Skip to main content
Log in

No imprinted XIST expression in pigs: biallelic XIST expression in early embryos and random X inactivation in placentas

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Dosage compensation, which is achieved by X-chromosome inactivation (XCI) in female mammals, ensures balanced X-linked gene expression levels between the sexes. Although eutherian mammals commonly display random XCI in embryonic and adult tissues, imprinted XCI has also been identified in extraembryonic tissues of mouse, rat, and cow. Little is known about XCI in pigs. Here, we sequenced the porcine XIST gene and identified an insertion/deletion mutation between Asian- and Western-origin pig breeds. Allele-specific analysis revealed biallelic XIST expression in porcine ICSI blastocysts. To investigate the XCI pattern in porcine placentas, we performed allele-specific RNA sequencing analysis on individuals from reciprocal crosses between Duroc and Rongchang pigs. Our results were the first to reveal that random XCI occurs in the placentas of pigs. Next, we investigated the H3K27me3 histone pattern in porcine blastocysts, showing that only 17–31.8% cells have attained XCI. The hypomethylation status of an important XIST DMR (differentially methylated region) in gametes and early embryos demonstrated that no methylation is pre-deposited on XIST in pigs. Our findings reveal that the XCI regulation mechanism in pigs is different from that in mice and highlight the importance of further study of the mechanisms regulating XCI during early porcine embryo development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DMR:

Differentially methylated region

E:

Embryonic day

H3K27me3:

Histone H3 lysine 27 trimethylation

ICSI:

Intracytoplasmic sperm injection

ICR:

Imprinting control region

IVF:

In vitro fertilization

Xic:

X inactivation center

PA:

Parthenogenetic

PRC2:

Polycomb repressive complex-2

RFLP:

Restriction fragment length polymorphism

SNP:

Single nucleotide polymorphism

TSS:

Transcription start site

TTS:

Transcription termination site

Xa:

Active X chromosome

XCI:

X-chromosome inactivation

Xi:

Inactive X chromosome

XIST :

X-inactive specific transcript

Xm:

Maternal X chromosome

Xp:

Paternal X chromosome

References

  1. Deng X, Berletch JB, Nguyen DK, Disteche CM (2014) X chromosome regulation: diverse patterns in development, tissues and disease. Nat Rev Genet 15:367–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lyon MF (1961) Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190:372–373

    Article  CAS  PubMed  Google Scholar 

  3. Monk M, Harper MI (1979) Sequential X chromosome inactivation coupled with cellular differentiation in early mouse embryos. Nature 281:311–313

    Article  CAS  PubMed  Google Scholar 

  4. Tan SS, Williams EA, Tam PPL (1993) X-chromosome inactivation occurs at different times in different tissues of the postimplantation mouse embryo. Nat Genet 4:320

    CAS  Google Scholar 

  5. Brockdorff N, Turner BM (2015) Dosage compensation in mammals. Cold Spring Harb Perspect Biol 7:a019406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Takagi N, Sasaki M (1975) Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature 256:640–642

    Article  CAS  PubMed  Google Scholar 

  7. Penny GD, Kay GF, Sheardown SA, Rastan S, Brockdorff N (1996) Requirement for Xist in X chromosome inactivation. Nature 379:131–137

    Article  CAS  PubMed  Google Scholar 

  8. Augui S, Nora EP, Heard E (2011) Regulation of X-chromosome inactivation by the X-inactivation centre. Nat Rev Genet 12:429–442

    Article  CAS  PubMed  Google Scholar 

  9. Sahakyan A, Yang Y, Plath K (2018) The role of Xist in X-chromosome dosage compensation. Trends Cell Biol. https://doi.org/10.1016/j.tcb.2018.05.005

    Article  PubMed  PubMed Central  Google Scholar 

  10. Galupa R, Heard E (2015) X-chromosome inactivation: new insights into cis and trans regulation. Curr Opin Genet Dev 31:57–66

    Article  CAS  PubMed  Google Scholar 

  11. Bonora G, Disteche CM (2017) Structural aspects of the inactive X chromosome. Philos Trans R Soc Lond B Biol Sci 372:20160357. https://doi.org/10.1098/rstb.2016.0357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brockdorff N (2017) Polycomb complexes in X chromosome inactivation. Philos Trans R Soc Lond B Biol Sci 372:20170021. https://doi.org/10.1098/rstb.2017.0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Namekawa SH, Payer B, Huynh KD, Jaenisch R, Lee JT (2010) Two-step imprinted X inactivation: repeat versus genic silencing in the mouse. Mol Cell Biol 30:3187–3205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Okamoto I, Otte AP, Allis CD, Reinberg D, Heard E (2004) Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303:644–649

    Article  CAS  PubMed  Google Scholar 

  15. Oikawa M, Inoue K, Shiura H, Matoba S, Kamimura S et al (2014) Understanding the X chromosome inactivation cycle in mice: a comprehensive view provided by nuclear transfer. Epigenetics 9:204–211

    Article  CAS  PubMed  Google Scholar 

  16. Borensztein M, Okamoto I, Syx L, Guilbaud G, Picard C et al (2017) Contribution of epigenetic landscapes and transcription factors to X-chromosome reactivation in the inner cell mass. Nat Commun 8:1297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Pontier DB, Gribnau J (2011) Xist regulation and function eXplored. Hum Genet 130:223–236

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wake N, Takagi N, Sasaki M (1976) Non-random inactivation of X chromosome in the rat yolk sac. Nature 262:580–581

    Article  CAS  PubMed  Google Scholar 

  19. Xue F, Tian XC, Du F, Kubota C, Taneja M et al (2002) Aberrant patterns of X chromosome inactivation in bovine clones. Nat Genet 31:216–220

    Article  CAS  PubMed  Google Scholar 

  20. Bermejo-Alvarez P, Rizos D, Rath D, Lonergan P, Gutierrez-Adan A (2010) Sex determines the expression level of one third of the actively expressed genes in bovine blastocysts. Proc Natl Acad Sci USA 107:3394–3399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang X, Miller DC, Clark AG, Antczak DF (2012) Random X inactivation in the mule and horse placenta. Genome Res 22:1855–1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tachibana M, Ma H, Sparman ML, Lee HS, Ramsey CM et al (2012) X-chromosome inactivation in monkey embryos and pluripotent stem cells. Dev Biol 371:146–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Petropoulos S, Edsgard D, Reinius B, Deng Q, Panula SP et al (2016) Single-cell RNA-seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell 167:285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sahakyan A, Kim R, Chronis C, Sabri S, Bonora G et al (2017) Human naive pluripotent stem cells model X chromosome dampening and x inactivation. Cell Stem Cell 20:87–101

    Article  CAS  PubMed  Google Scholar 

  25. Moreira de Mello JC, Fernandes GR, Vibranovski MD, Pereira LV (2017) Early X chromosome inactivation during human preimplantation development revealed by single-cell RNA-sequencing. Sci Rep 7:10794

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Vallot C, Patrat C, Collier AJ, Huret C, Casanova M et al (2017) XACT noncoding RNA competes with XIST in the control of X chromosome activity during human early development. Cell Stem Cell 20:102–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Inoue K, Kohda T, Sugimoto M, Sado T, Ogonuki N et al (2010) Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer. Science 330:496–499

    Article  CAS  PubMed  Google Scholar 

  28. Nichols J, Smith A (2009) Naive and primed pluripotent states. Cell Stem Cell 4:487–492

    Article  CAS  PubMed  Google Scholar 

  29. Park CH, Jeong YH, Jeong YI, Lee SY, Jeong YW et al (2012) X-linked gene transcription patterns in female and male in vivo, in vitro and cloned porcine individual blastocysts. PLoS One 7(12):e51398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hwang JY, Kim EB, Ka H, Lee CK (2013) Identification of the porcine XIST gene and its differential CpG methylation status in male and female pig cells. PLoS One 8(9):e73677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Park CH, Uh KJ, Mulligan BP, Jeung EB, Hyun SH et al (2011) Analysis of imprinted gene expression in normal fertilized and uniparental preimplantation porcine embryos. PLoS One 6(7):e22216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Moreira de Mello JC, de Araujo ES, Stabellini R, Fraga AM, de Souza JE et al (2010) Random X inactivation and extensive mosaicism in human placenta revealed by analysis of allele-specific gene expression along the X chromosome. PLoS One 5:e10947

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Wang X, Douglas KC, Vandeberg JL, Clark AG, Samollow PB (2014) Chromosome-wide profiling of X-chromosome inactivation and epigenetic states in fetal brain and placenta of the opossum, Monodelphis domestica. Genome Res 24:70–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cheng HC, Zhang FW, Deng CY, Jiang CD, Xiong YZ et al (2007) NNAT and DIRAS3 genes are paternally expressed in pigs. Genet Sel Evol 39:599–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Groenen MA, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y et al (2012) Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491:393–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bischoff SR, Tsai SQ, Hardison NE, Motsinger-Reif AA, Freking BA et al (2013) Differences in X-chromosome transcriptional activity and cholesterol metabolism between placentae from swine breeds from Asian and Western origins. PLoS One 8:e55345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Du Y, Kragh PM, Zhang X, Purup S, Yang H et al (2005) High overall in vitro efficiency of porcine handmade cloning (HMC) combining partial zona digestion and oocyte trisection with sequential culture. Cloning Stem Cells 7:199–205

    Article  CAS  PubMed  Google Scholar 

  38. Kikuchi K, Nagai T, Kashiwazaki N, Ikeda H, Noguchi J et al (1998) Cryopreservation and ensuing in vitro fertilization ability of boar spermatozoa from epididymides stored at 4 degrees C. Theriogenology 50:615–623

    Article  CAS  PubMed  Google Scholar 

  39. Nakai M, Ito J, Sato K, Noguchi J, Kaneko H et al (2011) Pre-treatment of sperm reduces success of ICSI in the pig. Reproduction 142:285–293

    Article  CAS  PubMed  Google Scholar 

  40. Namekawa SH, Lee JT (2011) Detection of nascent RNA, single-copy DNA and protein localization by immunoFISH in mouse germ cells and preimplantation embryos. Nat Protoc 6(3):270–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yu D, Wang J, Zou H, Feng T, Chen L et al (2018) Silencing of retrotransposon-derived imprinted gene RTL1 is the main cause for postimplantational failures in mammalian cloning. Proc Natl Acad Sci USA 115:E11071–E11080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang J, Zou H, Chen L, Long X, Lan J et al (2017) Convergent and divergent genetic changes in the genome of Chinese and European pigs. Sci Rep 7:8662

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Anders S, Pyl PT, Huber W (2015) HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169

    Article  CAS  PubMed  Google Scholar 

  45. Carrel L, Willard HF (1999) Heterogeneous gene expression from the inactive X chromosome: an X-linked gene that escapes X inactivation in some human cell lines but is inactivated in others. Proc Natl Acad Sci USA 96:7364–7369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ramos-Ibeas P, Sang F, Zhu Q, Tang WWC, Withey S et al (2019) Pluripotency and X chromosome dynamics revealed in pig pre-gastrulating embryos by single cell analysis. Nat Commun 10:500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Zuccotti M, Monk M (1995) Methylation of the mouse Xist gene in sperm and eggs correlates with imprinted Xist expression and paternal X-inactivation. Nat Genet 9:316–320

    Article  CAS  PubMed  Google Scholar 

  48. Quenneville S, Verde G, Corsinotti A, Kapopoulou A, Jakobsson J et al (2011) In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol Cell 44:361–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bischoff SR, Tsai S, Hardison N, Motsinger-Reif AA, Freking BA et al (2009) Characterization of conserved and nonconserved imprinted genes in swine. Biol Reprod 81:906–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kay GF, Barton SC, Surani MA, Rastan S (1994) Imprinting and X-chromosome counting mechanisms determine Xist expression in early mouse development. Cell 77:639–650

    Article  CAS  PubMed  Google Scholar 

  51. Ferguson-Smith A, Lin SP, Tsai CE, Youngson N, Tevendale M (2003) Genomic imprinting—insights from studies in mice. Semin Cell Dev Biol 14:43–49

    Article  CAS  PubMed  Google Scholar 

  52. Kay GF, Penny GD, Patel D, Ashworth A, Brockdorff N et al (1993) Expression of Xist during mouse development suggests a role in the initiation of X-chromosome inactivation. Cell 72:171–182

    Article  CAS  PubMed  Google Scholar 

  53. Nesterova TB, Barton SC, Surani MA, Brockdorff N (2001) Loss of Xist imprinting in diploid parthenogenetic preimplantation embryos. Dev Biol 235:343–350

    Article  CAS  PubMed  Google Scholar 

  54. Carrel L, Willard HF (2005) X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434:400–404

    Article  CAS  PubMed  Google Scholar 

  55. Al Nadaf S, Deakin JE, Gilbert C, Robinson TJ, Graves JA et al (2012) A cross-species comparison of escape from X inactivation in Eutheria: implications for evolution of X chromosome inactivation. Chromosoma 121:71–78

    Article  CAS  PubMed  Google Scholar 

  56. Okamoto I, Patrat C, Thepot D, Peynot N, Fauque P et al (2011) Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development. Nature 472:370–374

    Article  CAS  PubMed  Google Scholar 

  57. Gao Y, Hyttel P, Hall VJ (2011) Dynamic changes in epigenetic marks and gene expression during porcine epiblast specification. Cell Reprogr 13:345–360

    Article  CAS  Google Scholar 

  58. Norris DP, Patel D, Kay GF, Penny GD, Brockdorff N et al (1994) Evidence that random and imprinted Xist expression is controlled by preemptive methylation. Cell 77:41–51

    Article  CAS  PubMed  Google Scholar 

  59. Vallot C, Huret C, Lesecque Y, Resch A, Oudrhiri N et al (2013) XACT, a long noncoding transcript coating the active X chromosome in human pluripotent cells. Nat Genet 45:239–241

    Article  CAS  PubMed  Google Scholar 

  60. Lee JT (2005) Regulation of X-chromosome counting by Tsix and Xite sequences. Science 309:768–771

    Article  CAS  PubMed  Google Scholar 

  61. Sun S, Del Rosario BC, Szanto A, Ogawa Y, Jeon Y et al (2013) Jpx RNA activates Xist by evicting CTCF. Cell 153:1537–1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gontan C, Achame EM, Demmers J, Barakat TS, Rentmeester E et al (2012) RNF12 initiates X-chromosome inactivation by targeting REX1 for degradation. Nature 485:386–390

    Article  CAS  PubMed  Google Scholar 

  63. Navarro P, Chambers I, Karwacki-Neisius V, Chureau C, Morey C et al (2008) Molecular coupling of Xist regulation and pluripotency. Science 321:1693–1695

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by The Agricultural Science and Technology Innovation Program (ASTIP-IAS06, CAAS-XTCX2016010-02) and Transgenic Research Grant 2016ZX08010001.

Author information

Authors and Affiliations

Authors

Contributions

HBZ, SW, and NL designed the research; HYZ, DWY, XGD, JW, LC, YYW, HTX, YXZ, SJZ, YWP, YL, HSH, XMZ, WHD, and YPD performed the experiments and analyzed data. HBZ, SW, HYZ, DWY, XGD, and JW wrote the paper. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Sen Wu or Huabin Zhu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 7395 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, H., Yu, D., Du, X. et al. No imprinted XIST expression in pigs: biallelic XIST expression in early embryos and random X inactivation in placentas. Cell. Mol. Life Sci. 76, 4525–4538 (2019). https://doi.org/10.1007/s00018-019-03123-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03123-3

Keywords

Navigation