyclin-1. BMC Infect Dis 12:1–9.  https://doi.org/10.1186/1471-2334-12-314 CrossRefGoogle Scholar
  30. 30.
    Hakim A, Nguyen JB, Basu K et al (2013) Crystal structure of an insect antifreeze protein and its implications for ice binding. J Biol Chem 288:12295–12304.  https://doi.org/10.1074/jbc.m113.450973 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ishag HZA, Li C, Huang L et al (2013) Inhibition of Japanese encephalitis virus infection in vitro and in vivo by pokeweed antiviral protein. Virus Res 171:89–96.  https://doi.org/10.1016/j.virusres.2012.10.032 CrossRefPubMedGoogle Scholar
  32. 32.
    Chen L, Liu Y, Wang S et al (2017) Antiviral activity of peptide inhibitors derived from the protein E stem against Japanese encephalitis and Zika viruses. Antiviral Res 141:140–149.  https://doi.org/10.1016/j.antiviral.2017.02.009 CrossRefPubMedGoogle Scholar
  33. 33.
    Chinchar VG, Bryan L, Silphadaung U et al (2004) Inactivation of viruses infecting ectothermic animals by amphibian and piscine antimicrobial peptides. Virology 323:268–275.  https://doi.org/10.1016/j.virol.2004.02.029 CrossRefPubMedGoogle Scholar
  34. 34.
    Falco A, Mas V, Tafalla C et al (2007) Dual antiviral activity of human alpha-defensin-1 against viral haemorrhagic septicaemia rhabdovirus (VHSV): inactivation of virus particles and induction of a type I interferon-related response. Antiviral Res 76:111–123.  https://doi.org/10.1016/j.antiviral.2007.06.006 CrossRefPubMedGoogle Scholar
  35. 35.
    Crack LR, Jones L, Malavige GN et al (2012) Human antimicrobial peptides LL-37 and human β-defensin-2 reduce viral replication in keratinocytes infected with varicella zoster virus. Clin Exp Dermatol 37:534–543.  https://doi.org/10.1111/j.1365-2230.2012.04305.x CrossRefPubMedGoogle Scholar
  36. 36.
    Altmann SE, Brandt CR, Jahrling PB, Blaney JE (2012) Antiviral activity of the EB peptide against zoonotic poxviruses. Virol J 6:1–6.  https://doi.org/10.1186/1743-422x-9-6 CrossRefGoogle Scholar
  37. 37.
    Okazaki K, Kida H (2004) A synthetic peptide from a heptad repeat region of herpesvirus glycoprotein B inhibits virus replication. J Gen Virol 85:2131–2137.  https://doi.org/10.1099/vir.0.80051-0 CrossRefPubMedGoogle Scholar
  38. 38.
    Tiwari V, Liu J, Valyi-Nagy T, Shukla D (2011) Anti-heparan sulfate peptides that block herpes simplex virus infection in vivo. J Biol Chem 286:25406–25415.  https://doi.org/10.1074/jbc.m110.201103 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Mooney C, Haslam NJ, Pollastri G, Shields DC (2012) Towards the improved discovery and design of functional peptides: common features of diverse classes permit generalized prediction of bioactivity. PLoS One 7:1–12.  https://doi.org/10.1371/journal.pone.0045012 CrossRefGoogle Scholar
  40. 40.
    Maccari G, Di Luca M, Nifosí R et al (2013) Antimicrobial peptides design by evolutionary multiobjective optimization. PLoS Comput Biol 9:1–12.  https://doi.org/10.1371/journal.pcbi.1003212 CrossRefGoogle Scholar
  41. 41.
    Sharma A, Singla D, Rashid M, Raghava GPS (2014) Designing of peptides with desired half-life in intestine-like environment. BMC Bioinf 15:1–8.  https://doi.org/10.1186/1471-2105-15-282 CrossRefGoogle Scholar
  42. 42.
    Qureshi A, Thakur N, Tandon H, Kumar M (2014) AVPdb: a database of experimentally validated antiviral peptides targeting medically important viruses. Nucleic Acids Res 42:1147–1153.  https://doi.org/10.1093/nar/gkt1191 CrossRefGoogle Scholar
  43. 43.
    Mulder KCL, Lima LA, Miranda VJ et al (2013) Current scenario of peptide-based drugs: the key roles of cationic antitumor and antiviral peptides. Front Microbiol 4:1–23.  https://doi.org/10.3389/fmicb.2013.00321 CrossRefGoogle Scholar
  44. 44.
    Barlow PG, Findlay EG, Currie SM, Davidson DJ (2014) Antiviral potential of cathelicidins. Future Microbiol 9:55–73.  https://doi.org/10.2217/fmb.13.135 CrossRefPubMedGoogle Scholar
  45. 45.
    Gwyer Findlay E, Currie SM, Davidson DJ (2013) Cationic host defence peptides: potential as antiviral therapeutics. BioDrugs 27:479–493.  https://doi.org/10.1007/s40259-013-0039-0 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Galdiero S, Falanga A, Tarallo R et al (2013) Peptide inhibitors against herpes simplex virus infections. J Pept Sci 19:148–158.  https://doi.org/10.1002/psc.2489 CrossRefPubMedGoogle Scholar
  47. 47.
    Qureshi A, Thakur N, Kumar M (2013) HIPdb: a database of experimentally validated hiv inhibiting peptides. PLoS One 8:1–5.  https://doi.org/10.1371/journal.pone.0054908 CrossRefGoogle Scholar
  48. 48.
    Zapata W, Aguilar-Jiménez W, Feng Z et al (2016) Identification of innate immune antiretroviral factors during in vivo and in vitro exposure to HIV-1. Microbes Infect 18:211–219.  https://doi.org/10.1016/j.micinf.2015.10.009 CrossRefPubMedGoogle Scholar
  49. 49.
    Bulet P, Stöcklin R, Menin L (2004) Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev 198:169–184CrossRefPubMedGoogle Scholar
  50. 50.
    Badani H, Garry RF, Wimley WC (2014) Peptide entry inhibitors of enveloped viruses: the importance of interfacial hydrophobicity. Biochim Biophys Acta Biomembr 1838:2180–2197.  https://doi.org/10.1016/j.bbamem.2014.04.015 CrossRefGoogle Scholar
  51. 51.
    Wang C-K, Shih L-Y, Chang K (2017) Large-scale analysis of antimicrobial activities in relation to amphipathicity and charge reveals novel characterization of antimicrobial peptides. Molecules 22:2037.  https://doi.org/10.3390/molecules22112037 CrossRefPubMedCentralGoogle Scholar
  52. 52.
    Tam JP, Wang S, Wong KH, Tan WL (2015) Antimicrobial peptides from plants. Pharmaceuticals 8:711–757.  https://doi.org/10.3390/ph8040711 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Burman R, Yeshak MY, Larsson S et al (2015) Distribution of circular proteins in plants: large-scale mapping of cyclotides in the Violaceae. Front Plant Sci 6:1–13.  https://doi.org/10.3389/fpls.2015.00855 CrossRefGoogle Scholar
  54. 54.
    Weidmann J, Craik DJ (2016) Discovery, structure, function, and applications of cyclotides: circular proteins from plants. J Exp Bot 67:4801–4812.  https://doi.org/10.1093/jxb/erw210 CrossRefPubMedGoogle Scholar
  55. 55.
    Ireland DC, Wang CKL, Wilson JA et al (2008) Cyclotides as natural anti-HIV agents. Biopolym - Pept Sci Sect 90:51–60.  https://doi.org/10.1002/bip.20886 CrossRefGoogle Scholar
  56. 56.
    Wang CKL, Colgrave ML, Gustafson KR et al (2008) Anti-HIV cyclotides from the Chinese medicinal herb Viola yedoensis. J Nat Prod 71:47–52.  https://doi.org/10.1021/np070393g CrossRefPubMedGoogle Scholar
  57. 57.
    Henriques ST, Craik DJ (2010) Cyclotides as templates in drug design. Drug Discov Today 7:179–194.  https://doi.org/10.1016/j.drudis.2009.10.007 CrossRefGoogle Scholar
  58. 58.
    Gao Y, Cui T, Lam Y (2010) Synthesis and disulfide bond connectivity-activity studies of a kalata B1-inspired cyclopeptide against dengue NS2B-NS3 protease. Bioorganic Med Chem 18:1331–1336.  https://doi.org/10.1016/j.bmc.2009.12.026 CrossRefGoogle Scholar
  59. 59.
    Sencanski M, Radosevic D, Perovic V et al (2015) Natural products as promising therapeutics for treatment of influenza disease. Curr Pharm Des 21:5573–5588.  https://doi.org/10.2174/1381612821666151002113426 CrossRefPubMedGoogle Scholar
  60. 60.
    Henriques ST, Huang YH, Rosengren KJ et al (2011) Decoding the membrane activity of the cyclotide kalata B1: the importance of phosphatidylethanolamine phospholipids and lipid organization on hemolytic and anti-HIV activities. J Biol Chem 286:1–24.  https://doi.org/10.1074/jbc.m111.253393 CrossRefGoogle Scholar
  61. 61.
    Waheed AA, Freed EO (2009) Lipids and membrane microdomains in HIV-1 replication. Virus Res 143:162–176.  https://doi.org/10.1016/j.virusres.2009.04.007 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Daly NL, Gustafson KR, Craik DJ (2004) The role of the cyclic peptide backbone in the anti-HIV activity of the cyclotide kalata B1. FEBS Lett 574:69–72.  https://doi.org/10.1016/j.febslet.2004.08.007 CrossRefPubMedGoogle Scholar
  63. 63.
    Nawae W, Hannongbua S, Ruengjitchatchawalya M (2017) Molecular dynamics exploration of poration and leaking caused by Kalata B1 in HIV-infected cell membrane compared to host and HIV membranes. Sci Rep 7:1–13.  https://doi.org/10.1038/s41598-017-03745-2 CrossRefGoogle Scholar
  64. 64.
    Craik DJ, Du J (2017) Cyclotides as drug design scaffolds. Curr Opin Chem Biol 38:8–16.  https://doi.org/10.1016/j.cbpa.2017.01.018 CrossRefPubMedGoogle Scholar
  65. 65.
    Ngai PH, Ng TB (2005) Phaseococcin, an antifungal protein with antiproliferative and anti-HIV-1 reverse transcriptase activities from small scarlet runner beans. Biochem Cell Biol 83:212–220.  https://doi.org/10.1139/o05-037 CrossRefPubMedGoogle Scholar
  66. 66.
    Jack HW, Tzi BN (2005) Sesquin, a potent defensin-like antimicrobial peptide from ground beans with inhibitory activities toward tumor cells and HIV-1 reverse transcriptase. Peptides 26:1120–1126.  https://doi.org/10.1016/j.peptides.2005.01.003 CrossRefGoogle Scholar
  67. 67.
    Camargo Filho I, Cortez DAG, Ueda-Nakamura T et al (2008) Antiviral activity and mode of action of a peptide isolated from Sorghum bicolor. Phytomedicine 15:202–208.  https://doi.org/10.1016/j.phymed.2007.07.059 CrossRefPubMedGoogle Scholar
  68. 68.
    Salas CE, Badillo-Corona JA, Ramírez-Sotelo G, Oliver-Salvador C (2015) Biologically active and antimicrobial peptides from plants. Biomed Res Int 2015:1–11.  https://doi.org/10.1155/2015/102129 CrossRefGoogle Scholar
  69. 69.
    Kuczer M, Dziubasik K, Midak-Siewirska A et al (2010) Studies of insect peptides alloferon, Any-GS and their analogues. Synthesis and antiherpes activity. J Pept Sci 16:186–189.  https://doi.org/10.1002/psc.1219 CrossRefPubMedGoogle Scholar
  70. 70.
    Hultmark D, Steiner H, Rasmuson T, Boman HG (2005) Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur J Biochem 106:7–16.  https://doi.org/10.1111/j.1432-1033.1980.tb05991.x CrossRefGoogle Scholar
  71. 71.
    Wachinger M, Kleinschmidt A, Winder D et al (1998) Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression. J Gen Virol 79:731–740.  https://doi.org/10.1099/0022-1317-79-4-731 CrossRefPubMedGoogle Scholar
  72. 72.
    Albiol Matanic VC, Castilla V (2004) Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus. Int J Antimicrob Agents 23:382–389.  https://doi.org/10.1016/j.ijantimicag.2003.07.022 CrossRefPubMedGoogle Scholar
  73. 73.
    Wachinger M, Saermark T, Erfle V (1992) Influence of amphipathic peptides on the HIV-1 production in persistently infected T lymphoma cells. FEBS Lett 309:235–241.  https://doi.org/10.1016/0014-5793(92)80780-k CrossRefPubMedGoogle Scholar
  74. 74.
    Hood JL, Jallouk AP, Campbell N et al (2013) Cytolytic nanoparticles attenuate HIV-1 infectivity. Antivir Ther 18:95–103.  https://doi.org/10.3851/imp2346 CrossRefPubMedGoogle Scholar
  75. 75.
    Sample CJ, Hudak KE, Barefoot BE et al (2013) A mastoparan-derived peptide has broad-spectrum antiviral activity against enveloped viruses. Peptides 48:96–105.  https://doi.org/10.1016/j.peptides.2013.07.014 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    El-Bitar AM, Sarhan MM, Aoki C et al (2015) Virocidal activity of Egyptian scorpion venoms against hepatitis C virus Hepatitis viruses. Virol J 12:1–9.  https://doi.org/10.1186/s12985-015-0276-6 CrossRefGoogle Scholar
  77. 77.
    Yan R, Zhao Z, He Y et al (2011) A new natural α-helical peptide from the venom of the scorpion Heterometrus petersii kills HCV. Peptides 32:11–19.  https://doi.org/10.1016/j.peptides.2010.10.008 CrossRefPubMedGoogle Scholar
  78. 78.
    Hong W, Li T, Song Y et al (2014) Inhibitory activity and mechanism of two scorpion venom peptides against herpes simplex virus type 1. Antiviral Res 102:1–10.  https://doi.org/10.1016/j.antiviral.2013.11.013 CrossRefPubMedGoogle Scholar
  79. 79.
    Li Q, Zhao Z, Zhou D et al (2011) Virucidal activity of a scorpion venom peptide variant mucroporin-M1 against measles, SARS-CoV and influenza H5N1 viruses. Peptides 32:1518–1525.  https://doi.org/10.1016/j.peptides.2011.05.015 CrossRefPubMedGoogle Scholar
  80. 80.
    Zhao Z, Hong W, Zeng Z et al (2012) Mucroporin-M1 inhibits hepatitis B virus replication by activating the mitogen-activated protein kinase (MAPK) pathway and down-regulating HNF4α in vitro and in vivo. J Biol Chem 287:30181–30190.  https://doi.org/10.1074/jbc.m112.370312 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Chen Y, Cao L, Zhong M et al (2012) Anti-HIV-1 activity of a new scorpion venom peptide derivative Kn2-7. PLoS One 7:1–9.  https://doi.org/10.1371/journal.pone.0034947 CrossRefGoogle Scholar
  82. 82.
    Zeng Z, Zhang R, Hong W et al (2018) Histidine-rich modification of a scorpion-derived peptide improves bioavailability and inhibitory activity against HSV-1. Theranostics 8:199–211.  https://doi.org/10.7150/thno.21425 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Chernysh S, Kim SI, Bekker G et al (2002) Antiviral and antitumor peptides from insects. Proc Natl Acad Sci 99:12628–12632.  https://doi.org/10.1073/pnas.192301899 CrossRefPubMedGoogle Scholar
  84. 84.
    Kuczer M, Midak-Siewirska A, Zahorska R et al (2011) Further studies on the antiviral activity of alloferon and its analogues. J Pept Sci 17:715–719.  https://doi.org/10.1002/psc.1388 CrossRefPubMedGoogle Scholar
  85. 85.
    Kuczer M, Majewska A, Zahorska R (2013) New alloferon analogues: synthesis and antiviral properties. Chem Biol Drug Des 81:302–309.  https://doi.org/10.1111/cbdd.12020 CrossRefPubMedGoogle Scholar
  86. 86.
    Marcocci ME, Amatore D, Villa S et al (2018) The amphibian antimicrobial peptide temporin b inhibits in vitro herpes simplex virus 1 infection. Antimicrob Agents Chemother 62:1–13.  https://doi.org/10.1128/aac.02367-17 CrossRefGoogle Scholar
  87. 87.
    Shartouny JR, Jacob J (2018) Mining the tree of life: host defense peptides as antiviral therapeutics. Semin Cell Dev Biol 88:147–155.  https://doi.org/10.1016/j.semcdb.2018.03.001 CrossRefPubMedGoogle Scholar
  88. 88.
    Egal M, Conrad M, MacDonald DL et al (1999) Antiviral effects of synthetic membrane-active peptides on herpes simplex virus, type 1. Int J Antimicrob Agents 13:57–60CrossRefPubMedGoogle Scholar
  89. 89.
    Dean RE, O’Brien LM, Thwaite JE et al (2010) A carpet-based mechanism for direct antimicrobial peptide activity against vaccinia virus membranes. Peptides 31:1966–1972.  https://doi.org/10.1016/j.peptides.2010.07.028 CrossRefPubMedGoogle Scholar
  90. 90.
    Belaid A, Aouni M, Khelifa R et al (2002) In vitro antiviral activity of dermaseptins against herpes simplex virus type 1. J Med Virol 66:229–234.  https://doi.org/10.1002/jmv.2134 CrossRefPubMedGoogle Scholar
  91. 91.
    Lorin C, Saidi H, Belaid A et al (2005) The antimicrobial peptide Dermaseptin S4 inhibits HIV-1 infectivity in vitro. Virology 334:264–275.  https://doi.org/10.1016/j.virol.2005.02.002 CrossRefPubMedGoogle Scholar
  92. 92.
    Bergaoui I, Zairi A, Tangy F et al (2013) In vitro antiviral activity of dermaseptin S4 and derivatives from amphibian skin against herpes simplex virus type 2. J Med Virol 85:272–281.  https://doi.org/10.1002/jmv.23450 CrossRefPubMedGoogle Scholar
  93. 93.
    Mechlia MB, Belaid A, Castel G et al (2018) Dermaseptins as potential antirabies compounds. Vaccine 2018:1–7.  https://doi.org/10.1016/j.vaccine.2018.01.066 CrossRefGoogle Scholar
  94. 94.
    Monteiro JMC, Oliveira MD, Dias RS et al (2018) The antimicrobial peptide HS-1 inhibits dengue virus infection. Virology 514:79–87.  https://doi.org/10.1016/j.virol.2017.11.009 CrossRefPubMedGoogle Scholar
  95. 95.
    Holthausen DJ, Lee SH, Kumar VT et al (2017) An amphibian host defense peptide is virucidal for human H1 hemagglutinin-bearing influenza viruses. Immunity 46:587–595.  https://doi.org/10.1016/j.immuni.2017.03.018 CrossRefPubMedGoogle Scholar
  96. 96.
    Yasin B, Pang M, Turner JS et al (2000) Evaluation of the inactivation of infectious herpes simplex virus by host-defense peptides. Eur J Clin Microbiol Infect Dis 19:187–194.  https://doi.org/10.1007/s100960050457 CrossRefPubMedGoogle Scholar
  97. 97.
    Carriel-Gomes MC, Kratz JM, Barracco MA et al (2007) In vitro antiviral activity of antimicrobial peptides against herpes simplex virus 1, adenovirus, and rotavirus. Mem Inst Oswaldo Cruz 102:469–472.  https://doi.org/10.1590/s0074-02762007005000028 CrossRefPubMedGoogle Scholar
  98. 98.
    Lu Z, Van Wagoner RM, Harper MK et al (2011) Mirabamides E–H, HIV-inhibitory depsipeptides from the sponge Stelletta clavosa. J Nat Prod 74:185–193.  https://doi.org/10.1021/np100613p CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Migliolo L, Silva ON, Silva PA et al (2012) Structural and functional characterization of a multifunctional alanine-rich peptide analogue from pleuronectes americanus. PLoS One 7:e47047.  https://doi.org/10.1371/journal.pone.0047047 CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Vilas Boas LCP, de Lima LMP, Migliolo L et al (2017) Linear antimicrobial peptides with activity against herpes simplex virus 1 and Aichi virus. Biopolymers 108:1–20.  https://doi.org/10.1002/bip.22871 CrossRefGoogle Scholar
  101. 101.
    Holly MK, Diaz K, Smith JG (2017) Defensins in Viral Infection and Pathogenesis. Annu Rev Virol 4:369–391.  https://doi.org/10.1146/annurev-virology-101416-041734 CrossRefPubMedGoogle Scholar
  102. 102.
    Wang W, Owen SM, Rudolph DL et al (2004) Activity of alpha- and theta-defensins against primary isolates of HIV-1. J Immunol 173:515–520.  https://doi.org/10.4049/jimmunol.173.1.515 CrossRefPubMedGoogle Scholar
  103. 103.
    Wu Z, Cocchi F, Gentles D et al (2005) Human neutrophil α-defensin 4 inhibits HIV-1 infection in vitro. FEBS Lett 579:162–166.  https://doi.org/10.1016/j.febslet.2004.11.062 CrossRefPubMedGoogle Scholar
  104. 104.
    Salvatore M, García-Sastre A, Ruchala P et al (2007) α-defensin inhibits influenza virus replication by cell-mediated mechanism(s). J Infect Dis 196:835–843.  https://doi.org/10.1086/521027 CrossRefPubMedGoogle Scholar
  105. 105.
    Meyer-Hoffert U, Schwarz T, Schröder J-M, Gläser R (2008) Expression of human beta-defensin-2 and -3 in verrucae vulgares and condylomata acuminata. J Eur Acad Dermatol Venereol 22:1050–1054.  https://doi.org/10.1111/j.1468-3083.2008.02675.x CrossRefPubMedGoogle Scholar
  106. 106.
    Howell MD, Streib JE, Leung DYM (2007) Antiviral activity of human beta-defensin 3 against vaccinia virus. J Allergy Clin Immunol 119:1022–1025.  https://doi.org/10.1016/j.jaci.2007.01.044 CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Quiñones-Mateu ME, Lederman MM, Feng Z et al (2003) Human epithelial beta-defensins 2 and 3 inhibit HIV-1 replication. AIDS 17:F39–F48.  https://doi.org/10.1097/01.aids.0000096878.73209.4f CrossRefPubMedGoogle Scholar
  108. 108.
    Sørensen OE, Follin P, Johnsen AH et al (2001) Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood 97:3951–3959.  https://doi.org/10.1182/blood.v97.12.3951 CrossRefPubMedGoogle Scholar
  109. 109.
    Barlow PG, Svoboda P, Mackellar A et al (2011) Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37. PLoS One 6:1–9.  https://doi.org/10.1371/journal.pone.0025333 CrossRefGoogle Scholar
  110. 110.
    Tripathi S, Wang G, White M et al (2015) Antiviral activity of the human cathelicidin, LL-37, and derived peptides on seasonal and pandemic influenza A viruses. PLoS One 10:1–17.  https://doi.org/10.1371/journal.pone.0124706 CrossRefGoogle Scholar
  111. 111.
    Matsumura T, Sugiyama N, Murayama A et al (2016) Antimicrobial peptide LL-37 attenuates infection of hepatitis C virus. Hepatol Res 46:924–932.  https://doi.org/10.1111/hepr.12627 CrossRefPubMedGoogle Scholar
  112. 112.
    Alagarasu K, Patil PS, Shil P et al (2017) In-vitro effect of human cathelicidin antimicrobial peptide LL-37 on dengue virus type 2. Peptides 92:23–30.  https://doi.org/10.1016/j.peptides.2017.04.002 CrossRefPubMedGoogle Scholar
  113. 113.
    Ahmed A, Siman-Tov G, Keck F et al (2019) Human cathelicidin peptide LL-37 as a therapeutic antiviral targeting Venezuelan equine encephalitis virus infections. Antiviral Res 164:61–69.  https://doi.org/10.1016/j.antiviral.2019.02.002 CrossRefPubMedGoogle Scholar
  114. 114.
    He M, Zhang H, Li Y et al (2018) Cathelicidin-derived antimicrobial peptides inhibit Zika virus through direct inactivation and interferon pathway. Front Immunol 9:1–12.  https://doi.org/10.3389/fimmu.2018.00722 CrossRefGoogle Scholar
  115. 115.
    Sousa FH, Casanova V, Findlay F et al (2017) Cathelicidins display conserved direct antiviral activity towards rhinovirus. Peptides 95:76–83.  https://doi.org/10.1016/j.peptides.2017.07.013 CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Gordon YJ, Huang LC, Romanowski EG et al (2005) Human cathelicidin (LL-37), a multifunctional peptide, is expressed by ocular surface epithelia and has potent antibacterial and antiviral activity. Curr Eye Res 30:385–394.  https://doi.org/10.1080/02713680590934111 CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Van der Strate BWA, Beljaars L, Molema G et al (2001) Antiviral activities of lactoferrin. Antiviral Res 52:225–239.  https://doi.org/10.1016/s0166-3542(01)00195-4 CrossRefPubMedGoogle Scholar
  118. 118.
    Li S, Zhou H, Huang G, Liu N (2009) Inhibition of HBV infection by bovine lactoferrin and iron-, zinc-saturated lactoferrin. Med Microbiol Immunol 198:19–25.  https://doi.org/10.1007/s00430-008-0100-7 CrossRefPubMedGoogle Scholar
  119. 119.
    Chen JM, Fan YC, Lin JW et al (2017) Bovine lactoferrin inhibits dengue virus infectivity by interacting with heparan sulfate, low-density lipoprotein receptor, and DC-SIGN. Int J Mol Sci 18:1–13.  https://doi.org/10.3390/ijms18091957 CrossRefGoogle Scholar
  120. 120.
    Carvalho CAM, Casseb SMM, Gonçalves RB et al (2017) Bovine lactoferrin activity against Chikungunya and Zika viruses. J Gen Virol 98:1749–1754.  https://doi.org/10.1099/jgv.0.000849 CrossRefPubMedGoogle Scholar
  121. 121.
    Andersen JH, Osbakk SA, Vorland LH et al (2001) Lactoferrin and cyclic lactoferricin inhibit the entry of human cytomegalovirus into human fibroblasts. Antiviral Res 51:141–149.  https://doi.org/10.1016/s0166-3542(01)00146-2 CrossRefPubMedGoogle Scholar
  122. 122.
    Mistry N, Drobni P, Näslund J et al (2007) The anti-papillomavirus activity of human and bovine lactoferricin. Antiviral Res 75:258–265.  https://doi.org/10.1016/j.antiviral.2007.03.012 CrossRefPubMedGoogle Scholar
  123. 123.
    Marr AK, Jenssen H, Moniri MR et al (2009) Bovine lactoferrin and lactoferricin interfere with intracellular trafficking of Herpes simplex virus-1. Biochimie 91:160–164.  https://doi.org/10.1016/j.biochi.2008.05.016 CrossRefPubMedGoogle Scholar
  124. 124.
    Shestakov A, Jenssen H, Nordström I, Eriksson K (2012) Lactoferricin but not lactoferrin inhibit herpes simplex virus type 2 infection in mice. Antiviral Res 93:340–345.  https://doi.org/10.1016/j.antiviral.2012.01.003 CrossRefPubMedGoogle Scholar
  125. 125.
    Wang WY, Wong JH, Ip DTM et al (2016) Bovine lactoferrampin, human lactoferricin, and lactoferrin 1-11 inhibit nuclear translocation of HIV integrase. Appl Biochem Biotechnol 179:1202–1212.  https://doi.org/10.1007/s12010-016-2059-y CrossRefPubMedGoogle Scholar
  126. 126.
    Borst EM, Ständker L, Wagner K et al (2013) A peptide inhibitor of cytomegalovirus infection from human hemofiltrate. Antimicrob Agents Chemother 57:4751–4760.  https://doi.org/10.1128/aac.00854-13 CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Sala A, Ardizzoni A, Ciociola T et al (2018) Antiviral activity of synthetic peptides derived from physiological proteins. Intervirology 61:166–173.  https://doi.org/10.1159/000494354 CrossRefPubMedGoogle Scholar
  128. 128.
    Porto WF, Silva ON, Franco OL (2012) Prediction and rational design of antimicrobial peptides. In: Faraggi E (ed) Protein structure. InTech, London, pp 377–396Google Scholar
  129. 129.
    Beltrán Lissabet JF, Belén LH, Farias JG (2019) AntiVPP 1.0: a portable tool for prediction of antiviral peptides. Comput Biol Med 107:127–130.  https://doi.org/10.1016/j.compbiomed.2019.02.011 CrossRefPubMedGoogle Scholar
  130. 130.
    Jose GG, Larsen IV, Gauger J et al (2013) A cationic peptide, TAT-Cd0, inhibits herpes simplex virus type 1 ocular infection in vivo. Investig Ophthalmol Vis Sci 54:1070–1079.  https://doi.org/10.1167/iovs.12-10250 CrossRefGoogle Scholar
  131. 131.
    Cui X, Wu Y, Fan D et al (2018) Peptides P4 and P7 derived from E protein inhibit entry of dengue virus serotype 2 via interacting with β3 integrin. Antiviral Res 155:20–27.  https://doi.org/10.1016/j.antiviral.2018.04.018 CrossRefPubMedGoogle Scholar
  132. 132.
    Chew MF, Poh KS, Poh CL (2017) Peptides as therapeutic agents for dengue virus. Int J Med Sci 14:1342–1359.  https://doi.org/10.7150/ijms.21875 CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Hrobowski YM, Garry RF, Michael SF (2005) Peptide inhibitors of dengue virus and West Nile virus infectivity. Virol J 2:1–10.  https://doi.org/10.1186/1743-422x-2-49 CrossRefGoogle Scholar
  134. 134.
    Lok SM, Costin JM, Hrobowski YM et al (2012) Release of dengue virus genome induced by a peptide inhibitor. PLoS One 7:5–12.  https://doi.org/10.1371/journal.pone.0050995 CrossRefGoogle Scholar
  135. 135.
    Costin JM, Jenwitheesuk E, Lok S-M et al (2010) Structural optimization and de novo design of dengue virus entry inhibitory peptides. PLoS Negl Trop Dis 4:e721.  https://doi.org/10.1371/journal.pntd.0000721 CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Roizman B, Taddeo B (2007) The strategy of herpes simplex virus replication and takeover of the host cell. In: Arvin A, Campadelli-Fiume G, Mocarski E et al (eds) Human herpesviruses: biology, therapy, and immunoprophylaxis. Cambridge University Press, CambridgeGoogle Scholar
  137. 137.
    Akkarawongsa R, Pocaro NE, Case G et al (2009) Multiple peptides homologous to herpes simplex virus type 1 glycoprotein B inhibit viral infection. Antimicrob Agents Chemother 53:987–996.  https://doi.org/10.1128/aac.00793-08 CrossRefPubMedGoogle Scholar
  138. 138.
    Cetina-Corona A, López-Sánchez U, Salinas-Trujano J et al (2016) Peptides derived from glycoproteins H and B of herpes simplex virus type 1 and herpes simplex virus type 2 are capable of blocking herpetic infection in vitro. Intervirology 59:235–242.  https://doi.org/10.1159/000464134 CrossRefPubMedGoogle Scholar
  139. 139.
    ONUSIDA (2018) Global AIDS monitoring 2018: indicators for monitoring the 2016 United Nations Political Declaration on HIV and AIDS. Geneva Google Scholar
  140. 140.
    Chong H, Xue J, Xiong S et al (2017) A lipopeptide HIV-1/2 fusion inhibitor with highly potent in vitro, ex vivo, and in vivo antiviral activity. J Virol 91:1–13.  https://doi.org/10.1128/jvi.00288-17 CrossRefGoogle Scholar
  141. 141.
    Lemey P, Pybus OG, Wang B et al (2003) Tracing the origin and history of the HIV-2 epidemic. Proc Natl Acad Sci 100:6588–6592.  https://doi.org/10.1073/pnas.0936469100 CrossRefPubMedGoogle Scholar
  142. 142.
    Menéndez-Arias L, Álvarez M (2014) Antiretroviral therapy and drug resistance in human immunodeficiency virus type 2 infection. Antiviral Res 102:70–86.  https://doi.org/10.1016/j.antiviral.2013.12.001 CrossRefPubMedGoogle Scholar
  143. 143.
    Markosyan RM (2005) Time-resolved imaging of HIV-1 env-mediated lipid and content mixing between a single virion and cell membrane. Mol Biol Cell 16:5502–5513.  https://doi.org/10.1091/mbc.e05-06-0496 CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    He Y, Xiao Y, Song H et al (2008) Design and evaluation of sifuvirtide, a novel HIV-1 fusion inhibitor. J Biol Chem 283:11126–11134.  https://doi.org/10.1074/jbc.m800200200 CrossRefPubMedGoogle Scholar
  145. 145.
    Fung HB, Guo Y (2004) Enfuvirtide: a fusion inhibitor for the treatment of HIV infection. Clin Ther 26:352–378CrossRefPubMedGoogle Scholar
  146. 146.
    Naider F, Anglister J (2009) Peptides in the treatment of AIDS. Curr Opin Struct Biol 19:473–482.  https://doi.org/10.1016/j.sbi.2009.07.003 CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Borrego P, Calado R, Marcelino JM et al (2013) An ancestral HIV-2/simian immunodeficiency virus peptide with potent HIV-1 and HIV-2 fusion inhibitor activity. AIDS 27:1081–1090.  https://doi.org/10.1097/qad.0b013e32835edc1d CrossRefPubMedGoogle Scholar
  148. 148.
    Vincent N, Tardy J-C, Livrozet J-M et al (2005) Depletion in antibodies targeted to the HR2 region of HIV-1 glycoprotein gp41 in sera of HIV-1-seropositive patients treated with T20. J Acquir Immune Defic Syndr 38:254–262PubMedGoogle Scholar
  149. 149.
    Su Y, Chong H, Qiu Z et al (2015) Mechanism of HIV-1 resistance to short-peptide fusion inhibitors targeting the Gp41 pocket. J Virol 89:5801–5811.  https://doi.org/10.1128/jvi.00373-15 CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Brauer F, Schmidt K, Zahn RC et al (2013) A rationally engineered anti-HIV peptide fusion inhibitor with greatly reduced immunogenicity. Antimicrob Agents Chemother 57:679–688.  https://doi.org/10.1128/aac.01152-12 CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Bártolo I, Diniz AR, Borrego P et al (2018) Evaluation of the fusion inhibitor P3 peptide as a potential microbicide to prevent HIV transmission in women. PLoS One 13:1–23.  https://doi.org/10.1371/journal.pone.0195744 CrossRefGoogle Scholar
  152. 152.
    Xiong S, Borrego P, Ding X et al (2017) A helical short-peptide fusion inhibitor with highly potent activity against human immunodeficiency virus type 1 (HIV-1), HIV-2, and Simian immunodeficiency. Virus 91:1–15.  https://doi.org/10.1128/jvi.01839-16 CrossRefGoogle Scholar
  153. 153.
    Hsieh I, Hartshorn KL (2016) The role of antimicrobial peptides in influenza virus infection and their potential as antiviral and immunomodulatory therapy. Pharmaceuticals 9:1–15.  https://doi.org/10.3390/ph9030053 CrossRefGoogle Scholar
  154. 154.
    Novel Swine-Origin Influenza A (H1N1) Virus Investigation Team, Dawood FS, Jain S et al (2009) Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N Engl J Med 360:2605–2615.  https://doi.org/10.1056/nejmoa0903810 CrossRefGoogle Scholar
  155. 155.
    Koszalka P, Tilmanis D, Hurt AC (2017) Influenza antivirals currently in late-phase clinical trial. Influenza Other Respi Viruses 11:240–246.  https://doi.org/10.1111/irv.12446 CrossRefGoogle Scholar
  156. 156.
    Vanderlinden E, Naesens L (2014) Emerging antiviral strategies to interfere with influenza virus entry. Med Res Rev 34:301–339.  https://doi.org/10.1002/med.21289 CrossRefPubMedGoogle Scholar
  157. 157.
    Lin D, Luo Y, Yang G et al (2017) Potent influenza A virus entry inhibitors targeting a conserved region of hemagglutinin. Biochem Pharmacol 144:35–51.  https://doi.org/10.1016/j.bcp.2017.07.023 CrossRefPubMedGoogle Scholar
  158. 158.
    López-Martínez R, Ramírez-Salinas GL, Correa-Basurto J, Barrón BL (2013) Inhibition of influenza A virus infection in vitro by peptides designed in silico. PLoS One 8:e76876.  https://doi.org/10.1371/journal.pone.0076876 CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Koday MT, Nelson J, Chevalier A et al (2016) A computationally designed hemagglutinin stem-binding protein provides in vivo protection from influenza independent of a host immune response. PLoS Pathogens 12:e1005409.  https://doi.org/10.1371/journal.ppat.1005409 CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Friedman N, Alter H, Hindiyeh M et al (2018) Human coronavirus infections in Israel: epidemiology, clinical symptoms and summer seasonality of HCoV-HKU1. Viruses 10:515.  https://doi.org/10.3390/v10100515 CrossRefPubMedCentralGoogle Scholar
  161. 161.
    Chinese SARS Molecular Epidemiology Consortium TCSME (2004) Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science 303:1666–1669.  https://doi.org/10.1126/science.1092002 CrossRefGoogle Scholar
  162. 162.
    Kim KH, Tandi TE, Choi JW et al (2017) Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea, 2015: epidemiology, characteristics and public health implications. J Hosp Infect 95:207–213.  https://doi.org/10.1016/j.jhin.2016.10.008 CrossRefPubMedGoogle Scholar
  163. 163.
    Zumla A, Hui DS, Perlman S (2015) Middle East respiratory syndrome. Lancet 386:995–1007.  https://doi.org/10.1016/s0140-6736(15)60454-8 CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Liu C, Feng Y, Gao F et al (2006) Characterization of HCoV-229E fusion core: implications for structure basis of coronavirus membrane fusion. Biochem Biophys Res Commun 345:1108–1115.  https://doi.org/10.1016/j.bbrc.2006.04.141 CrossRefPubMedGoogle Scholar
  165. 165.
    Gao J, Lu G, Qi J et al (2013) Structure of the fusion core and inhibition of fusion by a heptad repeat peptide derived from the S protein of middle east respiratory syndrome coronavirus. J Virol 87:13134–13140.  https://doi.org/10.1128/jvi.02433-13 CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Lu L, Liu Q, Zhu Y et al (2014) Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor. Nat Commun 5:1–12.  https://doi.org/10.1038/ncomms4067 CrossRefGoogle Scholar
  167. 167.
    Sun Y, Zhang H, Shi J et al (2017) Identification of a novel inhibitor against Middle East respiratory syndrome coronavirus. Viruses 9:255.  https://doi.org/10.3390/v9090255 CrossRefPubMedCentralGoogle Scholar
  168. 168.
    Xia S, Xu W, Wang Q et al (2018) Peptide-based membrane fusion inhibitors targeting HCoV-229E spike protein HR1 and HR2 domains. Int J Mol Sci 19:1–15.  https://doi.org/10.3390/ijms19020487 CrossRefGoogle Scholar
  169. 169.
    Fields GB (2001) Introduction to Peptide Synthesis. In: Current Protocols in Protein Science. John Wiley & Sons, Inc., Hoboken, NJ, USA, pp 18.1.1–18.1.9Google Scholar
  170. 170.
    Pattabiraman VR, Bode JW (2011) Rethinking amide bond synthesis. Nature 480:471–479.  https://doi.org/10.1038/nature10702 CrossRefPubMedGoogle Scholar
  171. 171.
    Di L (2014) Strategic approaches to optimizing peptide ADME properties. AAPS J 17:134–143.  https://doi.org/10.1208/s12248-014-9687-3 CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Papo N, Oren Z, Pag U et al (2002) The consequence of sequence alteration of an amphipathic a—helical antimicrobial peptide and its diastereomers. J Biol Chem 277:33913–33921.  https://doi.org/10.1074/jbc.m204928200 CrossRefPubMedGoogle Scholar
  173. 173.
    Lembo D, Donalisio M, Civra A et al (2018) Nanomedicine formulations for the delivery of antiviral drugs: a promising solution for the treatment of viral infections. Expert Opin Drug Deliv 15:93–114.  https://doi.org/10.1080/17425247.2017.1360863 CrossRefPubMedGoogle Scholar
  174. 174.
    Ron-Doitch S, Sawodny B, Kühbacher A et al (2016) Reduced cytotoxicity and enhanced bioactivity of cationic antimicrobial peptides liposomes in cell cultures and 3D epidermis model against HSV. J Control Release 229:163–171.  https://doi.org/10.1016/j.jconrel.2016.03.025 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Universidade de Brasília, Pós-Graduação em Patologia MolecularBrasíliaBrazil
  2. 2.Centro de Análises Bioquímicas e Proteômicas, Pós-graduação em Ciências Genômicas e BiotecnologiaUniversidade Católica de BrasíliaBrasíliaBrazil
  3. 3.S-Inova Biotech, Pós-graduação em Biotecnologia Universidade Católica Dom BoscoCampo GrandeBrazil
  4. 4.Departamento de Botânica e Ecologia, Instituto de BiociênciasUniversidade Federal de Mato GrossoCuiabáBrazil

Personalised recommendations