Skip to main content
Log in

Expanded targeting scope and enhanced base editing efficiency in rabbit using optimized xCas9(3.7)

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Evolved xCas9(3.7) variant with broad PAM compatibility has been reported in cell lines, while its editing efficiency was site-specific. Here, we show that xCas9(3.7) can recognize a broad PAMs including NGG, NGA, and NGT, in both embryos and Founder (F0) rabbits. Furthermore, the codon-optimized xCas9-derived base editors, exBE4 and exABE, can dramatically improve the base editing efficiencies in rabbit embryos. Our results demonstrated that the optimized xCas9 with expanded PAM compatibility and enhanced base editing efficiency could be used for precise gene modifications in organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The authors state that all data necessary for confirming the conclusions presented in the article are represented fully within the article or from the authors upon request.

References

  1. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science (New York, NY) 339(6121):819–823. https://doi.org/10.1126/science.1231143

    Article  CAS  Google Scholar 

  2. Knott GJ, Doudna JA (2018) CRISPR-Cas guides the future of genetic engineering. Science 361(6405):866–869. https://doi.org/10.1126/science.aat5011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533(7603):420–424. https://doi.org/10.1038/nature17946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR (2017) Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551(7681):464–471. https://doi.org/10.1038/nature24644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kim JS (2018) Precision genome engineering through adenine and cytosine base editing. Nat Plants 4(3):148–151. https://doi.org/10.1038/s41477-018-0115-z

    Article  CAS  PubMed  Google Scholar 

  6. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308. https://doi.org/10.1038/nprot.2013.143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, Zeina CM, Gao X, Rees HA, Lin Z, Liu DR (2018) Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556(7699):57–63. https://doi.org/10.1038/nature26155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gehrke JM, Cervantes O, Clement MK (2018) An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities. Nat Biotechnol 36(10):977–982. https://doi.org/10.1038/nbt.4199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nishimasu H, Shi X (2018) Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 361(6408):1259–1262. https://doi.org/10.1126/science.aas9129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Song Y, Yuan L, Wang Y, Chen M, Deng J, Lv Q, Sui T, Li Z, Lai L (2016) Efficient dual sgRNA-directed large gene deletion in rabbit with CRISPR/Cas9 system. Cell Mol Life Sci CMLS 73(15):2959–2968. https://doi.org/10.1007/s00018-016-2143-z

    Article  CAS  PubMed  Google Scholar 

  11. Concordet JP, Haeussler M (2018) CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res 46(W1):W242–W245. https://doi.org/10.1093/nar/gky354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang Y, Ge X, Yang F, Zhang L, Zheng J, Tan X, Jin ZB, Qu J, Gu F (2014) Comparison of non-canonical PAMs for CRISPR/Cas9-mediated DNA cleavage in human cells. Sci Rep 4:5405. https://doi.org/10.1038/srep05405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Oetting WS, King RA (1999) Molecular basis of albinism: mutations and polymorphisms of pigmentation genes associated with albinism. Hum Mutat 13(2):99–115. https://doi.org/10.1002/(sici)1098-1004(1999)13:2%3c99:aid-humu2%3e3.0.co;2-c

    Article  CAS  PubMed  Google Scholar 

  14. Oetting WS (2000) The tyrosinase gene and oculocutaneous albinism type 1 (OCA1): a model for understanding the molecular biology of melanin formation. Pigment Cell Res 13(5):320–325

    Article  CAS  PubMed  Google Scholar 

  15. Kim K, Ryu SM, Kim ST, Baek G, Kim D, Lim K, Chung E, Kim S, Kim JS (2017) Highly efficient RNA-guided base editing in mouse embryos. Nat Biotechnol 35(5):435–437. https://doi.org/10.1038/nbt.3816

    Article  CAS  PubMed  Google Scholar 

  16. Liu Z, Chen M, Chen S, Deng J, Song Y, Lai L, Li Z (2018) Highly efficient RNA-guided base editing in rabbit. Nat Commun 9(1):2717. https://doi.org/10.1038/s41467-018-05232-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang Y, Qin W, Lu X, Xu J, Huang H, Bai H, Li S, Lin S (2017) Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system. Nat Commun 8(1):118. https://doi.org/10.1038/s41467-017-00175-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zong Y, Wang Y, Li C, Zhang R, Chen K, Ran Y, Qiu JL, Wang D, Gao C (2017) Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol 35(5):438–440. https://doi.org/10.1038/nbt.3811

    Article  CAS  PubMed  Google Scholar 

  19. Shimatani Z, Kashojiya S, Takayama M, Terada R, Arazoe T, Ishii H, Teramura H, Yamamoto T, Komatsu H, Miura K, Ezura H, Nishida K (2017) Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol 35(5):441–443. https://doi.org/10.1038/nbt.3833

    Article  CAS  PubMed  Google Scholar 

  20. Komor AC, Zhao KT, Packer MS, Gaudelli NM, Waterbury AL, Koblan LW, Kim YB, Badran AH, Liu DR (2017) Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T: a base editors with higher efficiency and product purity. Sci Adv 3(8):eaao4774. https://doi.org/10.1126/sciadv.aao4774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cruts M, Theuns J, Van Broeckhoven C (2012) Locus-specific mutation databases for neurodegenerative brain diseases. Hum Mutat 33(9):1340–1344. https://doi.org/10.1002/humu.22117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L et al (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349(6311):704–706. https://doi.org/10.1038/349704a0

    Article  CAS  PubMed  Google Scholar 

  23. Sasaguri H, Nagata K, Sekiguchi M, Fujioka R, Matsuba Y, Hashimoto S, Sato K, Kurup D, Yokota T, Saido TC (2018) Introduction of pathogenic mutations into the mouse Psen1 gene by base editor and target-AID. Nat Commun 9(1):2892. https://doi.org/10.1038/s41467-018-05262-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hua K, Tao X, Yuan F, Wang D, Zhu JK (2018) Precise A·T to G·C base editing in the rice genome. Mol Plant 11(4):627–630. https://doi.org/10.1016/j.molp.2018.02.007

    Article  CAS  PubMed  Google Scholar 

  25. Yan F, Kuang Y, Ren B, Wang J, Zhang D, Lin H, Yang B, Zhou X, Zhou H (2018) High-efficient A·T to G·C base editing by Cas9n-guided tRNA adenosine deaminase in rice. Mol Plant 11(4):631–634. https://doi.org/10.1016/j.molp.2018.02.008

    Article  CAS  PubMed  Google Scholar 

  26. Ryu SM, Koo T, Kim K, Lim K, Baek G, Kim ST, Kim HS, Kim DE, Lee H, Chung E, Kim JS (2017) Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat Biotechnol 36(6):536–539. https://doi.org/10.1038/nbt.4148

    Article  CAS  Google Scholar 

  27. MacArthur DG, Manolio TA, Dimmock DP, Rehm HL, Shendure J, Abecasis GR, Adams DR, Altman RB, Antonarakis SE, Ashley EA, Barrett JC, Biesecker LG, Conrad DF, Cooper GM, Cox NJ, Daly MJ, Gerstein MB, Goldstein DB, Hirschhorn JN, Leal SM, Pennacchio LA, Stamatoyannopoulos JA, Sunyaev SR, Valle D, Voight BF, Winckler W, Gunter C (2014) Guidelines for investigating causality of sequence variants in human disease. Nature 508(7497):469–476. https://doi.org/10.1038/nature13127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Koblan LW, Doman JL, Wilson C (2018) Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat Biotechnol 36(9):843–846. https://doi.org/10.1038/nbt.4172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zafra MP, Schatoff EM, Katti A, Foronda M, Breinig M, Schweitzer AY, Simon A, Han T, Goswami S, Montgomery E, Thibado J, Kastenhuber ER, Sanchez-Rivera FJ, Shi J (2018) Optimized base editors enable efficient editing in cells, organoids and mice. Nat Biotechnol 36(9):888–893. https://doi.org/10.1038/nbt.4194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee JK, Jeong E, Lee J, Jung M, Shin E, Kim YH, Lee K, Jung I, Kim D, Kim S, Kim JS (2018) Directed evolution of CRISPR-Cas9 to increase its specificity. Nat Commun 9(1):3048. https://doi.org/10.1038/s41467-018-05477-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Saito T, Matsuba Y, Mihira N, Takano J, Nilsson P, Itohara S, Iwata N, Saido TC (2014) Single App knock-in mouse models of Alzheimer’s disease. Nat Neurosci 17(5):661–663. https://doi.org/10.1038/nn.3697

    Article  CAS  PubMed  Google Scholar 

  32. Wang X, Li J, Wang Y, Yang B (2018) Efficient base editing in methylated regions with a human APOBEC3A-Cas9 fusion. Nat Biotechnol 36(10):946–949. https://doi.org/10.1038/nbt.4198

    Article  CAS  PubMed  Google Scholar 

  33. Zong Y, Song Q, Li C, Jin S, Zhang D, Wang Y, Qiu JL (2018) Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nat Biotechnol 36:950–953. https://doi.org/10.1038/nbt.4261

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Peiran Hu for assistance at the Embryo Engineering Center for the critical technical assistance.

Funding

This study was financially supported by the National Key Research and Development Program of China Stem Cell and Translational Research (2017YFA0105101), The Program for Changjiang Scholars and Innovative Research Team in University (No.IRT_16R32), The Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16030501, XDA16030503), and Key Research & Development Program of Guangzhou Regenerative Medicine and Health Guangdong Laboratory(2018GZR110104004).

Author information

Authors and Affiliations

Authors

Contributions

ZL, MC, HS, and SC performed the experiment; ZL and LL conceived the idea and provided funding support; ZL, ZL, and LL wrote the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Zhanjun Li or Liangxue Lai.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 10894 kb)

Supplementary material 2 (XLSX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Chen, M., Shan, H. et al. Expanded targeting scope and enhanced base editing efficiency in rabbit using optimized xCas9(3.7). Cell. Mol. Life Sci. 76, 4155–4164 (2019). https://doi.org/10.1007/s00018-019-03110-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03110-8

Keywords

Navigation