Skip to main content
Log in

Chaperone-mediated autophagy degradation of IGF-1Rβ induced by NVP-AUY922 in pancreatic cancer

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Enhancement of insulin-like growth factor 1 receptor (IGF-IR) degradation by heat shock protein 90 (HSP90) inhibitor is a potential antitumor therapeutic strategy. However, very little is known about how IGF-IR protein levels are degraded by HSP90 inhibitors in pancreatic cancer (PC). We found that the HSP90α inhibitor NVP-AUY922 (922) effectively downregulated and destabilized the IGF-1Rβ protein, substantially reduced the levels of downstream signaling molecules (p-AKT, AKT and p-ERK1/2), and resulted in growth inhibition and apoptosis in IGF-1Rβ-overexpressing PC cells. Preincubation with a proteasome or lysosome inhibitor (MG132, 3 MA or CQ) mainly led to IGF-1Rβ degradation via the lysosome degradation pathway, rather than the proteasome-dependent pathway, after PC cells were treated with 922 for 24 h. These results might be associated with the inhibition of pancreatic cellular chymotrypsin–peptidase activity by 922 for 24 h. Interestingly, 922 induced autophagic flux by increasing LC3II expression and puncta formation. However, knockdown of the crucial autophagy component AGT5 and the chemical inhibitor 3 MA-blocked 922-induced autophagy did not abrogate 922-triggered IGF-1Rβ degradation. Furthermore, 922 could enhance chaperone-mediated autophagy (CMA) activity and promote the association between HSP/HSC70 and IGF-1Rβ or LAMP2A in coimmunoprecipitation and immunofluorescence analyses. Silencing of LAMP2A to inhibit CMA activity reversed 922-induced IGF-1Rβ degradation, suggesting that IGF-1Rβ degradation by 922 was partially dependent on the CMA pathway rather than macroautophagy. This finding is mirrored by the identification of the KFERQ-like motif in IGF-1Rβ. These observations support the potential application of 922 for IGF-1Rβ-overexpressing PC therapy and first identify the role of the CMA pathway in IGF-1Rβ degradation by an HSP90 inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

922:

NVP-AUY922

ATG5:

Autophagy-related 5

CHX:

Cycloheximide

CMA:

Chaperone-mediated autophagy

CQ:

Chloroquine

DAPI:

4,6-Diamidino-2-phenylindole

GA:

Geldanamycin

HSC70:

Heat shock cognate 70 kDa

HSP70:

Heat shock 70 kDa protein

HSP90:

Heat shock protein 90

IGF-IR:

Insulin-like growth factor 1 receptor

IC50 :

The drug concentration that inhibited cell growth by 50%

JAK:

Janus kinase

LAMP2A:

Lysosome-associated membrane protein 2

3 MA:

3 Methyladenine

LC3:

Microtubule-associated protein 1 light chain 3 (MAP1LC3)

MAPK:

Mitogen-activated protein kinase

PC:

Pancreatic cancer

PI3K:

Phosphatidyl inositol 3-kinase

PI:

Propidium iodide

STAT:

Signal transducer and activator of transcription

UPS:

Ubiquitin–proteasome system

References

  1. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66(1):7–30. https://doi.org/10.3322/caac.21332

    Article  PubMed  Google Scholar 

  2. Bergmann U, Funatomi H, Yokoyama M, Beger HG, Korc M (1995) Insulin-like growth factor I overexpression in human pancreatic cancer: evidence for autocrine and paracrine roles. Can Res 55(10):2007–2011

    CAS  Google Scholar 

  3. Pollak M (2008) Targeting insulin and insulin-like growth factor signalling in oncology. Curr Opin Pharmacol 8(4):384–392. https://doi.org/10.1016/j.coph.2008.07.004

    Article  CAS  PubMed  Google Scholar 

  4. Rieder S, Michalski CW, Friess H, Kleeff J (2011) Insulin-like growth factor signaling as a therapeutic target in pancreatic cancer. Anticancer Agents Med Chem 11(5):427–433

    Article  CAS  PubMed  Google Scholar 

  5. LeRoith D, Werner H, Beitner-Johnson D, Roberts CT Jr (1995) Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocr Rev 16(2):143–163. https://doi.org/10.1210/edrv-16-2-143

    Article  CAS  PubMed  Google Scholar 

  6. Ullrich A, Gray A, Tam AW, Yang-Feng T, Tsubokawa M, Collins C, Henzel W, Le Bon T, Kathuria S, Chen E et al (1986) Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J 5(10):2503–2512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bondar VM, Sweeney-Gotsch B, Andreeff M, Mills GB, McConkey DJ (2002) Inhibition of the phosphatidylinositol 3′-kinase–AKT pathway induces apoptosis in pancreatic carcinoma cells in vitro and in vivo. Mol Cancer Ther 1(12):989–997

    CAS  PubMed  Google Scholar 

  8. Kulik G, Klippel A, Weber MJ (1997) Antiapoptotic signalling by the insulin-like growth factor I receptor, phosphatidylinositol 3-kinase, and Akt. Mol Cell Biol 17(3):1595–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Breinig M, Mayer P, Harjung A, Goeppert B, Malz M, Penzel R, Neumann O, Hartmann A, Dienemann H, Giaccone G, Schirmacher P, Kern MA, Chiosis G, Rieker RJ (2011) Heat shock protein 90-sheltered overexpression of insulin-like growth factor 1 receptor contributes to malignancy of thymic epithelial tumors. Clin Cancer Research 17(8):2237–2249. https://doi.org/10.1158/1078-0432.CCR-10-1689

    Article  CAS  Google Scholar 

  10. Isaacs JS, Xu W, Neckers L (2003) Heat shock protein 90 as a molecular target for cancer therapeutics. Cancer Cell 3(3):213–217

    Article  CAS  PubMed  Google Scholar 

  11. Lang SA, Moser C, Gaumann A, Klein D, Glockzin G, Popp FC, Dahlke MH, Piso P, Schlitt HJ, Geissler EK, Stoeltzing O (2007) Targeting heat shock protein 90 in pancreatic cancer impairs insulin-like growth factor-I receptor signaling, disrupts an interleukin-6/signal-transducer and activator of transcription 3/hypoxia-inducible factor-1alpha autocrine loop, and reduces orthotopic tumor growth. Clin Cancer Res 13(21):6459–6468. https://doi.org/10.1158/1078-0432.CCR-07-1104

    Article  CAS  PubMed  Google Scholar 

  12. Xue N, Jin J, Liu D, Yan R, Zhang S, Yu X, Chen X (2014) Antiproliferative effect of HSP90 inhibitor Y306zh against pancreatic cancer is mediated by interruption of AKT and MAPK signaling pathways. Curr Cancer Drug Targets 14(7):671–683

    Article  CAS  PubMed  Google Scholar 

  13. Zitzmann K, Ailer G, Vlotides G, Spoettl G, Maurer J, Goke B, Beuschlein F, Auernhammer CJ (2013) Potent antitumor activity of the novel HSP90 inhibitors AUY922 and HSP990 in neuroendocrine carcinoid cells. Int J Oncol 43(6):1824–1832. https://doi.org/10.3892/ijo.2013.2130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wandinger SK, Richter K, Buchner J (2008) The Hsp90 chaperone machinery. J Biol Chem 283(27):18473–18477. https://doi.org/10.1074/jbc.R800007200

    Article  CAS  PubMed  Google Scholar 

  15. Pratt WB, Morishima Y, Osawa Y (2008) The Hsp90 chaperone machinery regulates signaling by modulating ligand binding clefts. J Biol Chem 283(34):22885–22889. https://doi.org/10.1074/jbc.R800023200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Palacios C, Martin-Perez R, Lopez-Perez AI, Pandiella A, Lopez-Rivas A (2010) Autophagy inhibition sensitizes multiple myeloma cells to 17-dimethylaminoethylamino-17-demethoxygeldanamycin-induced apoptosis. Leuk Res 34(11):1533–1538. https://doi.org/10.1016/j.leukres.2010.07.002

    Article  CAS  PubMed  Google Scholar 

  17. He W, Ye X, Huang X, Lel W, You L, Wang L, Chen X, Qian W (2016) Hsp90 inhibitor, BIIB021, induces apoptosis and autophagy by regulating mTOR–Ulk1 pathway in imatinib-sensitive and -resistant chronic myeloid leukemia cells. Int J Oncol 48(4):1710–1720. https://doi.org/10.3892/ijo.2016.3382

    Article  CAS  PubMed  Google Scholar 

  18. Liu KS, Liu H, Qi JH, Liu QY, Liu Z, Xia M, Xing GW, Wang SX, Wang YF (2012) SNX-2112, an Hsp90 inhibitor, induces apoptosis and autophagy via degradation of Hsp90 client proteins in human melanoma A-375 cells. Cancer Lett 318(2):180–188. https://doi.org/10.1016/j.canlet.2011.12.015

    Article  CAS  PubMed  Google Scholar 

  19. Shen S, Zhang P, Lovchik MA, Li Y, Tang L, Chen Z, Zeng R, Ma D, Yuan J, Yu Q (2009) Cyclodepsipeptide toxin promotes the degradation of Hsp90 client proteins through chaperone-mediated autophagy. J Cell Biol 185(4):629–639. https://doi.org/10.1083/jcb.200810183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Qing G, Yan P, Xiao G (2006) Hsp90 inhibition results in autophagy-mediated proteasome-independent degradation of IkappaB kinase (IKK). Cell Res 16(11):895–901. https://doi.org/10.1038/sj.cr.7310109

    Article  CAS  PubMed  Google Scholar 

  21. Hsueh YS, Yen CC, Shih NY, Chiang NJ, Li CF, Chen LT (2013) Autophagy is involved in endogenous and NVP-AUY922-induced KIT degradation in gastrointestinal stromal tumors. Autophagy 9(2):220–233. https://doi.org/10.4161/auto.22802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Riedel M, Goldbaum O, Schwarz L, Schmitt S, Richter-Landsberg C (2010) 17-AAG induces cytoplasmic alpha-synuclein aggregate clearance by induction of autophagy. PLoS ONE 5(1):e8753. https://doi.org/10.1371/journal.pone.0008753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6(4):463–477

    Article  CAS  PubMed  Google Scholar 

  24. Yorimitsu T, Klionsky DJ (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ 12(Suppl 2):1542–1552. https://doi.org/10.1038/sj.cdd.4401765

    Article  CAS  PubMed  Google Scholar 

  25. Majeski AE, Dice JF (2004) Mechanisms of chaperone-mediated autophagy. Int J Biochem Cell Biol 36(12):2435–2444. https://doi.org/10.1016/j.biocel.2004.02.013

    Article  CAS  PubMed  Google Scholar 

  26. Massey AC, Kaushik S, Sovak G, Kiffin R, Cuervo AM (2006) Consequences of the selective blockage of chaperone-mediated autophagy. Proc Natl Acad Sci USA 103(15):5805–5810. https://doi.org/10.1073/pnas.0507436103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen WY, Chang FR, Huang ZY, Chen JH, Wu YC, Wu CC (2008) Tubocapsenolide A, a novel withanolide, inhibits proliferation and induces apoptosis in MDA-MB-231 cells by thiol oxidation of heat shock proteins. J Biol Chem 283(25):17184–17193. https://doi.org/10.1074/jbc.M709447200

    Article  CAS  PubMed  Google Scholar 

  28. Kumar B, Hanson AJ, Prasad KN (2004) Sensitivity of proteasome to its inhibitors increases during cAMP-induced differentiation of neuroblastoma cells in culture and causes decreased viability. Cancer Lett 204(1):53–59

    Article  CAS  PubMed  Google Scholar 

  29. Jiang H, Sun J, Xu Q, Liu Y, Wei J, Young CY, Yuan H, Lou H (2013) Marchantin M: a novel inhibitor of proteasome induces autophagic cell death in prostate cancer cells. Cell Death Dis 4:e761. https://doi.org/10.1038/cddis.2013.285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer 2(7):489–501. https://doi.org/10.1038/nrc839

    Article  CAS  PubMed  Google Scholar 

  31. Yu Y, Hamza A, Zhang T, Gu M, Zou P, Newman B, Li Y, Gunatilaka AA, Zhan CG, Sun D (2010) Withaferin A targets heat shock protein 90 in pancreatic cancer cells. Biochem Pharmacol 79(4):542–551. https://doi.org/10.1016/j.bcp.2009.09.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N (2004) The role of autophagy during the early neonatal starvation period. Nature 432(7020):1032–1036. https://doi.org/10.1038/nature03029

    Article  CAS  PubMed  Google Scholar 

  33. Kiffin R, Christian C, Knecht E, Cuervo AM (2004) Activation of chaperone-mediated autophagy during oxidative stress. Mol Biol Cell 15(11):4829–4840. https://doi.org/10.1091/mbc.E04-06-0477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chiang HL, Dice JF (1988) Peptide sequences that target proteins for enhanced degradation during serum withdrawal. J Biol Chem 263(14):6797–6805

    CAS  PubMed  Google Scholar 

  35. Ding WX, Ni HM, Gao W, Yoshimori T, Stolz DB, Ron D, Yin XM (2007) Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. Am J Pathol 171(2):513–524. https://doi.org/10.2353/ajpath.2007.070188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Navab R, Chevet E, Authier F, Di Guglielmo GM, Bergeron JJ, Brodt P (2001) Inhibition of endosomal insulin-like growth factor-I processing by cysteine proteinase inhibitors blocks receptor-mediated functions. J Biol Chem 276(17):13644–13649. https://doi.org/10.1074/jbc.M100019200

    Article  CAS  PubMed  Google Scholar 

  37. Yamano T, Mizukami S, Murata S, Chiba T, Tanaka K, Udono H (2008) Hsp90-mediated assembly of the 26 S proteasome is involved in major histocompatibility complex class I antigen processing. J Biol Chem 283(42):28060–28065. https://doi.org/10.1074/jbc.M803077200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Opattova A, Filipcik P, Cente M, Novak M (2013) Intracellular degradation of misfolded tau protein induced by geldanamycin is associated with activation of proteasome. J Alzheimer’s Dis (JAD) 33(2):339–348. https://doi.org/10.3233/JAD-2012-121072

    Article  CAS  Google Scholar 

  39. Nam S, Smith DM, Dou QP (2001) Ester bond-containing tea polyphenols potently inhibit proteasome activity in vitro and in vivo. J Biol Chem 276(16):13322–13330. https://doi.org/10.1074/jbc.M004209200

    Article  CAS  PubMed  Google Scholar 

  40. Yin Z, Henry EC, Gasiewicz TA (2009) (−)-Epigallocatechin-3-gallate is a novel Hsp90 inhibitor. Biochemistry 48(2):336–345. https://doi.org/10.1021/bi801637q

    Article  CAS  PubMed  Google Scholar 

  41. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19(21):5720–5728. https://doi.org/10.1093/emboj/19.21.5720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hansen TE, Johansen T (2011) Following autophagy step by step. BMC Biol 9:39. https://doi.org/10.1186/1741-7007-9-39

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rubinsztein DC, Gestwicki JE, Murphy LO, Klionsky DJ (2007) Potential therapeutic applications of autophagy. Nat Rev Drug Discov 6(4):304–312. https://doi.org/10.1038/nrd2272

    Article  CAS  PubMed  Google Scholar 

  44. Samarasinghe B, Wales CT, Taylor FR, Jacobs AT (2014) Heat shock factor 1 confers resistance to Hsp90 inhibitors through p62/SQSTM1 expression and promotion of autophagic flux. Biochem Pharmacol 87(3):445–455. https://doi.org/10.1016/j.bcp.2013.11.014

    Article  CAS  PubMed  Google Scholar 

  45. Bandyopadhyay U, Kaushik S, Varticovski L, Cuervo AM (2008) The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Mol Cell Biol 28(18):5747–5763. https://doi.org/10.1128/MCB.02070-07

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bejarano E, Cuervo AM (2010) Chaperone-mediated autophagy. Proc Am Thorac Soc 7(1):29–39. https://doi.org/10.1513/pats.200909-102JS

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kaushik S, Cuervo AM (2009) Methods to monitor chaperone-mediated autophagy. Methods Enzymol 452:297–324. https://doi.org/10.1016/S0076-6879(08)03619-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li W, Yang Q, Mao Z (2011) Chaperone-mediated autophagy: machinery, regulation and biological consequences. Cell Mol Life Sci (CMLS) 68(5):749–763. https://doi.org/10.1007/s00018-010-0565-6

    Article  CAS  Google Scholar 

  49. Ali AB, Nin DS, Tam J, Khan M (2011) Role of chaperone mediated autophagy (CMA) in the degradation of misfolded N-CoR protein in non-small cell lung cancer (NSCLC) cells. PLoS ONE 6(9):e25268. https://doi.org/10.1371/journal.pone.0025268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xia HG, Najafov A, Geng J, Galan-Acosta L, Han X, Guo Y, Shan B, Zhang Y, Norberg E, Zhang T, Pan L, Liu J, Coloff JL, Ofengeim D, Zhu H, Wu K, Cai Y, Yates JR, Zhu Z, Yuan J, Vakifahmetoglu-Norberg H (2016) Correction: Degradation of HK2 by chaperone-mediated autophagy promotes metabolic catastrophe and cell death. J Cell Biol 212(7):881–882. https://doi.org/10.1083/jcb.20150304403082016c

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hubbi ME, Hu H, Kshitiz Ahmed I, Levchenko A, Semenza GL (2013) Chaperone-mediated autophagy targets hypoxia-inducible factor-1alpha (HIF-1alpha) for lysosomal degradation. J Biol Chem 288(15):10703–10714. https://doi.org/10.1074/jbc.M112.414771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhou J, Yang J, Fan X, Hu S, Zhou F, Dong J, Zhang S, Shang Y, Jiang X, Guo H, Chen N, Xiao X, Sheng J, Wu K, Nie Y, Fan D (2016) Chaperone-mediated autophagy regulates proliferation by targeting RND3 in gastric cancer. Autophagy 12(3):515–528. https://doi.org/10.1080/15548627.2015.1136770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Saha T (2012) LAMP2A overexpression in breast tumors promotes cancer cell survival via chaperone-mediated autophagy. Autophagy 8(11):1643–1656. https://doi.org/10.4161/auto.21654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Suzuki J, Nakajima W, Suzuki H, Asano Y, Tanaka N (2017) Chaperone-mediated autophagy promotes lung cancer cell survival through selective stabilization of the pro-survival protein, MCL1. Biochem Biophys Res Commun 482(4):1334–1340. https://doi.org/10.1016/j.bbrc.2016.12.037

    Article  CAS  PubMed  Google Scholar 

  55. Lee JH, Gao J, Kosinski PA, Elliman SJ, Hughes TE, Gromada J, Kemp DM (2013) Heat shock protein 90 (HSP90) inhibitors activate the heat shock factor 1 (HSF1) stress response pathway and improve glucose regulation in diabetic mice. Biochem Biophys Res Commun 430(3):1109–1113. https://doi.org/10.1016/j.bbrc.2012.12.029

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (81573466). We thank Ms. Long Long for her assistance in the high content analysis experiments using an InCell Analyzer 1000.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Jin or Xiaoguang Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6875 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, N., Lai, F., Du, T. et al. Chaperone-mediated autophagy degradation of IGF-1Rβ induced by NVP-AUY922 in pancreatic cancer. Cell. Mol. Life Sci. 76, 3433–3447 (2019). https://doi.org/10.1007/s00018-019-03080-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03080-x

Keywords

Navigation