International Diabetes Federation (2017) IFD Diabetes Atlas, 8th edition
Lim AK (2014) Diabetic nephropathy—complications and treatment. Int J Nephrol Renovasc Dis 7:361–381
CAS
Article
Google Scholar
Doria A (1998) Genetic markers of increased susceptibility to diabetic nephropathy. Horm Res 50(Suppl 1):6–11
CAS
PubMed
Google Scholar
Mooyaart AL, Valk EJJ, Van Es LA et al (2011) Genetic associations in diabetic nephropathy: a meta-analysis. Diabetologia 54:544–553. https://doi.org/10.1007/s00125-010-1996-1
CAS
Article
PubMed
Google Scholar
Boldyrev A, Aldini G, Derave W (2013) Physiology and pathophysiology of carnosine. Physiol Rev 93:1803–1845. https://doi.org/10.1152/physrev.00039.2012
CAS
Article
Google Scholar
Lenney JF, George RP, Weiss AM et al (1982) Human serum carnosinase: characterization, distinction from cellular carnosinase, and activation by cadmium. Clin Chim Acta 123:221–231. https://doi.org/10.1016/0009-8981(82)90166-8
CAS
Article
PubMed
Google Scholar
Teufel M, Saudek V, Ledig JP et al (2003) Sequence identification and characterization of human carnosinase and a closely related non-specific dipeptidase. J Biol Chem 278:6521–6531. https://doi.org/10.1074/jbc.M209764200
CAS
Article
PubMed
Google Scholar
Lenney JF (1976) Specifity and distribution of mammalian carnosinase. Biochem Biophys Acta 429:214–219
CAS
PubMed
Google Scholar
Peters V, Zschocke J, Schmitt CP (2018) Carnosinase, diabetes mellitus and the potential relevance of carnosinase deficiency. J Inherit Metab Dis 41:39–47. https://doi.org/10.1007/s10545-017-0099-2
CAS
Article
PubMed
Google Scholar
Kalyankar G, Meister A (1959) Enzymatic synthesis of carnosine and related β-alanyl and γ-aminobutyryl peptides. J Biol Chem 234:3210–3218. https://doi.org/10.1016/j.tetasy.2009.05.040
CAS
Article
PubMed
Google Scholar
Drozak J, Veiga-da-Cunha M, Vertommen D et al (2010) Molecular identification of carnosine synthase as ATP-grasp domain-containing protein 1 (ATPGD1). J Biol Chem 285:9346–9356. https://doi.org/10.1074/jbc.M109.095505
CAS
Article
PubMed
PubMed Central
Google Scholar
Vistoli G, Orioli M, Pedretti A et al (2009) Design, synthesis, and evaluation of carnosine derivatives as selective and efficient sequestering agents of cytotoxic reactive carbonyl species. ChemMedChem 4:967–975. https://doi.org/10.1002/cmdc.200800433
CAS
Article
PubMed
Google Scholar
Hipkiss AR (2011) Energy metabolism, proteotoxic stress and age-related dysfunction—protection by carnosine. Mol Aspects Med 32:267–278. https://doi.org/10.1016/j.mam.2011.10.004
CAS
Article
PubMed
Google Scholar
Alhamdani MSS, Al-Azzawie HF, Abbas FKH (2007) Decreased formation of advanced glycation end-products in peritoneal fluid by carnosine and related peptides. Perit Dial Int 27:86–89
CAS
PubMed
Google Scholar
Miceli V, Pampalone M, Frazziano G et al (2018) Carnosine protects pancreatic beta cells and islets against oxidative stress damage. Mol Cell Endocrinol 474:105–118. https://doi.org/10.1016/j.mce.2018.02.016
CAS
Article
PubMed
Google Scholar
Sauerhöfer S, Yuan G, Braun GS et al (2007) L-carnosine, a substrate of carnosinase-1, influences glucose metabolism. Diabetes 56:2425–2432. https://doi.org/10.2337/db07-0177
CAS
Article
PubMed
Google Scholar
Baye E, Ukropcova B, Ukropec J et al (2016) Physiological and therapeutic effects of carnosine on cardiometabolic risk and disease. Amino Acids 48:1131–1149. https://doi.org/10.1007/s00726-016-2208-1
CAS
Article
PubMed
Google Scholar
Albrecht T, Schilperoort M, Zhang S et al (2017) Carnosine attenuates the development of both type 2 diabetes and diabetic nephropathy in BTBR ob/ob mice. Sci Rep 7:1–16. https://doi.org/10.1038/srep44492
CAS
Article
Google Scholar
Peters V, Riedl E, Braunagel M et al (2014) Carnosine treatment in combination with ACE inhibition in diabetic rats. Regul Pept 194–195:36–40. https://doi.org/10.1016/j.regpep.2014.09.005
CAS
Article
Google Scholar
Peters V, Lanthaler B, Amberger A et al (2015) Carnosine metabolism in diabetes is altered by reactive metabolites. Amino Acids 47:2367–2376. https://doi.org/10.1007/s00726-015-2024-z
CAS
Article
PubMed
Google Scholar
Janssen B, Hohenadel D, Brinkkoetter P et al (2005) Carnosine as a protective factor in diabetic nephropathy: association with a leucine repeat of the carnosinase gene CNDP1. Diabetes 54:2320–2327. https://doi.org/10.2337/diabetes.54.8.2320
CAS
Article
Google Scholar
Senut M-C, Azher S, Margolis FL, Patei K, Mousa A, Majid A (2012) Distribution of carnosine-like peptides in the nervous system of developing and zebrafish (Danio rerio) and the embryonic effects of chronic carnosine exposure. Cell Tissue Res 29:997–1003. https://doi.org/10.1016/j.biotechadv.2011.08.021.Secreted
Article
Google Scholar
Qiu J, Hauske SJ, Zhang S et al (2018) Identification and characterisation of carnostatine (SAN9812), a potent and selective carnosinase (CN1) inhibitor with in vivo activity. Amino Acids. https://doi.org/10.1007/s00726-018-2601-z
Article
PubMed
Google Scholar
Seth A, Stemple DL, Barroso I (2013) The emerging use of zebrafish to model metabolic disease. Dis Model Mech 6:1080–1088. https://doi.org/10.1242/dmm.011346
CAS
Article
PubMed
PubMed Central
Google Scholar
Heckler K, Kroll J (2017) Zebrafish as a model for the study of microvascular complications of diabetes and their mechanisms. Int J Mol Sci 18:1–9. https://doi.org/10.3390/ijms18092002
CAS
Article
Google Scholar
Perner B, Englert C, Bollig F (2007) The Wilms tumor genes wt1a and wt1b control different steps during formation of the zebrafish pronephros. Dev Biol 309:87–96. https://doi.org/10.1016/j.ydbio.2007.06.022
CAS
Article
PubMed
Google Scholar
Lawson ND, Weinstein BM (2002) In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 248:307–318. https://doi.org/10.1006/dbio.2002.0711
CAS
Article
Google Scholar
Kimmel C, Ballard W, Kimmel S et al (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310
CAS
Article
Google Scholar
Sharma KR, Heckler K, Stoll SJ et al (2016) ELMO1 protects renal structure and ultrafiltration in kidney development and under diabetic conditions. Sci Rep 6:37172. https://doi.org/10.1038/srep37172
CAS
Article
PubMed
PubMed Central
Google Scholar
Jurczyk A, Roy N, Bajwa R et al (2011) Dynamic glucoregulation and mammalian-like responses to metabolic and developmental disruption in zebrafish. Gen Comp Endocrinol 170:334–345. https://doi.org/10.1016/j.ygcen.2010.10.010
CAS
Article
PubMed
Google Scholar
Peters V, Klessens CQF, Baelde HJ et al (2015) Intrinsic carnosine metabolism in the human kidney. Amino Acids 47:2541–2550. https://doi.org/10.1007/s00726-015-2045-7
CAS
Article
PubMed
PubMed Central
Google Scholar
Jao L-E, Wente SR, Chen W (2013) Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci USA 110:13904–13909. https://doi.org/10.1073/pnas.1308335110
Article
PubMed
Google Scholar
Wiggenhauser LM, Kohl K, Dietrich N et al (2017) Studying diabetes through the eyes of a fish: microdissection, visualization, and analysis of the adult tg(fli:EGFP) zebrafish retinal vasculature. J Vis Exp. https://doi.org/10.3791/56674
Article
PubMed
PubMed Central
Google Scholar
Rueden CT, Schindelin J, Hiner MC et al (2017) Image J2: ImageJ for the next generation of scientific image data. BMC Bioinform 18:1–26. https://doi.org/10.1186/s12859-017-1934-z
Article
Google Scholar
Bürstenbinder K, Rzewuski G, Wirtz M et al (2007) The role of methionine recycling for ethylene synthesis in Arabidopsis. Plant J 49:238–249. https://doi.org/10.1111/j.1365-313X.2006.02942.x
CAS
Article
PubMed
Google Scholar
Weger BD, Weger M, Görling B et al (2016) Extensive regulation of diurnal transcription and metabolism by glucocorticoids. PLoS Genet 12:1–24. https://doi.org/10.1371/journal.pgen.1006512
CAS
Article
Google Scholar
Wirtz M, Droux M, Hell R (2004) O-acetylserine (thiol) lyase: an enigmatic enzyme of plant cysteine biosynthesis revisited in Arabidopsis thaliana. J Exp Bot 55:1785–1798. https://doi.org/10.1093/jxb/erh201
CAS
Article
PubMed
Google Scholar
Rabbani N, Thornalley PJ (2014) Measurement of methylglyoxal by stable isotopic dilution analysis LC–MS/MS with corroborative prediction in physiological samples. Nat Protoc 9:1969
CAS
Article
Google Scholar
Oka T, Nishimura Y, Zang L et al (2010) Diet-induced obesity in zebrafish shares common pathophysiological pathways with mammalian obesity. BMC Physiol 10:21. https://doi.org/10.1186/1472-6793-10-21
CAS
Article
PubMed
PubMed Central
Google Scholar
Wilkinson RN, van Eeden FJM (2014) The zebrafish as a model of vascular development and disease. Prog Mol Biol Transl Sci 124:93–122. https://doi.org/10.1016/B978-0-12-386930-2.00005-7
CAS
Article
PubMed
Google Scholar
Amelio I, Cutruzzolá F, Antonov A et al (2014) Serine and glycine metabolism in cancer. Trends Biochem Sci 39:191–198. https://doi.org/10.1016/j.tibs.2014.02.004
CAS
Article
PubMed
PubMed Central
Google Scholar
Kalhan SC, Hanson RW (2012) Resurgence of serine: an often neglected but indispensable amino acid. J Biol Chem 287:19786–19791. https://doi.org/10.1074/jbc.R112.357194
CAS
Article
PubMed
PubMed Central
Google Scholar
Jackson MC, Kucera CM, Lenney JF (1991) Purification and properties of human serum carnosinase. Clin Chim Acta 196:193–205
CAS
Article
Google Scholar
Brownlee M (2001) Biology of diabetic complications. Nature 414:813–820. https://doi.org/10.1038/414813a
CAS
Article
PubMed
Google Scholar
Lo TWC, Westwood ME, McLellan AC et al (1994) Binding and modification of proteins by methylglyoxal under physiological conditions: a kinetic and mechanistic study with Nα-acetylarginine, Nα-acetylcysteine, and Nα-acetyllysine, and bovine serum albumin. J Biol Chem 269:32299–32305
CAS
PubMed
Google Scholar
Jörgens K, Stoll SJ, Pohl J et al (2015) High tissue glucose alters intersomitic blood vessels in zebra fish via methylglyoxal targeting the VEGF receptor signaling cascade. Diabetes 64:213–225. https://doi.org/10.2337/db14-0352
CAS
Article
PubMed
Google Scholar
Kimmel RA, Onder L, Wilfinger A et al (2011) Requirement for Pdx1 in specification of latent endocrine progenitors in zebrafish. BMC Biol 9:75. https://doi.org/10.1186/1741-7007-9-75
CAS
Article
PubMed
PubMed Central
Google Scholar
Song BC, Joo N-S, Aldini G, Yeum K-J (2014) Biological functions of histidine-dipeptides and metabolic syndrome. Nutr Res Pract 8:3. https://doi.org/10.4162/nrp.2014.8.1.3
CAS
Article
PubMed
PubMed Central
Google Scholar
Baye E, Ukropec J, De Courten MP et al (2017) Effect of carnosine supplementation on the plasma lipidome in overweight and obese adults: a pilot randomised controlled trial. Sci Rep 7:1–7. https://doi.org/10.1038/s41598-017-17577-7
CAS
Article
Google Scholar
Peters V, Kebbewar M, Jansen EW et al (2010) Relevance of allosteric conformations and homocarnosine concentration on carnosinase activity. Amino Acids 38:1607–1615. https://doi.org/10.1007/s00726-009-0367-z
CAS
Article
PubMed
Google Scholar
Bando K, Shimotsuji T, Toyoshima H et al (1984) Fluorometric assay of human serum carnosinase activity in normal children, adults and patients with myopathy. Ann Clin Biochem 21(Pt 6):510–514. https://doi.org/10.1177/000456328402100613
CAS
Article
PubMed
Google Scholar
Peñafiel R, Ruzafa C, Monserrat F, Cremades A (2004) Gender-related differences in carnosine, anserine and lysine content of murine skeletal muscle. Amino Acids 26:53–58. https://doi.org/10.1007/s00726-003-0034-8
CAS
Article
PubMed
Google Scholar
Kohen R, Yamamoto Y, Cundy KC, Ames BN (1988) Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc Natl Acad Sci 85:3175–3179. https://doi.org/10.1073/pnas.85.9.3175
CAS
Article
PubMed
Google Scholar
Peters V, Calabrese V, Forsberg E et al (2018) Protective actions of anserine under diabetic conditions. Int J Mol Sci 19:2751. https://doi.org/10.3390/ijms19092751
CAS
Article
PubMed Central
Google Scholar
Van De Poll MCG, Soeters PB, Deutz NEP et al (2004) Renal metabolism of amino acids: its role in interorgan amino acid exchange. Am J Clin Nutr 79:185–197. https://doi.org/10.1093/ajcn/79.2.185
Article
PubMed
Google Scholar
Veiga-da-Cunha M, Chevalier N, Stroobant V et al (2014) Metabolite proofreading in carnosine and homocarnosine synthesis: molecular identification of PM20D2 as β-alanyl-lysine dipeptidase. J Biol Chem 289:19726–19736. https://doi.org/10.1074/jbc.M114.576579
CAS
Article
PubMed
PubMed Central
Google Scholar
Lee YT, Hsu CC, Lin MH et al (2005) Histidine and carnosine delay diabetic deterioration in mice and protect human low density lipoprotein against oxidation and glycation. Eur J Pharmacol 513:145–150. https://doi.org/10.1016/j.ejphar.2005.02.010
CAS
Article
Google Scholar
Pfister F, Riedl E, Wang Q et al (2011) Oral carnosine supplementation prevents vascular damage in experimental diabetic retinopathy. Cell Physiol Biochem 28:125–136. https://doi.org/10.1159/000331721
CAS
Article
PubMed
Google Scholar
Aldini G, Orioli M, Rossoni G et al (2011) The carbonyl scavenger carnosine ameliorates dyslipidaemia and renal function in Zucker obese rats. J Cell Mol Med 15:1339–1354. https://doi.org/10.1111/j.1582-4934.2010.01101.x
CAS
Article
PubMed
Google Scholar
Everaert I, Taes Y, De Heer E et al (2012) Low plasma carnosinase activity promotes carnosinemia after carnosine ingestion in humans. AJP Ren Physiol 302:F1537–F1544. https://doi.org/10.1152/ajprenal.00084.2012
CAS
Article
Google Scholar
De Courten B, Jakubova M, De Courten MPJ et al (2016) Effects of carnosine supplementation on glucose metabolism: pilot clinical trial. Obesity 24:1027–1034. https://doi.org/10.1002/oby.21434
CAS
Article
PubMed
Google Scholar
Houjeghani S, Kheirouri S, Faraji E, Jafarabadi MA (2018) l-Carnosine supplementation attenuated fasting glucose, triglycerides, advanced glycation end products, and tumor necrosis factor–α levels in patients with type 2 diabetes: a double-blind placebo-controlled randomized clinical trial. Nutr Res 49:96–106
CAS
Article
Google Scholar