Novick P, Field C, Schekman R (1980) Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21(1):205–215
CAS
Article
Google Scholar
Salminen A, Novick PJ (1987) A ras-like protein is required for a post-Golgi event in yeast secretion. Cell 49(4):527–538
CAS
Article
Google Scholar
Chavrier P, Parton RG, Hauri HP, Simons K, Zerial M (1990) Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell 62(2):317–329
CAS
Article
Google Scholar
Zhen Y, Stenmark H (2015) Cellular functions of Rab GTPases at a glance. J Cell Sci 128(17):3171–3176. https://doi.org/10.1242/jcs.166074
CAS
Article
PubMed
Google Scholar
Gillingham AK, Sinka R, Torres IL, Lilley KS, Munro S (2014) Toward a comprehensive map of the effectors of rab GTPases. Dev Cell 31(3):358–373. https://doi.org/10.1016/j.devcel.2014.10.007
CAS
Article
PubMed
PubMed Central
Google Scholar
Bryant DM, Datta A, Rodriguez-Fraticelli AE, Peranen J, Martin-Belmonte F, Mostov KE (2010) A molecular network for de novo generation of the apical surface and lumen. Nat Cell Biol 12(11):1035–1045. https://doi.org/10.1038/ncb2106
CAS
Article
PubMed
PubMed Central
Google Scholar
Gibieza P, Prekeris R (2017) Rab GTPases and cell division. Small GTPases. https://doi.org/10.1080/21541248.2017.1313182
Kouranti I, Sachse M, Arouche N, Goud B, Echard A (2006) Rab35 regulates an endocytic recycling pathway essential for the terminal steps of cytokinesis. Curr Biol 16(17):1719–1725. https://doi.org/10.1016/j.cub.2006.07.020
CAS
Article
PubMed
Google Scholar
Thomas JD, Zhang YJ, Wei YH, Cho JH, Morris LE, Wang HY, Zheng XF (2014) Rab1A is an mTORC1 activator and a colorectal oncogene. Cancer Cell 26(5):754–769. https://doi.org/10.1016/j.ccell.2014.09.008
CAS
Article
PubMed
PubMed Central
Google Scholar
Borg M, Bakke O, Progida C (2014) A novel interaction between Rab7b and actomyosin reveals a dual role in intracellular transport and cell migration. J Cell Sci 127(22):4927–4939. https://doi.org/10.1242/jcs.155861
CAS
Article
PubMed
PubMed Central
Google Scholar
Linford A, Yoshimura S, Nunes Bastos R, Langemeyer L, Gerondopoulos A, Rigden DJ, Barr FA (2012) Rab14 and its exchange factor FAM116 link endocytic recycling and adherens junction stability in migrating cells. Dev Cell 22(5):952–966. https://doi.org/10.1016/j.devcel.2012.04.010
CAS
Article
PubMed
Google Scholar
Palamidessi A, Frittoli E, Garre M, Faretta M, Mione M, Testa I, Diaspro A, Lanzetti L, Scita G, Di Fiore PP (2008) Endocytic trafficking of Rac is required for the spatial restriction of signaling in cell migration. Cell 134(1):135–147. https://doi.org/10.1016/j.cell.2008.05.034
CAS
Article
PubMed
Google Scholar
Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420(6916):629–635. https://doi.org/10.1038/nature01148
CAS
Article
PubMed
Google Scholar
Hodge RG, Ridley AJ (2016) Regulating Rho GTPases and their regulators. Nat Rev Mol Cell Biol 17(8):496–510. https://doi.org/10.1038/nrm.2016.67
CAS
Article
PubMed
Google Scholar
Miserey-Lenkei S, Chalancon G, Bardin S, Formstecher E, Goud B, Echard A (2010) Rab and actomyosin-dependent fission of transport vesicles at the Golgi complex. Nat Cell Biol 12(7):645–654. https://doi.org/10.1038/ncb2067
CAS
Article
PubMed
Google Scholar
Goud B, Zahraoui A, Tavitian A, Saraste J (1990) Small GTP-binding protein associated with Golgi cisternae. Nature 345(6275):553–556. https://doi.org/10.1038/345553a0
CAS
Article
PubMed
Google Scholar
Antony C, Cibert C, Geraud G, Santa Maria A, Maro B, Mayau V, Goud B (1992) The small GTP-binding protein rab6p is distributed from medial Golgi to the trans-Golgi network as determined by a confocal microscopic approach. J Cell Sci 103(Pt 3):785–796
CAS
PubMed
Google Scholar
Grigoriev I, Splinter D, Keijzer N, Wulf PS, Demmers J, Ohtsuka T, Modesti M, Maly IV, Grosveld F, Hoogenraad CC, Akhmanova A (2007) Rab6 regulates transport and targeting of exocytotic carriers. Dev Cell 13(2):305–314. https://doi.org/10.1016/j.devcel.2007.06.010
CAS
Article
PubMed
Google Scholar
White J, Johannes L, Mallard F, Girod A, Grill S, Reinsch S, Keller P, Tzschaschel B, Echard A, Goud B, Stelzer EH (1999) Rab6 coordinates a novel Golgi to ER retrograde transport pathway in live cells. J Cell Biol 147(4):743–760
CAS
Article
Google Scholar
Monier S, Jollivet F, Janoueix-Lerosey I, Johannes L, Goud B (2002) Characterization of novel Rab6-interacting proteins involved in endosome-to-TGN transport. Traffic 3(4):289–297
Article
Google Scholar
Patwardhan A, Bardin S, Miserey-Lenkei S, Larue L, Goud B, Raposo G, Delevoye C (2017) Routing of the RAB6 secretory pathway towards the lysosome related organelle of melanocytes. Nat Commun 8:15835. https://doi.org/10.1038/ncomms15835
CAS
Article
PubMed
PubMed Central
Google Scholar
Hill E, Clarke M, Barr FA (2000) The Rab6-binding kinesin, Rab6-KIFL, is required for cytokinesis. EMBO J 19(21):5711–5719. https://doi.org/10.1093/emboj/19.21.5711
CAS
Article
PubMed
PubMed Central
Google Scholar
Miserey-Lenkei S, Waharte F, Boulet A, Cuif MH, Tenza D, El Marjou A, Raposo G, Salamero J, Heliot L, Goud B, Monier S (2007) Rab6-interacting protein 1 links Rab6 and Rab11 function. Traffic 8(10):1385–1403. https://doi.org/10.1111/j.1600-0854.2007.00612.x
CAS
Article
PubMed
Google Scholar
Chen Y, Jiang C, Jin M, Gong Y, Zhang X (2015) The role of Rab6 GTPase in the maturation of phagosome against Staphylococcus aureus. Int J Biochem Cell Biol 61:35–44. https://doi.org/10.1016/j.biocel.2015.01.016
CAS
Article
PubMed
Google Scholar
Echard A, Jollivet F, Martinez O, Lacapere JJ, Rousselet A, Janoueix-Lerosey I, Goud B (1998) Interaction of a Golgi-associated kinesin-like protein with Rab6. Science 279(5350):580–585
CAS
Article
Google Scholar
Short B, Preisinger C, Schaletzky J, Kopajtich R, Barr FA (2002) The Rab6 GTPase regulates recruitment of the dynactin complex to Golgi membranes. Curr Biol 12(20):1792–1795
CAS
Article
Google Scholar
Lee PL, Ohlson MB, Pfeffer SR (2015) Rab6 regulation of the kinesin family KIF1C motor domain contributes to Golgi tethering. Elife. https://doi.org/10.7554/elife.06029
Miserey-Lenkei S, Bousquet H, Pylypenko O, Bardin S, Dimitrov A, Bressanelli G, Bonifay R, Fraisier V, Guillou C, Bougeret C, Houdusse A, Echard A, Goud B (2017) Coupling fission and exit of RAB6 vesicles at Golgi hotspots through kinesin-myosin interactions. Nat Commun 8(1):1254. https://doi.org/10.1038/s41467-017-01266-0
CAS
Article
PubMed
PubMed Central
Google Scholar
Lindsay AJ, Jollivet F, Horgan CP, Khan AR, Raposo G, McCaffrey MW, Goud B (2013) Identification and characterization of multiple novel Rab-myosin Va interactions. Mol Biol Cell 24(21):3420–3434. https://doi.org/10.1091/mbc.E13-05-0236
CAS
Article
PubMed
PubMed Central
Google Scholar
Peurois F, Veyron S, Ferrandez Y, Ladid I, Benabdi S, Zeghouf M, Peyroche G, Cherfils J (2017) Characterization of the activation of small GTPases by their GEFs on membranes using artificial membrane tethering. Biochem J 474(7):1259–1272. https://doi.org/10.1042/BCJ20170015
CAS
Article
PubMed
Google Scholar
Moorhead AR, Rzomp KA, Scidmore MA (2007) The Rab6 effector Bicaudal D1 associates with Chlamydia trachomatis inclusions in a biovar-specific manner. Infect Immun 75(2):781–791. https://doi.org/10.1128/IAI.01447-06
CAS
Article
PubMed
Google Scholar
Subauste MC, Von Herrath M, Benard V, Chamberlain CE, Chuang TH, Chu K, Bokoch GM, Hahn KM (2000) Rho family proteins modulate rapid apoptosis induced by cytotoxic T lymphocytes and Fas. J Biol Chem 275(13):9725–9733
CAS
Article
Google Scholar
van Rijssel J, Hoogenboezem M, Wester L, Hordijk PL, Van Buul JD (2012) The N-terminal DH-PH domain of Trio induces cell spreading and migration by regulating lamellipodia dynamics in a Rac1-dependent fashion. PLoS One 7(1):e29912. https://doi.org/10.1371/journal.pone.0029912
CAS
Article
PubMed
PubMed Central
Google Scholar
Progida C, Malerod L, Stuffers S, Brech A, Bucci C, Stenmark H (2007) RILP is required for the proper morphology and function of late endosomes. J Cell Sci 120(Pt 21):3729–3737. https://doi.org/10.1242/jcs.017301
CAS
Article
PubMed
Google Scholar
Degot S, Auzan M, Chapuis V, Beghin A, Chadeyras A, Nelep C, Calvo-Munoz ML, Young J, Chatelain F, Fuchs A (2010) Improved visualization and quantitative analysis of drug effects using micropatterned cells. J Vis Exp. https://doi.org/10.3791/2514
Gittes F, Schmidt CF (1998) Signals and noise in micromechanical measurements. Methods Cell Biol 55:129–156
CAS
Article
Google Scholar
Kress H, Stelzer EH, Holzer D, Buss F, Griffiths G, Rohrbach A (2007) Filopodia act as phagocytic tentacles and pull with discrete steps and a load-dependent velocity. Proc Natl Acad Sci USA 104(28):11633–11638. https://doi.org/10.1073/pnas.0702449104
CAS
Article
PubMed
Google Scholar
Bornschlogl T, Romero S, Vestergaard CL, Joanny JF, Van Nhieu GT, Bassereau P (2013) Filopodial retraction force is generated by cortical actin dynamics and controlled by reversible tethering at the tip. Proc Natl Acad Sci USA 110(47):18928–18933. https://doi.org/10.1073/pnas.1316572110
CAS
Article
PubMed
Google Scholar
Westerfield M (2000) The zebrafish book A guide for the laboratory use of zebrafish (Danio rerio), 4th edn. Univ. of Oregon Press, Eugene
Google Scholar
Kupfer A, Louvard D, Singer SJ (1982) Polarization of the Golgi apparatus and the microtubule-organizing center in cultured fibroblasts at the edge of an experimental wound. Proc Natl Acad Sci USA 79(8):2603–2607
CAS
Article
Google Scholar
Bisel B, Wang Y, Wei JH, Xiang Y, Tang D, Miron-Mendoza M, Yoshimura S, Nakamura N, Seemann J (2008) ERK regulates Golgi and centrosome orientation towards the leading edge through GRASP65. J Cell Biol 182(5):837–843. https://doi.org/10.1083/jcb.200805045
CAS
Article
PubMed
PubMed Central
Google Scholar
Thery M, Pepin A, Dressaire E, Chen Y, Bornens M (2006) Cell distribution of stress fibres in response to the geometry of the adhesive environment. Cell Motil Cytoskeleton 63(6):341–355. https://doi.org/10.1002/cm.20126
CAS
Article
PubMed
Google Scholar
Watanabe T, Hosoya H, Yonemura S (2007) Regulation of myosin II dynamics by phosphorylation and dephosphorylation of its light chain in epithelial cells. Mol Biol Cell 18(2):605–616. https://doi.org/10.1091/mbc.E06-07-0590
CAS
Article
PubMed
PubMed Central
Google Scholar
Betapudi V (2014) Life without double-headed non-muscle myosin II motor proteins. Front Chem 2:45. https://doi.org/10.3389/fchem.2014.00045
Article
PubMed
PubMed Central
Google Scholar
Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR (2009) Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 10(11):778–790. https://doi.org/10.1038/nrm2786
CAS
Article
PubMed
PubMed Central
Google Scholar
Ikebe M, Hartshorne DJ (1985) Phosphorylation of smooth muscle myosin at two distinct sites by myosin light chain kinase. J Biol Chem 260(18):10027–10031
CAS
PubMed
Google Scholar
Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T, Matsuura Y, Kaibuchi K (1996) Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem 271(34):20246–20249
CAS
Article
Google Scholar
Katoh K, Kano Y, Amano M, Onishi H, Kaibuchi K, Fujiwara K (2001) Rho-kinase–mediated contraction of isolated stress fibers. J Cell Biol 153(3):569–584
CAS
Article
Google Scholar
Ito M, Nakano T, Erdodi F, Hartshorne DJ (2004) Myosin phosphatase: structure, regulation and function. Mol Cell Biochem 259(1–2):197–209
CAS
Article
Google Scholar
Vilarino-Guell C, Wider C, Ross OA, Dachsel JC, Kachergus JM, Lincoln SJ, Soto-Ortolaza AI, Cobb SA, Wilhoite GJ, Bacon JA, Behrouz B, Melrose HL, Hentati E, Puschmann A, Evans DM, Conibear E, Wasserman WW, Aasly JO, Burkhard PR, Djaldetti R, Ghika J, Hentati F, Krygowska-Wajs A, Lynch T, Melamed E, Rajput A, Rajput AH, Solida A, Wu RM, Uitti RJ, Wszolek ZK, Vingerhoets F, Farrer MJ (2011) VPS35 mutations in Parkinson disease. Am J Hum Genet 89(1):162–167. https://doi.org/10.1016/j.ajhg.2011.06.001
CAS
Article
PubMed
PubMed Central
Google Scholar
Daniel JL, Adelstein RS (1976) Isolation and properties of platelet myosin light chain kinase. Biochemistry 15(11):2370–2377
CAS
Article
Google Scholar
Singh TJ, Akatsuka A, Huang KP (1983) Phosphorylation of smooth muscle myosin light chain by five different kinases. FEBS Lett 159(1–2):217–220
CAS
Article
Google Scholar
Ridley AJ (2015) Rho GTPase signalling in cell migration. Curr Opin Cell Biol 36:103–112. https://doi.org/10.1016/j.ceb.2015.08.005
CAS
Article
PubMed
PubMed Central
Google Scholar
Ridley AJ (2001) Rho family proteins: coordinating cell responses. Trends Cell Biol 11(12):471–477
CAS
Article
Google Scholar
Hanna S, Miskolci V, Cox D, Hodgson L (2014) A new genetically encoded single-chain biosensor for Cdc42 based on FRET, useful for live-cell imaging. PLoS One 9(5):e96469. https://doi.org/10.1371/journal.pone.0096469
Article
PubMed
PubMed Central
Google Scholar
Grigoriev I, Yu KL, Martinez-Sanchez E, Serra-Marques A, Smal I, Meijering E, Demmers J, Peranen J, Pasterkamp RJ, van der Sluijs P, Hoogenraad CC, Akhmanova A (2011) Rab6, Rab8, and MICAL3 cooperate in controlling docking and fusion of exocytotic carriers. Curr Biol 21(11):967–974. https://doi.org/10.1016/j.cub.2011.04.030
CAS
Article
PubMed
Google Scholar
Miki H, Sasaki T, Takai Y, Takenawa T (1998) Induction of filopodium formation by a WASP-related actin-depolymerizing protein N-WASP. Nature 391(6662):93–96. https://doi.org/10.1038/34208
CAS
Article
PubMed
Google Scholar
Hart MJ, Callow MG, Souza B, Polakis P (1996) IQGAP1, a calmodulin-binding protein with a rasGAP-related domain, is a potential effector for cdc42Hs. EMBO J 15(12):2997–3005
CAS
Article
Google Scholar
Schwarz J, Proff J, Havemeier A, Ladwein M, Rottner K, Barlag B, Pich A, Tatge H, Just I, Gerhard R (2012) Serine-71 phosphorylation of Rac1 modulates downstream signaling. PLoS One 7(9):e44358. https://doi.org/10.1371/journal.pone.0044358
CAS
Article
PubMed
PubMed Central
Google Scholar
Hou C, Zhuang Z, Deng X, Xu Y, Zhang P, Zhu L (2018) Knockdown of Trio by CRISPR/Cas9 suppresses migration and invasion of cervical cancer cells. Oncol Rep 39(2):795–801. https://doi.org/10.3892/or.2017.6117
CAS
Article
PubMed
Google Scholar
Kozma R, Ahmed S, Best A, Lim L (1995) The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol Cell Biol 15(4):1942–1952
CAS
Article
Google Scholar
Yang L, Yang J, Li J, Shen X, Le Y, Zhou C, Wang S, Zhang S, Xu D, Gong Z (2015) MircoRNA-33a inhibits epithelial-to-mesenchymal transition and metastasis and could be a prognostic marker in non-small cell lung cancer. Sci Rep 5:13677. https://doi.org/10.1038/srep13677
Article
PubMed
PubMed Central
Google Scholar
Moshal KS, Ferri-Lagneau KF, Haider J, Pardhanani P, Leung T (2011) Discriminating different cancer cells using a zebrafish in vivo assay. Cancers (Basel) 3(4):4102–4113. https://doi.org/10.3390/cancers3044102
Article
Google Scholar
Seabra MC, Coudrier E (2004) Rab GTPases and myosin motors in organelle motility. Traffic 5(6):393–399. https://doi.org/10.1111/j.1398-9219.2004.00190.x
CAS
Article
PubMed
Google Scholar
Goud B, Gleeson PA (2010) TGN golgins, Rabs and cytoskeleton: regulating the Golgi trafficking highways. Trends Cell Biol 20(6):329–336. https://doi.org/10.1016/j.tcb.2010.02.006
CAS
Article
PubMed
Google Scholar
Horgan CP, McCaffrey MW (2011) Rab GTPases and microtubule motors. Biochem Soc Trans 39(5):1202–1206. https://doi.org/10.1042/BST0391202
CAS
Article
PubMed
Google Scholar
Kjos I, Vestre K, Guadagno NA, Borg Distefano M (1865) Progida C (2018) Rab and Arf proteins at the crossroad between membrane transport and cytoskeleton dynamics. Biochim Biophys Acta 10:1397–1409. https://doi.org/10.1016/j.bbamcr.2018.07.009
CAS
Article
Google Scholar
Doyle AD, Kutys ML, Conti MA, Matsumoto K, Adelstein RS, Yamada KM (2012) Micro-environmental control of cell migration–myosin IIA is required for efficient migration in fibrillar environments through control of cell adhesion dynamics. J Cell Sci 125(Pt 9):2244–2256. https://doi.org/10.1242/jcs.098806
CAS
Article
PubMed
PubMed Central
Google Scholar
Even-Ram S, Doyle AD, Conti MA, Matsumoto K, Adelstein RS, Yamada KM (2007) Myosin IIA regulates cell motility and actomyosin-microtubule crosstalk. Nat Cell Biol 9(3):299–309. https://doi.org/10.1038/ncb1540
CAS
Article
PubMed
Google Scholar
Sandquist JC, Swenson KI, Demali KA, Burridge K, Means AR (2006) Rho kinase differentially regulates phosphorylation of nonmuscle myosin II isoforms A and B during cell rounding and migration. J Biol Chem 281(47):35873–35883. https://doi.org/10.1074/jbc.M605343200
CAS
Article
PubMed
Google Scholar
Jorrisch MH, Shih W, Yamada S (2013) Myosin IIA deficient cells migrate efficiently despite reduced traction forces at cell periphery. Biol Open 2(4):368–372. https://doi.org/10.1242/bio.20133707
CAS
Article
PubMed
PubMed Central
Google Scholar
Giannone G, Dubin-Thaler BJ, Dobereiner HG, Kieffer N, Bresnick AR, Sheetz MP (2004) Periodic lamellipodial contractions correlate with rearward actin waves. Cell 116(3):431–443
CAS
Article
Google Scholar
Qiu Y, Brown AC, Myers DR, Sakurai Y, Mannino RG, Tran R, Ahn B, Hardy ET, Kee MF, Kumar S, Bao G, Barker TH, Lam WA (2014) Platelet mechanosensing of substrate stiffness during clot formation mediates adhesion, spreading, and activation. Proc Natl Acad Sci USA 111(40):14430–14435. https://doi.org/10.1073/pnas.1322917111
CAS
Article
PubMed
Google Scholar
Cai Y, Rossier O, Gauthier NC, Biais N, Fardin MA, Zhang X, Miller LW, Ladoux B, Cornish VW, Sheetz MP (2010) Cytoskeletal coherence requires myosin-IIA contractility. J Cell Sci 123(Pt 3):413–423. https://doi.org/10.1242/jcs.058297
CAS
Article
PubMed
PubMed Central
Google Scholar
Wakatsuki T, Wysolmerski RB, Elson EL (2003) Mechanics of cell spreading: role of myosin II. J Cell Sci 116(Pt 8):1617–1625
CAS
Article
Google Scholar
Mih JD, Marinkovic A, Liu F, Sharif AS, Tschumperlin DJ (2012) Matrix stiffness reverses the effect of actomyosin tension on cell proliferation. J Cell Sci 125(Pt 24):5974–5983. https://doi.org/10.1242/jcs.108886
CAS
Article
PubMed
PubMed Central
Google Scholar
Betapudi V, Licate LS, Egelhoff TT (2006) Distinct roles of nonmuscle myosin II isoforms in the regulation of MDA-MB-231 breast cancer cell spreading and migration. Cancer Res 66(9):4725–4733. https://doi.org/10.1158/0008-5472.CAN-05-4236
CAS
Article
PubMed
Google Scholar
Nisenholz N, Paknikar A, Koster S, Zemel A (2016) Contribution of myosin II activity to cell spreading dynamics. Soft Matter 12(2):500–507. https://doi.org/10.1039/c5sm01733e
CAS
Article
PubMed
Google Scholar
Nobes CD, Hall A (1995) Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81(1):53–62
CAS
Article
Google Scholar
Rohatgi R, Ma L, Miki H, Lopez M, Kirchhausen T, Takenawa T, Kirschner MW (1999) The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97(2):221–231
CAS
Article
Google Scholar
Carlier MF, Ducruix A, Pantaloni D (1999) Signalling to actin: the Cdc42-N-WASP-Arp2/3 connection. Chem Biol 6(9):R235–R240
CAS
Article
Google Scholar
Svitkina TM, Bulanova EA, Chaga OY, Vignjevic DM, Kojima S, Vasiliev JM, Borisy GG (2003) Mechanism of filopodia initiation by reorganization of a dendritic network. J Cell Biol 160(3):409–421. https://doi.org/10.1083/jcb.200210174
CAS
Article
PubMed
PubMed Central
Google Scholar
Manser E, Leung T, Salihuddin H, Zhao ZS, Lim L (1994) A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 367(6458):40–46. https://doi.org/10.1038/367040a0
CAS
Article
PubMed
Google Scholar
Edwards DC, Sanders LC, Bokoch GM, Gill GN (1999) Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol 1(5):253–259. https://doi.org/10.1038/12963
CAS
Article
PubMed
Google Scholar
van Leeuwen FN, van Delft S, Kain HE, van der Kammen RA, Collard JG (1999) Rac regulates phosphorylation of the myosin-II heavy chain, actinomyosin disassembly and cell spreading. Nat Cell Biol 1(4):242–248. https://doi.org/10.1038/12068
CAS
Article
PubMed
Google Scholar
Ridley AJ (2001) Rho GTPases and cell migration. J Cell Sci 114(Pt 15):2713–2722
CAS
PubMed
Google Scholar
Jian Q, Miao Y, Tang L, Huang M, Yang Y, Ba W, Liu Y, Chi S, Li C (2016) Rab23 promotes squamous cell carcinoma cell migration and invasion via integrin beta1/Rac1 pathway. Oncotarget 7(5):5342–5352. https://doi.org/10.18632/oncotarget.6701
Article
PubMed
Google Scholar
Margiotta A, Progida C, Bakke O (1864) Bucci C (2017) Rab7a regulates cell migration through Rac1 and vimentin. Biochim Biophys Acta 2:367–381. https://doi.org/10.1016/j.bbamcr.2016.11.020
CAS
Article
Google Scholar
Chevallier J, Koop C, Srivastava A, Petrie RJ, Lamarche-Vane N, Presley JF (2009) Rab35 regulates neurite outgrowth and cell shape. FEBS Lett 583(7):1096–1101. https://doi.org/10.1016/j.febslet.2009.03.012
CAS
Article
PubMed
Google Scholar
Bravo-Cordero JJ, Cordani M, Soriano SF, Diez B, Munoz-Agudo C, Casanova-Acebes M, Boullosa C, Guadamillas MC, Ezkurdia I, Gonzalez-Pisano D, Del Pozo MA, Montoya MC (2016) A novel high-content analysis tool reveals Rab8-driven cytoskeletal reorganization through Rho GTPases, calpain and MT1-MMP. J Cell Sci 129(8):1734–1749. https://doi.org/10.1242/jcs.174920
CAS
Article
PubMed
Google Scholar
Lee CS, Choi CK, Shin EY, Schwartz MA, Kim EG (2010) Myosin II directly binds and inhibits Dbl family guanine nucleotide exchange factors: a possible link to Rho family GTPases. J Cell Biol 190(4):663–674. https://doi.org/10.1083/jcb.201003057
CAS
Article
PubMed
PubMed Central
Google Scholar
Jacquemet G, Hamidi H, Ivaska J (2015) Filopodia in cell adhesion, 3D migration and cancer cell invasion. Curr Opin Cell Biol 36:23–31. https://doi.org/10.1016/j.ceb.2015.06.007
CAS
Article
PubMed
Google Scholar
Jacquemet G, Paatero I, Carisey AF, Padzik A, Orange JS, Hamidi H, Ivaska J (2017) FiloQuant reveals increased filopodia density during breast cancer progression. J Cell Biol 216(10):3387–3403. https://doi.org/10.1083/jcb.201704045
CAS
Article
PubMed
PubMed Central
Google Scholar