Skip to main content
Log in

Multiple roles of CTDK-I throughout the cell

  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The heterotrimeric carboxy-terminal domain kinase I (CTDK-I) in yeast is a cyclin-dependent kinase complex that is evolutionally conserved throughout eukaryotes and phosphorylates the C-terminal domain of the largest subunit of RNA polymerase II (RNApII) on the second-position serine (Ser2) residue of YSPTSPS heptapeptide repeats. CTDK-I plays indispensable roles in transcription elongation and transcription-coupled processing, such as the 3′-end processing of nascent mRNA transcripts. However, recent studies have revealed additional roles of CTDK-I beyond its primary effect on transcription by RNApII. Here, we describe recent advances in the regulation of genomic stability and rDNA integrity by CTDK-I and highlight the previously underappreciated cellular roles of CTDK-I in rRNA synthesis by RNA polymerase I and translational initiation and elongation. These multiple roles of CTDK-I throughout the cell expand our understanding of how this complex functions to coordinate diverse cellular processes through gene expression and how the human orthologue exerts its roles in diseased states such as tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Komili S, Silver PA (2008) Coupling and coordination in gene expression processes: a systems biology view. Nat Rev Genet 9:38

    Article  CAS  PubMed  Google Scholar 

  2. Hsin JP, Manley JL (2012) The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev 26:2119–2137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Srivastava R, Ahn SH (2015) Modifications of RNA polymerase II CTD: connections to the histone code and cellular function. Biotechnol Adv 33:856–872

    Article  CAS  PubMed  Google Scholar 

  4. Lindsey-Boltz LA, Sancar A (2007) RNA polymerase: the most specific damage recognition protein in cellular responses to DNA damage? Proc Natl Acad Sci USA 104:13213–13214

    Article  CAS  PubMed  Google Scholar 

  5. Hanawalt PC, Spivak G (2008) Transcription-coupled DNA repair: two decades of progress and surprises. Nat Rev Mol Cell Biol 9:958–970

    Article  CAS  PubMed  Google Scholar 

  6. Cramer P, Bushnell DA, Kornberg RD (2001) Structural basis of transcription: RNA polymerase II at 2.8 Ångstrom resolution. Science 292:1863–1876

    Article  CAS  PubMed  Google Scholar 

  7. Zaborowska J, Egloff S, Murphy S (2016) The pol II CTD: new twists in the tail. Nat Struct Mol Biol 23:771

    Article  CAS  PubMed  Google Scholar 

  8. Hengartner CJ, Myer VE, Liao SM, Wilson CJ, Koh SS, Young RA (1998) Temporal regulation of RNA polymerase II by Srb10 and Kin28 cyclin-dependent kinases. Mol Cell 2:43–53

    Article  CAS  PubMed  Google Scholar 

  9. Liu Y, Kung C, Fishburn J, Ansari AZ, Shokat KM, Hahn S (2004) Two cyclin-dependent kinases promote RNA polymerase II transcription and formation of the scaffold complex. Mol Cell Biol 24:1721–1735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ansari AZ, Ogirala A, Ptashne M (2005) Transcriptional activating regions target attached substrates to a cyclin-dependent kinase. Proc Natl Acad Sci 102:2346–2349

    Article  CAS  PubMed  Google Scholar 

  11. Allen BL, Taatjes DJ (2015) The mediator complex: a central integrator of transcription. Nat Rev Mol Cell Biol 16:155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yao S, Neiman A, Prelich G (2000) BUR1 and BUR2 encode a divergent cyclin-dependent kinase–cyclin complex important for transcription in vivo. Mol Cell Biol 20:7080–7087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sterner DE, Lee JM, Hardin SE, Greenleaf AL (1995) The yeast carboxyl-terminal repeat domain kinase CTDK-I is a divergent cyclin-cyclin-dependent kinase complex. Mol Cell Biol 15:5716–5724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Qiu H, Hu C, Hinnebusch AG (2009) Phosphorylation of the Pol II CTD by KIN28 enhances BUR1/BUR2 recruitment and Ser2 CTD phosphorylation near promoters. Mol Cell 33:752–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cho E-J, Kobor MS, Kim M, Greenblatt J, Buratowski S (2001) Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. Genes Dev 15:3319–3329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sdano MA, Fulcher JM, Palani S, Chandrasekharan MB, Parnell TJ, Whitby FG, Formosa T, Hill CP (2017) A novel SH2 recognition mechanism recruits Spt6 to the doubly phosphorylated RNA polymerase II linker at sites of transcription. Elife 6:e28723

    Article  PubMed  PubMed Central  Google Scholar 

  17. Vos SM, Farnung L, Boehning M, Wigge C, Linden A, Urlaub H, Cramer P (2018) Structure of activated transcription complex Pol II-DSIF-PAF-SPT6. Nature 560:607–612

    Article  CAS  PubMed  Google Scholar 

  18. Liu Y et al (2009) Phosphorylation of the transcription elongation factor Spt5 by yeast Bur1 kinase stimulates recruitment of the PAF complex. Mol Cell Biol 29:4852–4863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bartkowiak B et al (2010) CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1. Genes Dev 24:2303–2316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee JM, Greenleaf AL (1991) CTD kinase large subunit is encoded by CTK1, a gene required for normal growth of Saccharomyces cerevisiae. Gene Expr J Liver Res 1:149–167

    CAS  Google Scholar 

  21. Karagiannis J, Balasubramanian MK (2007) A cyclin-dependent kinase that promotes cytokinesis through modulating phosphorylation of the carboxy terminal domain of the RNA Pol II Rpb1p sub-unit. PLoS One 2:e433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sukegawa Y, Yamashita A, Yamamoto M (2011) The fission yeast stress-responsive MAPK pathway promotes meiosis via the phosphorylation of Pol II CTD in response to environmental and feedback cues. PLoS Genet 7:e1002387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bowman EA, Kelly WG (2014) RNA polymerase II transcription elongation and Pol II CTD Ser2 phosphorylation: a tail of two kinases. Nucleus 5:224–236

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hautbergue G, Goguel V (2001) Activation of the cyclin-dependent kinase CTDK-I requires the heterodimerization of two unstable subunits. J Biol Chem 276:8005–8013

    Article  CAS  PubMed  Google Scholar 

  25. Saberianfar R, Cunningham-Dunlop S, Karagiannis J (2011) Global gene expression analysis of fission yeast mutants impaired in Ser-2 phosphorylation of the RNA pol II carboxy terminal domain. PLoS One 6:e24694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bowman EA, Bowman CR, Ahn JH, Kelly WG (2013) Phosphorylation of RNA polymerase II is independent of P-TEFb in the C. elegans germline. Development 140:3703–3713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Blazek D et al (2011) The cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes. Genes Dev 25:2158–2172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ahn SH, Keogh MC, Buratowski S (2009) Ctk1 promotes dissociation of basal transcription factors from elongating RNA polymerase II. EMBO J 28:205–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ahn SH, Kim M, Buratowski S (2004) Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3′ end processing. Mol Cell 13:67–76

    Article  CAS  PubMed  Google Scholar 

  30. Govind CK et al (2010) Phosphorylated Pol II CTD recruits multiple HDACs, including Rpd3C(S), for methylation-dependent deacetylation of ORF nucleosomes. Mol Cell 39:234–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ni Z, Schwartz BE, Werner J, Suarez JR, Lis JT (2004) Coordination of transcription, RNA processing, and surveillance by P-TEFb kinase on heat shock genes. Mol Cell 13:55–65

    Article  CAS  PubMed  Google Scholar 

  32. Wyce A et al (2007) H2B ubiquitylation acts as a barrier to Ctk1 nucleosomal recruitment prior to removal by Ubp8 within a SAGA-related complex. Mol Cell 27:275–288

    Article  CAS  PubMed  Google Scholar 

  33. Hampsey M, Kinzy TG (2007) Synchronicity: policing multiple aspects of gene expression by Ctk1. Genes Dev 21:1288–1291

    Article  CAS  PubMed  Google Scholar 

  34. Winsor TS, Bartkowiak B, Bennett CB, Greenleaf AL (2013) A DNA damage response system associated with the phosphoCTD of elongating RNA polymerase II. PLoS One 8:e60909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jeong SJ, Kim HJ, Yang YJ, Seol JH, Jung BY, Han JW, Lee HW, Cho EJ (2005) Role of RNA polymerase II carboxy terminal domain phosphorylation in DNA damage response. J Microbiol 43:516–522

    CAS  PubMed  Google Scholar 

  36. Ostapenko D, Solomon MJ (2003) Budding yeast CTDK-I is required for DNA damage-induced transcription. Eukaryot Cell 2:274–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Westmoreland TJ et al (2009) Comparative genome-wide screening identifies a conserved doxorubicin repair network that is diploid specific in Saccharomyces cerevisiae. PLoS One 4:e5830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. O’Connell BC et al (2010) A genome-wide camptothecin sensitivity screen identifies a mammalian MMS22L-NFKBIL2 complex required for genomic stability. Mol Cell 40:645–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jackson SP (2002) Sensing and repairing DNA double-strand breaks. Carcinogenesis 23:687–696

    Article  CAS  PubMed  Google Scholar 

  40. Pan X, Ye P, Yuan DS, Wang X, Bader JS, Boeke JD (2006) A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell 124:1069–1081

    Article  CAS  PubMed  Google Scholar 

  41. Symington LS (2002) Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 66:630–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ekumi KM et al (2015) Ovarian carcinoma CDK12 mutations misregulate expression of DNA repair genes via deficient formation and function of the Cdk12/CycK complex. Nucleic Acids Res 43:2575–2589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dubbury SJ, Boutz PL, Sharp PA (2018) CDK12 regulates DNA repair genes by suppressing intronic polyadenylation. Nature 564:141–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Popova T et al (2016) Ovarian cancers harboring inactivating mutations in CDK12 display a distinct genomic instability pattern characterized by large tandem duplications. Cancer Res 76:1882–1891

    Article  CAS  PubMed  Google Scholar 

  45. Wu YM et al (2018) Inactivation of CDK12 delineates a distinct immunogenic class of advanced prostate cancer. Cell 173:1770–1782

    Article  CAS  PubMed  Google Scholar 

  46. Popova T et al (2012) Ploidy and large-scale genomic instability consistently identify basal-like breast carcinomas with BRCA1/2 inactivation. Cancer Res 72:5454–5462

    Article  CAS  PubMed  Google Scholar 

  47. Petes TD (1979) Yeast ribosomal DNA genes are located on chromosome XII. Proc Natl Acad Sci 76:410–414

    Article  CAS  PubMed  Google Scholar 

  48. Srivastava R, Srivastava R, Ahn SH (2016) The epigenetic pathways to ribosomal DNA silencing. Microbiol Mol Biol Rev 80:545–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bouchoux C, Hautbergue G, Grenetier S, Carles C, Riva M, Goguel V (2004) CTD kinase I is involved in RNA polymerase I transcription. Nucleic Acids Res 32:5851–5860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yamamoto RT, Nogi Y, Dodd JA, Nomura M (1996) RRN3 gene of Saccharomyces cerevisiae encodes an essential RNA polymerase I transcription factor which interacts with the polymerase independently of DNA template. EMBO J 15:3964–3973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Peyroche G, Milkereit P, Bischler N, Tschochner H, Schultz P, Sentenac A, Carles C, Riva M (2000) The recruitment of RNA polymerase I on rDNA is mediated by the interaction of the A43 subunit with Rrn3. EMBO J 19:5473–5482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Grenetier S, Bouchoux C, Goguel V (2006) CTD kinase I is required for the integrity of the rDNA tandem array. Nucleic Acids Res 34:4996–5006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fath S, Milkereit P, Peyroche G, Riva M, Carles C, Tschochner H (2001) Differential roles of phosphorylation in the formation of transcriptional active RNA polymerase I. Proc Natl Acad Sci 98:14334–14339

    Article  CAS  PubMed  Google Scholar 

  54. Oakes M, Nogi Y, Clark MW, Nomura M (1993) Structural alterations of the nucleolus in mutants of Saccharomyces cerevisiae defective in RNA polymerase I. Mol Cell Biol 13:2441–2455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kobayashi T, Heck DJ, Nomura M, Horiuchi T (1998) Expansion and contraction of ribosomal DNA repeats in Saccharomyces cerevisiae: requirement of replication fork blocking (Fob1) protein and the role of RNA polymerase I. Genes Dev 12:3821–3830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kobayashi T (2014) Ribosomal RNA gene repeats, their stability and cellular senescence. Proc Jpn Acad Ser B Phys Biol Sci 90:119–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Johzuka K, Horiuchi T (2002) Replication fork block protein, Fob1, acts as an rDNA region specific recombinator in S. cerevisiae. Genes Cells 7:99–113

    Article  CAS  PubMed  Google Scholar 

  58. Huang J, Moazed D (2003) Association of the RENT complex with nontranscribed and coding regions of rDNA and a regional requirement for the replication fork block protein Fob1 in rDNA silencing. Genes Dev 17:2162–2176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kaeberlein M, McVey M, Guarente L (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13:2570–2580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Coordes B, Brunger KM, Burger K, Soufi B, Horenk J, Eick D, Olsen JV, Strasser K (2015) Ctk1 function is necessary for full translation initiation activity in Saccharomyces cerevisiae. Eukaryot Cell 14:86–95

    Article  CAS  PubMed  Google Scholar 

  61. Rother S, Strasser K (2007) The RNA polymerase II CTD kinase Ctk1 functions in translation elongation. Genes Dev 21:1409–1421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jackson RJ, Hellen CU, Pestova TV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11:113–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sonenberg N, Hinnebusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136:731–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hinnebusch AG (2005) Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol 59:407–450

    Article  CAS  PubMed  Google Scholar 

  65. Mascarenhas C, Edwards-Ingram LC, Zeef L, Shenton D, Ashe MP, Grant CM (2008) Gcn4 is required for the response to peroxide stress in the yeast Saccharomyces cerevisiae. Mol Biol Cell 19:2995–3007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Deloche O, de la Cruz J, Kressler D, Doere M, Linder P (2004) A membrane transport defect leads to a rapid attenuation of translation initiation in Saccharomyces cerevisiae. Mol Cell 13:357–366

    Article  CAS  PubMed  Google Scholar 

  67. Palmer E, Wilhelm JM, Sherman F (1979) Phenotypic suppression of nonsense mutants in yeast by aminoglycoside antibiotics. Nature 277:148

    Article  CAS  PubMed  Google Scholar 

  68. Singh A, Ursic D, Davies J (1979) Phenotypic suppression and misreading in Saccharomyces cerevisiae. Nature 277:146

    Article  CAS  PubMed  Google Scholar 

  69. Moazed D, Noller HF (1987) Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 327:389

    Article  CAS  PubMed  Google Scholar 

  70. Stansfield I, Jones KM, Herbert P, Lewendon A, Shaw WV, Tuite MF (1998) Missense translation errors in Saccharomyces cerevisiae. J Mol Biol 282:13–24

    Article  CAS  PubMed  Google Scholar 

  71. Synetos D, Frantziou CP, Alksne LE (1996) Mutations in yeast ribosomal proteins S28 and S4 affect the accuracy of translation and alter the sensitivity of the ribosomes to paromomycin. Biochim Biophys Acta 1309:156–166

    Article  PubMed  Google Scholar 

  72. Eustice DC, Wakem LP, Wilhelm JM, Sherman F (1986) Altered 40 S ribosomal subunits in omnipotent suppressors of yeast. J Mol Biol 188:207–214

    Article  CAS  PubMed  Google Scholar 

  73. Napolitano G, Licciardo P, Carbone R, Majello B, Lania L (2002) CDK9 has the intrinsic property to shuttle between nucleus and cytoplasm, and enhanced expression of cyclin T1 promotes its nuclear localization. J Cell Physiol 192:209–215

    Article  CAS  PubMed  Google Scholar 

  74. Choi SH, Martinez TF, Kim S, Donaldson C, Shokhirev MN, Saghatelian A, Jones KA (2019) CDK12 phosphorylates 4E-BP1 to enable mTORC1-dependent translation and mitotic genome stability. Genes Dev 33:418

    Article  CAS  PubMed  Google Scholar 

  75. Menghi F et al (2018) The tandem duplicator phenotype is a prevalent genome-wide cancer configuration driven by distinct gene mutations. Cancer Cell 34:197–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chila R, Guffanti F, Damia G (2016) Role and therapeutic potential of CDK12 in human cancers. Cancer Treat Rev 33:418–435

    Google Scholar 

  77. Livingstone CD, Barton GJ (1993) Protein sequence alignments: a strategy for the hierarchical analysis of residue conservation. Comput Appl Biosci 9:745–756

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Stephen Buratowski for suggestions and insightful comments on the manuscript. This work was supported by a National Research Foundation of Korea (NRF) Grant funded by the South Korean government (no. NRF-2016R1A2B2008217).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Hoon Ahn.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, R., Duan, R. & Ahn, S.H. Multiple roles of CTDK-I throughout the cell. Cell. Mol. Life Sci. 76, 2789–2797 (2019). https://doi.org/10.1007/s00018-019-03118-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03118-0

Keywords

Navigation