Advertisement

Cellular and Molecular Life Sciences

, Volume 76, Issue 11, pp 2171–2183 | Cite as

Cancer targeting peptides

  • Mona Kalmouni
  • Sumaya Al-Hosani
  • Mazin MagzoubEmail author
Review

Abstract

Despite continuing advances in the development of biomacromolecules for therapeutic purposes, successful application of these often large and hydrophilic molecules has been hindered by their inability to efficiently traverse the cellular plasma membrane. In recent years, cell-penetrating peptides (CPPs) have received considerable attention as a promising class of delivery vectors due to their ability to mediate the efficient import of a large number of cargoes in vitro and in vivo. However, the lack of target specificity of CPPs remains a major obstacle to their clinical development. To address this issue, researchers have developed strategies in which chemotherapeutic drugs are conjugated to cancer targeting peptides (CTPs) that exploit the unique characteristics of the tumor microenvironment or cancer cells, thereby improving cancer cell specificity. This review highlights several of these strategies that are currently in use, and discusses how multi-component nanoparticles conjugated to CTPs can be designed to provide a more efficient cancer therapeutic delivery strategy.

Keywords

Hypoxia Low pH Metabolism Nanoplatforms Proteases Targeted therapy Tumors 

Notes

Acknowledgements

The authors thank Professor David Male (The Open University) for critical reading of the manuscript. This work was supported by funding from NYU Abu Dhabi (Research Grant) and an ADEK Award for Research Excellence Grant (AARE17-089) to M.M.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing financial interests.

References

  1. 1.
    Juliano R (2007) Challenges to macromolecular drug delivery. Portland Press Limited, LondonCrossRefGoogle Scholar
  2. 2.
    Bolhassani A (2011) Potential efficacy of cell-penetrating peptides for nucleic acid and drug delivery in cancer. Biochim Biophys Acta (BBA) Rev Cancer 1816(2):232–246CrossRefGoogle Scholar
  3. 3.
    McErlean EM, McCrudden CM, McCarthy HO (2015) Multifunctional delivery systems for cancer gene therapy. In: Hashad D (ed) Gene therapy—principles and challenges. InTech, LondonGoogle Scholar
  4. 4.
    Regberg J, Srimanee A, Langel Ü (2012) Applications of cell-penetrating peptides for tumor targeting and future cancer therapies. Pharmaceuticals 5(9):991–1007CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Magzoub M, Gräslund A (2004) Cell-penetrating peptides: small from inception to application. Q Rev Biophys 37(2):147–195CrossRefPubMedGoogle Scholar
  6. 6.
    Reissmann S (2014) Cell penetration: scope and limitations by the application of cell-penetrating peptides. J Pept Sci 20(10):760–784CrossRefPubMedGoogle Scholar
  7. 7.
    Derossi D et al (1994) The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 269(14):10444–10450PubMedGoogle Scholar
  8. 8.
    Vives E, Brodin P, Lebleu B (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272(25):16010–16017CrossRefPubMedGoogle Scholar
  9. 9.
    Zorko M, Langel Ü (2005) Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev 57(4):529–545CrossRefPubMedGoogle Scholar
  10. 10.
    Snyder EL, Dowdy SF (2004) Cell penetrating peptides in drug delivery. Pharm Res 21(3):389–393CrossRefPubMedGoogle Scholar
  11. 11.
    Schwarze SR et al (1999) In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285(5433):1569–1572CrossRefPubMedGoogle Scholar
  12. 12.
    Josephson L et al (1999) High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug Chem 10(2):186–191CrossRefPubMedGoogle Scholar
  13. 13.
    Jiang Q-Y et al (2011) Gene delivery to tumor cells by cationic polymeric nanovectors coupled to folic acid and the cell-penetrating peptide octaarginine. Biomaterials 32(29):7253–7262CrossRefPubMedGoogle Scholar
  14. 14.
    Asai T et al (2014) Cell-penetrating peptide-conjugated lipid nanoparticles for siRNA delivery. Biochem Biophys Res Commun 444(4):599–604CrossRefPubMedGoogle Scholar
  15. 15.
    Lehto T, Kurrikoff K, Langel Ü (2012) Cell-penetrating peptides for the delivery of nucleic acids. Expert Opin Drug Deliv 9(7):823–836CrossRefPubMedGoogle Scholar
  16. 16.
    Juliano RL et al (2009) Cell-targeting and cell-penetrating peptides for delivery of therapeutic and imaging agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(3):324–335CrossRefPubMedGoogle Scholar
  17. 17.
    Bechara C, Sagan S (2013) Cell-penetrating peptides: 20 years later, where do we stand? FEBS Lett 587(12):1693–1702CrossRefPubMedGoogle Scholar
  18. 18.
    Raucher D, Ryu JS (2015) Cell-penetrating peptides: strategies for anticancer treatment. Trends Mol Med 21(9):560–570CrossRefPubMedGoogle Scholar
  19. 19.
    Foged C, Nielsen HM (2008) Cell-penetrating peptides for drug delivery across membrane barriers. Expert Opin Drug Deliv 5(1):105–117CrossRefPubMedGoogle Scholar
  20. 20.
    Subrizi A et al (2012) Tat (48-60) peptide amino acid sequence is not unique in its cell penetrating properties and cell-surface glycosaminoglycans inhibit its cellular uptake. J Control Release 158(2):277–285CrossRefPubMedGoogle Scholar
  21. 21.
    Åmand HL et al (2008) Stimulated endocytosis in penetratin uptake: effect of arginine and lysine. Biochem Biophys Res Commun 371(4):621–625CrossRefPubMedGoogle Scholar
  22. 22.
    Mitchell DJ et al (2000) Polyarginine enters cells more efficiently than other polycationic homopolymers. J Pept Res 56(5):318–325CrossRefPubMedGoogle Scholar
  23. 23.
    Kalafatovic D, Giralt E (2017) Cell-penetrating peptides: design strategies beyond primary structure and amphipathicity. Molecules 22(11):1929CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Franz J et al (2016) SAP (E)—a cell-penetrating polyproline helix at lipid interfaces. Biochim Biophys Acta (BBA) Biomembr 1858(9):2028–2034CrossRefGoogle Scholar
  25. 25.
    Kristensen M, Birch D, Mørck Nielsen H (2016) Applications and challenges for use of cell-penetrating peptides as delivery vectors for peptide and protein cargos. Int J Mol Sci 17(2):185CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Rydberg HA et al (2012) Effects of tryptophan content and backbone spacing on the uptake efficiency of cell-penetrating peptides. Biochemistry 51(27):5531–5539CrossRefPubMedGoogle Scholar
  27. 27.
    Borrelli A et al (2018) Cell penetrating peptides as molecular carriers for anti-cancer agents. Molecules 23(2):295CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Rydström A et al (2011) Direct translocation as major cellular uptake for CADY self-assembling peptide-based nanoparticles. PLoS One 6(10):e25924CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Guo Z et al (2016) Cell-penetrating peptides: possible transduction mechanisms and therapeutic applications. Biomed Rep 4(5):528–534CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Simeoni F et al (2003) Insight into the mechanism of the peptide-based gene delivery system MPG: implications for delivery of siRNA into mammalian cells. Nucleic Acids Res 31(11):2717–2724CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Copolovici DM et al (2014) Cell-penetrating peptides: design, synthesis, and applications. ACS Nano 8(3):1972–1994CrossRefPubMedGoogle Scholar
  32. 32.
    Avci F, Sariyar Akbulut B, Ozkirimli E (2018) Membrane active peptides and their biophysical characterization. Biomolecules 8(3):77CrossRefPubMedCentralGoogle Scholar
  33. 33.
    Mussbach F et al (2011) Transduction of peptides and proteins into live cells by cell penetrating peptides. J Cell Biochem 112(12):3824–3833CrossRefPubMedGoogle Scholar
  34. 34.
    Brock R (2014) The uptake of arginine-rich cell-penetrating peptides: putting the puzzle together. Bioconjug Chem 25(5):863–868CrossRefPubMedGoogle Scholar
  35. 35.
    Vivès E, Schmidt J, Pèlegrin A (2008) Cell-penetrating and cell-targeting peptides in drug delivery. Biochim Biophys Acta (BBA) Rev Cancer 1786(2):126–138CrossRefGoogle Scholar
  36. 36.
    LeCher JC, Nowak SJ, McMurry JL (2017) Breaking in and busting out: cell-penetrating peptides and the endosomal escape problem. Biomol Concepts 8(3–4):131–141PubMedPubMedCentralGoogle Scholar
  37. 37.
    Jiang T et al (2004) Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proc Natl Acad Sci USA 101(51):17867–17872CrossRefPubMedGoogle Scholar
  38. 38.
    Huang S et al (2013) Tumor targeting and microenvironment-responsive nanoparticles for gene delivery. Biomaterials 34(21):5294–5302CrossRefPubMedGoogle Scholar
  39. 39.
    Jiang B (2017) Aerobic glycolysis and high level of lactate in cancer metabolism and microenvironment. Genes Dis 4(1):25–27CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Nguyen VP et al (2015) A novel soluble peptide with pH-responsive membrane insertion. Biochemistry 54(43):6567–6575CrossRefPubMedGoogle Scholar
  41. 41.
    Gao W, Chan JM, Farokhzad OC (2010) pH-responsive nanoparticles for drug delivery. Mol Pharm 7(6):1913–1920CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Daumar P et al (2012) Efficient 18F-labeling of large 37-amino-acid pHLIP peptide analogues and their biological evaluation. Bioconjug Chem 23(8):1557–1566CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Reshetnyak YK et al (2011) Measuring tumor aggressiveness and targeting metastatic lesions with fluorescent pHLIP. Mol Imaging Biol 13(6):1146–1156CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Vāvere AL et al (2009) A novel technology for the imaging of acidic prostate tumors by positron emission tomography. Can Res 69(10):4510–4516CrossRefGoogle Scholar
  45. 45.
    Karabadzhak AG et al (2014) pHLIP-FIRE, a cell insertion-triggered fluorescent probe for imaging tumors demonstrates targeted cargo delivery in vivo. ACS Chem Biol 9(11):2545–2553CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    An M et al (2010) pH-(low)-insertion-peptide (pHLIP) translocation of membrane impermeable phalloidin toxin inhibits cancer cell proliferation. Proc Natl Acad Sci 107(47):20246–20250CrossRefPubMedGoogle Scholar
  47. 47.
    Moshnikova A et al (2013) Antiproliferative effect of pHLIP-amanitin. Biochemistry 52(7):1171–1178CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Reshetnyak YK et al (2006) Translocation of molecules into cells by pH-dependent insertion of a transmembrane helix. Proc Natl Acad Sci 103(17):6460–6465CrossRefPubMedGoogle Scholar
  49. 49.
    Hunt JF et al (1997) Spontaneous, pH-dependent membrane insertion of a transbilayer α-helix. Biochemistry 36(49):15177–15192CrossRefPubMedGoogle Scholar
  50. 50.
    Andreev OA, Engelman DM, Reshetnyak YK (2014) Targeting diseased tissues by pHLIP insertion at low cell surface pH. Front Physiol 5:1–7CrossRefGoogle Scholar
  51. 51.
    Yao L et al (2013) pHLIP peptide targets nanogold particles to tumors. Proc Natl Acad Sci 110(2):465–470CrossRefPubMedGoogle Scholar
  52. 52.
    Andreev OA, Engelman DM, Reshetnyak YK (2009) Targeting acidic diseased tissue: new technology based on use of the pH (Low) Insertion Peptide (pHLIP). Chim Oggi 27(2):34PubMedPubMedCentralGoogle Scholar
  53. 53.
    Andreev OA, Engelman DM, Reshetnyak YK (2010) pH-sensitive membrane peptides (pHLIPs) as a novel class of delivery agents. Mol Membr Biol 27(7):341–352CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Deacon JC, Engelman DM, Barrera FN (2015) Targeting acidity in diseased tissues: mechanism and applications of the membrane-inserting peptide, pHLIP. Arch Biochem Biophys 565:40–48CrossRefPubMedGoogle Scholar
  55. 55.
    Zoonens M, Reshetnyak YK, Engelman DM (2008) Bilayer interactions of pHLIP, a peptide that can deliver drugs and target tumors. Biophys J 95(1):225–235CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Wei Y et al (2017) pH-responsive pHLIP (pH low insertion peptide) nanoclusters of superparamagnetic iron oxide nanoparticles as a tumor-selective MRI contrast agent. Acta Biomater 55:194–203CrossRefPubMedGoogle Scholar
  57. 57.
    Wyatt LC, Lewis JS, Andreev OA, Reshetnyak YK, Engelman DM (2017) Applications of pHLIP technology for cancer imaging and therapy. Trends Biotechnol 35(7):653–664CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Weerakkody D et al (2013) Family of pH (low) insertion peptides for tumor targeting. Proc Natl Acad Sci 110(15):5834–5839CrossRefPubMedGoogle Scholar
  59. 59.
    Reshetnyak YK et al (2008) Energetics of peptide (pHLIP) binding to and folding across a lipid bilayer membrane. Proc Natl Acad Sci 105(40):15340–15345CrossRefPubMedGoogle Scholar
  60. 60.
    Wijesinghe D et al (2013) pH dependent transfer of nano-pores into membrane of cancer cells to induce apoptosis. Sci Rep 3:3560CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Song Q et al (2016) A smart tumor targeting peptide–drug conjugate, pHLIP-SS-DOX: synthesis and cellular uptake on MCF-7 and MCF-7/Adr cells. Drug Deliv 23(5):1734–1746PubMedGoogle Scholar
  62. 62.
    Kyrychenko A (2015) NANOGOLD decorated by pHLIP peptide: comparative force field study. Phys Chem Chem Phys 17(19):12648–12660CrossRefPubMedGoogle Scholar
  63. 63.
    Anderson MD (2015) Development of new tools for study of tumor microenvironment. Open access Dissertations. Paper 359Google Scholar
  64. 64.
    Demoin DW et al (2016) PET imaging of extracellular pH in tumors with 64Cu-and 18F-labeled pHLIP peptides: a structure–activity optimization study. Bioconjug Chem 27(9):2014–2023CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Andreev OA et al (2010) pH (low) insertion peptide (pHLIP) inserts across a lipid bilayer as a helix and exits by a different path. Proc Natl Acad Sci 107(9):4081–4086CrossRefPubMedGoogle Scholar
  66. 66.
    Karabadzhak AG et al (2012) Modulation of the pHLIP transmembrane helix insertion pathway. Biophys J 102(8):1846–1855CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Shu NS et al (2015) Residue-specific structures and membrane locations of pH-low insertion peptide by solid-state nuclear magnetic resonance. Nat Commun 6:1–10CrossRefGoogle Scholar
  68. 68.
    Hanz SZ et al (2016) Protonation-driven membrane insertion of a pH-low insertion peptide. Angew Chem Int Ed 55(40):12376–12381CrossRefGoogle Scholar
  69. 69.
    Narayanan T et al (2016) pHLIP peptide interaction with a membrane monitored by SAXS. J Phys Chem B 120(44):11484–11491CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Daniels JL et al (2017) Synthesis and characterization of pHLIP® coated gold nanoparticles. Biochem Biophys Rep 10:62–69PubMedPubMedCentralGoogle Scholar
  71. 71.
    Scott HL et al (2015) The negative charge of the membrane has opposite effects on the membrane entry and exit of pH-low insertion peptide. Biochemistry 54(9):1709–1712CrossRefPubMedGoogle Scholar
  72. 72.
    Gupta C, Mertz B (2017) Protonation Enhances the Inherent Helix-Forming Propensity of pHLIP. ACS Omega 2(11):8536–8542CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Sosunov EA et al (2013) pH (low) insertion peptide (pHLIP) targets ischemic myocardium. Proc Natl Acad Sci 110(1):82–86CrossRefPubMedGoogle Scholar
  74. 74.
    Van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9(2):112–124CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Vasquez-Montes V et al (2018) Comparison of lipid-dependent bilayer insertion of pHLIP and its P20G variant. Biochim Biophys Acta (BBA) Biomembr 1860(2):534–543CrossRefGoogle Scholar
  76. 76.
    Kyrychenko A et al (2015) Lipid headgroups modulate membrane insertion of pHLIP peptide. Biophys J 108(4):791–794CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Wyatt LC et al (2018) Peptides of pHLIP family for targeted intracellular and extracellular delivery of cargo molecules to tumors. Proc Natl Acad Sci 115(12):E2811–E2818CrossRefPubMedGoogle Scholar
  78. 78.
    Petrova V et al (2018) The hypoxic tumour microenvironment. Oncogenesis 7(1):10CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Kim Y et al (2009) Hypoxic tumor microenvironment and cancer cell differentiation. Curr Mol Med 9(4):425–434CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Majmundar AJ, Wong WJ, Simon MC (2010) Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell 40(2):294–309CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Harada H, Hiraoka M, Kizaka-Kondoh S (2002) Antitumor effect of TAT-oxygen-dependent degradation-caspase-3 fusion protein specifically stabilized and activated in hypoxic tumor cells. Can Res 62(7):2013–2018Google Scholar
  82. 82.
    Nalla AK et al (2010) Targeting MMP-9, uPAR, and cathepsin B inhibits invasion, migration and activates apoptosis in prostate cancer cells. Cancer Gene Ther 17(9):599CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Polette M et al (2004) Tumour invasion and matrix metalloproteinases. Crit Rev Oncol Hematol 49(3):179–186CrossRefPubMedGoogle Scholar
  84. 84.
    Weidle UH, Tiefenthaler G, Georges G (2014) Proteases as activators for cytotoxic prodrugs in antitumor therapy. Cancer Genom Proteom 11(2):67–79Google Scholar
  85. 85.
    Olson ES et al (2009) In vivo characterization of activatable cell penetrating peptides for targeting protease activity in cancer. Integr Biol 1(5–6):382–393CrossRefGoogle Scholar
  86. 86.
    Hofmann H-S et al (2005) Matrix metalloproteinase-12 expression correlates with local recurrence and metastatic disease in non-small cell lung cancer patients. Clin Cancer Res 11(3):1086–1092PubMedGoogle Scholar
  87. 87.
    Gong Y, Chippada-Venkata UD, Oh WK (2014) Roles of matrix metalloproteinases and their natural inhibitors in prostate cancer progression. Cancers 6(3):1298–1327CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    van Duijnhoven SM et al (2011) Tumor targeting of MMP-2/9 activatable cell-penetrating imaging probes is caused by tumor-independent activation. J Nucl Med 52(2):279–286CrossRefPubMedGoogle Scholar
  89. 89.
    Aguilera TA et al (2009) Systemic in vivo distribution of activatable cell penetrating peptides is superior to that of cell penetrating peptides. Integr Biol 1(5–6):371–381CrossRefGoogle Scholar
  90. 90.
    Anderson CF, Cui H (2017) Protease-sensitive nanomaterials for cancer therapeutics and imaging. Ind Eng Chem Res 56(20):5761–5777CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Shi N-Q et al (2012) Enhancing cellular uptake of activable cell-penetrating peptide–doxorubicin conjugate by enzymatic cleavage. Int J Nanomed 7:1613Google Scholar
  92. 92.
    Jiang T et al (2004) Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proc Natl Acad Sci 101(51):17867–17872CrossRefPubMedGoogle Scholar
  93. 93.
    Nguyen QT et al (2010) Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival. Proc Natl Acad Sci 107(9):4317–4322CrossRefPubMedGoogle Scholar
  94. 94.
    Malhotra M et al (2013) Development and characterization of chitosan-PEG-TAT nanoparticles for the intracellular delivery of siRNA. Int J Nanomed 8:2041CrossRefGoogle Scholar
  95. 95.
    Lee SH et al (2014) Activatable cell penetrating peptide–peptide nucleic acid conjugate via reduction of azobenzene PEG chains. J Am Chem Soc 136(37):12868–12871CrossRefPubMedGoogle Scholar
  96. 96.
    Wender PA et al (2000) The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci 97(24):13003–13008CrossRefPubMedGoogle Scholar
  97. 97.
    Jin E et al (2013) Acid-active cell-penetrating peptides for in vivo tumor-targeted drug delivery. J Am Chem Soc 135(2):933–940CrossRefPubMedGoogle Scholar
  98. 98.
    Bode SA et al (2015) Enzyme-activatable cell-penetrating peptides through a minimal side chain modification. Bioconjug Chem 26(5):850–856CrossRefPubMedGoogle Scholar
  99. 99.
    Vocero-Akbani AM et al (1999) Killing HIV-infected cells by transduction with an HIV protease-activated caspase-3 protein. Nat Med 5(1):29CrossRefPubMedGoogle Scholar
  100. 100.
    Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Mathupala S, Ko YA, Pedersen P (2006) Hexokinase II: cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene 25(34):4777–4786CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Arzoine L et al (2009) Voltage-dependent anion channel 1-based peptides interact with hexokinase to prevent its anti-apoptotic activity. J Biol Chem 284(6):3946–3955CrossRefPubMedGoogle Scholar
  103. 103.
    Woldetsadik AD et al (2017) Hexokinase II–derived cell-penetrating peptide targets mitochondria and triggers apoptosis in cancer cells. FASEB J 31(5):2168–2184CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Pastorino JG, Shulga N, Hoek JB (2002) Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J Biol Chem 277(9):7610–7618CrossRefPubMedGoogle Scholar
  105. 105.
    Patra KC et al (2013) Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell 24(2):213–228CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Rezgui R et al (2016) Precise quantification of cellular uptake of cell-penetrating peptides using fluorescence-activated cell sorting and fluorescence correlation spectroscopy. Biochim Biophys Acta (BBA) Biomembr 1858(7):1499–1506CrossRefGoogle Scholar
  107. 107.
    Takayama K et al (2012) Effect of the attachment of a penetration accelerating sequence and the influence of hydrophobicity on octaarginine-mediated intracellular delivery. Mol Pharm 9(5):1222–1230CrossRefPubMedGoogle Scholar
  108. 108.
    Kondo E et al (2012) Tumour lineage-homing cell-penetrating peptides as anticancer molecular delivery systems. Nat Commun 3:951CrossRefPubMedGoogle Scholar
  109. 109.
    Shi J et al (2017) Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 17(1):20CrossRefPubMedGoogle Scholar
  110. 110.
    Zuo HD et al (2014) The effect of superparamagnetic iron oxide with iRGD peptide on the labeling of pancreatic cancer cells in vitro: a preliminary study. BioMed Res Int 2014:1–8Google Scholar
  111. 111.
    Shirazi AN et al (2014) Cyclic peptide-capped gold nanoparticles for enhanced siRNA delivery. Molecules 19(9):13319–13331CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Li H, Tsui T, Ma W (2015) Intracellular delivery of molecular cargo using cell-penetrating peptides and the combination strategies. Int J Mol Sci 16(8):19518–19536CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Qin H et al (2017) Tumor microenvironment targeting and responsive peptide-based nanoformulations for improved tumor therapy. Mol Pharmacol. 1:1.  https://doi.org/10.1124/mol.116.108084 CrossRefGoogle Scholar
  114. 114.
    Yoo J et al (2017) Protease-activatable cell-penetrating peptide possessing ROS-triggered phase transition for enhanced cancer therapy. J Control Release 264:89–101CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Biology ProgramNew York University Abu DhabiAbu DhabiUnited Arab Emirates

Personalised recommendations