Skip to main content

Rab6 regulates cell migration and invasion by recruiting Cdc42 and modulating its activity

Abstract

Rab proteins are master regulators of intracellular membrane trafficking, but they also contribute to cell division, signaling, polarization, and migration. The majority of the works describing the mechanisms used by Rab proteins to regulate cell motility involve intracellular transport of key molecules important for migration. Interestingly, a few studies indicate that Rabs can modulate the activity of Rho GTPases, important regulators for the cytoskeleton rearrangements, but the mechanisms behind this crosstalk are still poorly understood. In this work, we identify Rab6 as a negative regulator of cell migration in vitro and in vivo. We show that the loss of Rab6 promotes formation of actin protrusions and influences actomyosin dynamics by upregulating Cdc42 activity and downregulating myosin II phosphorylation. We further provide the molecular mechanism behind this regulation demonstrating that Rab6 interacts with both Cdc42 and Trio, a GEF for Cdc42. In sum, our results uncover a mechanism used by Rab proteins to ensure spatial regulation of Rho GTPase activity for coordination of cytoskeleton rearrangements required in migrating cells.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Novick P, Field C, Schekman R (1980) Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21(1):205–215

    CAS  Article  Google Scholar 

  2. Salminen A, Novick PJ (1987) A ras-like protein is required for a post-Golgi event in yeast secretion. Cell 49(4):527–538

    CAS  Article  Google Scholar 

  3. Chavrier P, Parton RG, Hauri HP, Simons K, Zerial M (1990) Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell 62(2):317–329

    CAS  Article  Google Scholar 

  4. Zhen Y, Stenmark H (2015) Cellular functions of Rab GTPases at a glance. J Cell Sci 128(17):3171–3176. https://doi.org/10.1242/jcs.166074

    CAS  Article  PubMed  Google Scholar 

  5. Gillingham AK, Sinka R, Torres IL, Lilley KS, Munro S (2014) Toward a comprehensive map of the effectors of rab GTPases. Dev Cell 31(3):358–373. https://doi.org/10.1016/j.devcel.2014.10.007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Bryant DM, Datta A, Rodriguez-Fraticelli AE, Peranen J, Martin-Belmonte F, Mostov KE (2010) A molecular network for de novo generation of the apical surface and lumen. Nat Cell Biol 12(11):1035–1045. https://doi.org/10.1038/ncb2106

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Gibieza P, Prekeris R (2017) Rab GTPases and cell division. Small GTPases. https://doi.org/10.1080/21541248.2017.1313182

  8. Kouranti I, Sachse M, Arouche N, Goud B, Echard A (2006) Rab35 regulates an endocytic recycling pathway essential for the terminal steps of cytokinesis. Curr Biol 16(17):1719–1725. https://doi.org/10.1016/j.cub.2006.07.020

    CAS  Article  PubMed  Google Scholar 

  9. Thomas JD, Zhang YJ, Wei YH, Cho JH, Morris LE, Wang HY, Zheng XF (2014) Rab1A is an mTORC1 activator and a colorectal oncogene. Cancer Cell 26(5):754–769. https://doi.org/10.1016/j.ccell.2014.09.008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Borg M, Bakke O, Progida C (2014) A novel interaction between Rab7b and actomyosin reveals a dual role in intracellular transport and cell migration. J Cell Sci 127(22):4927–4939. https://doi.org/10.1242/jcs.155861

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Linford A, Yoshimura S, Nunes Bastos R, Langemeyer L, Gerondopoulos A, Rigden DJ, Barr FA (2012) Rab14 and its exchange factor FAM116 link endocytic recycling and adherens junction stability in migrating cells. Dev Cell 22(5):952–966. https://doi.org/10.1016/j.devcel.2012.04.010

    CAS  Article  PubMed  Google Scholar 

  12. Palamidessi A, Frittoli E, Garre M, Faretta M, Mione M, Testa I, Diaspro A, Lanzetti L, Scita G, Di Fiore PP (2008) Endocytic trafficking of Rac is required for the spatial restriction of signaling in cell migration. Cell 134(1):135–147. https://doi.org/10.1016/j.cell.2008.05.034

    CAS  Article  PubMed  Google Scholar 

  13. Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420(6916):629–635. https://doi.org/10.1038/nature01148

    CAS  Article  PubMed  Google Scholar 

  14. Hodge RG, Ridley AJ (2016) Regulating Rho GTPases and their regulators. Nat Rev Mol Cell Biol 17(8):496–510. https://doi.org/10.1038/nrm.2016.67

    CAS  Article  PubMed  Google Scholar 

  15. Miserey-Lenkei S, Chalancon G, Bardin S, Formstecher E, Goud B, Echard A (2010) Rab and actomyosin-dependent fission of transport vesicles at the Golgi complex. Nat Cell Biol 12(7):645–654. https://doi.org/10.1038/ncb2067

    CAS  Article  PubMed  Google Scholar 

  16. Goud B, Zahraoui A, Tavitian A, Saraste J (1990) Small GTP-binding protein associated with Golgi cisternae. Nature 345(6275):553–556. https://doi.org/10.1038/345553a0

    CAS  Article  PubMed  Google Scholar 

  17. Antony C, Cibert C, Geraud G, Santa Maria A, Maro B, Mayau V, Goud B (1992) The small GTP-binding protein rab6p is distributed from medial Golgi to the trans-Golgi network as determined by a confocal microscopic approach. J Cell Sci 103(Pt 3):785–796

    CAS  PubMed  Google Scholar 

  18. Grigoriev I, Splinter D, Keijzer N, Wulf PS, Demmers J, Ohtsuka T, Modesti M, Maly IV, Grosveld F, Hoogenraad CC, Akhmanova A (2007) Rab6 regulates transport and targeting of exocytotic carriers. Dev Cell 13(2):305–314. https://doi.org/10.1016/j.devcel.2007.06.010

    CAS  Article  PubMed  Google Scholar 

  19. White J, Johannes L, Mallard F, Girod A, Grill S, Reinsch S, Keller P, Tzschaschel B, Echard A, Goud B, Stelzer EH (1999) Rab6 coordinates a novel Golgi to ER retrograde transport pathway in live cells. J Cell Biol 147(4):743–760

    CAS  Article  Google Scholar 

  20. Monier S, Jollivet F, Janoueix-Lerosey I, Johannes L, Goud B (2002) Characterization of novel Rab6-interacting proteins involved in endosome-to-TGN transport. Traffic 3(4):289–297

    Article  Google Scholar 

  21. Patwardhan A, Bardin S, Miserey-Lenkei S, Larue L, Goud B, Raposo G, Delevoye C (2017) Routing of the RAB6 secretory pathway towards the lysosome related organelle of melanocytes. Nat Commun 8:15835. https://doi.org/10.1038/ncomms15835

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Hill E, Clarke M, Barr FA (2000) The Rab6-binding kinesin, Rab6-KIFL, is required for cytokinesis. EMBO J 19(21):5711–5719. https://doi.org/10.1093/emboj/19.21.5711

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Miserey-Lenkei S, Waharte F, Boulet A, Cuif MH, Tenza D, El Marjou A, Raposo G, Salamero J, Heliot L, Goud B, Monier S (2007) Rab6-interacting protein 1 links Rab6 and Rab11 function. Traffic 8(10):1385–1403. https://doi.org/10.1111/j.1600-0854.2007.00612.x

    CAS  Article  PubMed  Google Scholar 

  24. Chen Y, Jiang C, Jin M, Gong Y, Zhang X (2015) The role of Rab6 GTPase in the maturation of phagosome against Staphylococcus aureus. Int J Biochem Cell Biol 61:35–44. https://doi.org/10.1016/j.biocel.2015.01.016

    CAS  Article  PubMed  Google Scholar 

  25. Echard A, Jollivet F, Martinez O, Lacapere JJ, Rousselet A, Janoueix-Lerosey I, Goud B (1998) Interaction of a Golgi-associated kinesin-like protein with Rab6. Science 279(5350):580–585

    CAS  Article  Google Scholar 

  26. Short B, Preisinger C, Schaletzky J, Kopajtich R, Barr FA (2002) The Rab6 GTPase regulates recruitment of the dynactin complex to Golgi membranes. Curr Biol 12(20):1792–1795

    CAS  Article  Google Scholar 

  27. Lee PL, Ohlson MB, Pfeffer SR (2015) Rab6 regulation of the kinesin family KIF1C motor domain contributes to Golgi tethering. Elife. https://doi.org/10.7554/elife.06029

  28. Miserey-Lenkei S, Bousquet H, Pylypenko O, Bardin S, Dimitrov A, Bressanelli G, Bonifay R, Fraisier V, Guillou C, Bougeret C, Houdusse A, Echard A, Goud B (2017) Coupling fission and exit of RAB6 vesicles at Golgi hotspots through kinesin-myosin interactions. Nat Commun 8(1):1254. https://doi.org/10.1038/s41467-017-01266-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Lindsay AJ, Jollivet F, Horgan CP, Khan AR, Raposo G, McCaffrey MW, Goud B (2013) Identification and characterization of multiple novel Rab-myosin Va interactions. Mol Biol Cell 24(21):3420–3434. https://doi.org/10.1091/mbc.E13-05-0236

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Peurois F, Veyron S, Ferrandez Y, Ladid I, Benabdi S, Zeghouf M, Peyroche G, Cherfils J (2017) Characterization of the activation of small GTPases by their GEFs on membranes using artificial membrane tethering. Biochem J 474(7):1259–1272. https://doi.org/10.1042/BCJ20170015

    CAS  Article  PubMed  Google Scholar 

  31. Moorhead AR, Rzomp KA, Scidmore MA (2007) The Rab6 effector Bicaudal D1 associates with Chlamydia trachomatis inclusions in a biovar-specific manner. Infect Immun 75(2):781–791. https://doi.org/10.1128/IAI.01447-06

    CAS  Article  PubMed  Google Scholar 

  32. Subauste MC, Von Herrath M, Benard V, Chamberlain CE, Chuang TH, Chu K, Bokoch GM, Hahn KM (2000) Rho family proteins modulate rapid apoptosis induced by cytotoxic T lymphocytes and Fas. J Biol Chem 275(13):9725–9733

    CAS  Article  Google Scholar 

  33. van Rijssel J, Hoogenboezem M, Wester L, Hordijk PL, Van Buul JD (2012) The N-terminal DH-PH domain of Trio induces cell spreading and migration by regulating lamellipodia dynamics in a Rac1-dependent fashion. PLoS One 7(1):e29912. https://doi.org/10.1371/journal.pone.0029912

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Progida C, Malerod L, Stuffers S, Brech A, Bucci C, Stenmark H (2007) RILP is required for the proper morphology and function of late endosomes. J Cell Sci 120(Pt 21):3729–3737. https://doi.org/10.1242/jcs.017301

    CAS  Article  PubMed  Google Scholar 

  35. Degot S, Auzan M, Chapuis V, Beghin A, Chadeyras A, Nelep C, Calvo-Munoz ML, Young J, Chatelain F, Fuchs A (2010) Improved visualization and quantitative analysis of drug effects using micropatterned cells. J Vis Exp. https://doi.org/10.3791/2514

  36. Gittes F, Schmidt CF (1998) Signals and noise in micromechanical measurements. Methods Cell Biol 55:129–156

    CAS  Article  Google Scholar 

  37. Kress H, Stelzer EH, Holzer D, Buss F, Griffiths G, Rohrbach A (2007) Filopodia act as phagocytic tentacles and pull with discrete steps and a load-dependent velocity. Proc Natl Acad Sci USA 104(28):11633–11638. https://doi.org/10.1073/pnas.0702449104

    CAS  Article  PubMed  Google Scholar 

  38. Bornschlogl T, Romero S, Vestergaard CL, Joanny JF, Van Nhieu GT, Bassereau P (2013) Filopodial retraction force is generated by cortical actin dynamics and controlled by reversible tethering at the tip. Proc Natl Acad Sci USA 110(47):18928–18933. https://doi.org/10.1073/pnas.1316572110

    CAS  Article  PubMed  Google Scholar 

  39. Westerfield M (2000) The zebrafish book A guide for the laboratory use of zebrafish (Danio rerio), 4th edn. Univ. of Oregon Press, Eugene

    Google Scholar 

  40. Kupfer A, Louvard D, Singer SJ (1982) Polarization of the Golgi apparatus and the microtubule-organizing center in cultured fibroblasts at the edge of an experimental wound. Proc Natl Acad Sci USA 79(8):2603–2607

    CAS  Article  Google Scholar 

  41. Bisel B, Wang Y, Wei JH, Xiang Y, Tang D, Miron-Mendoza M, Yoshimura S, Nakamura N, Seemann J (2008) ERK regulates Golgi and centrosome orientation towards the leading edge through GRASP65. J Cell Biol 182(5):837–843. https://doi.org/10.1083/jcb.200805045

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Thery M, Pepin A, Dressaire E, Chen Y, Bornens M (2006) Cell distribution of stress fibres in response to the geometry of the adhesive environment. Cell Motil Cytoskeleton 63(6):341–355. https://doi.org/10.1002/cm.20126

    CAS  Article  PubMed  Google Scholar 

  43. Watanabe T, Hosoya H, Yonemura S (2007) Regulation of myosin II dynamics by phosphorylation and dephosphorylation of its light chain in epithelial cells. Mol Biol Cell 18(2):605–616. https://doi.org/10.1091/mbc.E06-07-0590

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Betapudi V (2014) Life without double-headed non-muscle myosin II motor proteins. Front Chem 2:45. https://doi.org/10.3389/fchem.2014.00045

    Article  PubMed  PubMed Central  Google Scholar 

  45. Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR (2009) Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 10(11):778–790. https://doi.org/10.1038/nrm2786

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Ikebe M, Hartshorne DJ (1985) Phosphorylation of smooth muscle myosin at two distinct sites by myosin light chain kinase. J Biol Chem 260(18):10027–10031

    CAS  PubMed  Google Scholar 

  47. Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T, Matsuura Y, Kaibuchi K (1996) Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem 271(34):20246–20249

    CAS  Article  Google Scholar 

  48. Katoh K, Kano Y, Amano M, Onishi H, Kaibuchi K, Fujiwara K (2001) Rho-kinase–mediated contraction of isolated stress fibers. J Cell Biol 153(3):569–584

    CAS  Article  Google Scholar 

  49. Ito M, Nakano T, Erdodi F, Hartshorne DJ (2004) Myosin phosphatase: structure, regulation and function. Mol Cell Biochem 259(1–2):197–209

    CAS  Article  Google Scholar 

  50. Vilarino-Guell C, Wider C, Ross OA, Dachsel JC, Kachergus JM, Lincoln SJ, Soto-Ortolaza AI, Cobb SA, Wilhoite GJ, Bacon JA, Behrouz B, Melrose HL, Hentati E, Puschmann A, Evans DM, Conibear E, Wasserman WW, Aasly JO, Burkhard PR, Djaldetti R, Ghika J, Hentati F, Krygowska-Wajs A, Lynch T, Melamed E, Rajput A, Rajput AH, Solida A, Wu RM, Uitti RJ, Wszolek ZK, Vingerhoets F, Farrer MJ (2011) VPS35 mutations in Parkinson disease. Am J Hum Genet 89(1):162–167. https://doi.org/10.1016/j.ajhg.2011.06.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Daniel JL, Adelstein RS (1976) Isolation and properties of platelet myosin light chain kinase. Biochemistry 15(11):2370–2377

    CAS  Article  Google Scholar 

  52. Singh TJ, Akatsuka A, Huang KP (1983) Phosphorylation of smooth muscle myosin light chain by five different kinases. FEBS Lett 159(1–2):217–220

    CAS  Article  Google Scholar 

  53. Ridley AJ (2015) Rho GTPase signalling in cell migration. Curr Opin Cell Biol 36:103–112. https://doi.org/10.1016/j.ceb.2015.08.005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Ridley AJ (2001) Rho family proteins: coordinating cell responses. Trends Cell Biol 11(12):471–477

    CAS  Article  Google Scholar 

  55. Hanna S, Miskolci V, Cox D, Hodgson L (2014) A new genetically encoded single-chain biosensor for Cdc42 based on FRET, useful for live-cell imaging. PLoS One 9(5):e96469. https://doi.org/10.1371/journal.pone.0096469

    Article  PubMed  PubMed Central  Google Scholar 

  56. Grigoriev I, Yu KL, Martinez-Sanchez E, Serra-Marques A, Smal I, Meijering E, Demmers J, Peranen J, Pasterkamp RJ, van der Sluijs P, Hoogenraad CC, Akhmanova A (2011) Rab6, Rab8, and MICAL3 cooperate in controlling docking and fusion of exocytotic carriers. Curr Biol 21(11):967–974. https://doi.org/10.1016/j.cub.2011.04.030

    CAS  Article  PubMed  Google Scholar 

  57. Miki H, Sasaki T, Takai Y, Takenawa T (1998) Induction of filopodium formation by a WASP-related actin-depolymerizing protein N-WASP. Nature 391(6662):93–96. https://doi.org/10.1038/34208

    CAS  Article  PubMed  Google Scholar 

  58. Hart MJ, Callow MG, Souza B, Polakis P (1996) IQGAP1, a calmodulin-binding protein with a rasGAP-related domain, is a potential effector for cdc42Hs. EMBO J 15(12):2997–3005

    CAS  Article  Google Scholar 

  59. Schwarz J, Proff J, Havemeier A, Ladwein M, Rottner K, Barlag B, Pich A, Tatge H, Just I, Gerhard R (2012) Serine-71 phosphorylation of Rac1 modulates downstream signaling. PLoS One 7(9):e44358. https://doi.org/10.1371/journal.pone.0044358

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. Hou C, Zhuang Z, Deng X, Xu Y, Zhang P, Zhu L (2018) Knockdown of Trio by CRISPR/Cas9 suppresses migration and invasion of cervical cancer cells. Oncol Rep 39(2):795–801. https://doi.org/10.3892/or.2017.6117

    CAS  Article  PubMed  Google Scholar 

  61. Kozma R, Ahmed S, Best A, Lim L (1995) The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol Cell Biol 15(4):1942–1952

    CAS  Article  Google Scholar 

  62. Yang L, Yang J, Li J, Shen X, Le Y, Zhou C, Wang S, Zhang S, Xu D, Gong Z (2015) MircoRNA-33a inhibits epithelial-to-mesenchymal transition and metastasis and could be a prognostic marker in non-small cell lung cancer. Sci Rep 5:13677. https://doi.org/10.1038/srep13677

    Article  PubMed  PubMed Central  Google Scholar 

  63. Moshal KS, Ferri-Lagneau KF, Haider J, Pardhanani P, Leung T (2011) Discriminating different cancer cells using a zebrafish in vivo assay. Cancers (Basel) 3(4):4102–4113. https://doi.org/10.3390/cancers3044102

    Article  Google Scholar 

  64. Seabra MC, Coudrier E (2004) Rab GTPases and myosin motors in organelle motility. Traffic 5(6):393–399. https://doi.org/10.1111/j.1398-9219.2004.00190.x

    CAS  Article  PubMed  Google Scholar 

  65. Goud B, Gleeson PA (2010) TGN golgins, Rabs and cytoskeleton: regulating the Golgi trafficking highways. Trends Cell Biol 20(6):329–336. https://doi.org/10.1016/j.tcb.2010.02.006

    CAS  Article  PubMed  Google Scholar 

  66. Horgan CP, McCaffrey MW (2011) Rab GTPases and microtubule motors. Biochem Soc Trans 39(5):1202–1206. https://doi.org/10.1042/BST0391202

    CAS  Article  PubMed  Google Scholar 

  67. Kjos I, Vestre K, Guadagno NA, Borg Distefano M (1865) Progida C (2018) Rab and Arf proteins at the crossroad between membrane transport and cytoskeleton dynamics. Biochim Biophys Acta 10:1397–1409. https://doi.org/10.1016/j.bbamcr.2018.07.009

    CAS  Article  Google Scholar 

  68. Doyle AD, Kutys ML, Conti MA, Matsumoto K, Adelstein RS, Yamada KM (2012) Micro-environmental control of cell migration–myosin IIA is required for efficient migration in fibrillar environments through control of cell adhesion dynamics. J Cell Sci 125(Pt 9):2244–2256. https://doi.org/10.1242/jcs.098806

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. Even-Ram S, Doyle AD, Conti MA, Matsumoto K, Adelstein RS, Yamada KM (2007) Myosin IIA regulates cell motility and actomyosin-microtubule crosstalk. Nat Cell Biol 9(3):299–309. https://doi.org/10.1038/ncb1540

    CAS  Article  PubMed  Google Scholar 

  70. Sandquist JC, Swenson KI, Demali KA, Burridge K, Means AR (2006) Rho kinase differentially regulates phosphorylation of nonmuscle myosin II isoforms A and B during cell rounding and migration. J Biol Chem 281(47):35873–35883. https://doi.org/10.1074/jbc.M605343200

    CAS  Article  PubMed  Google Scholar 

  71. Jorrisch MH, Shih W, Yamada S (2013) Myosin IIA deficient cells migrate efficiently despite reduced traction forces at cell periphery. Biol Open 2(4):368–372. https://doi.org/10.1242/bio.20133707

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. Giannone G, Dubin-Thaler BJ, Dobereiner HG, Kieffer N, Bresnick AR, Sheetz MP (2004) Periodic lamellipodial contractions correlate with rearward actin waves. Cell 116(3):431–443

    CAS  Article  Google Scholar 

  73. Qiu Y, Brown AC, Myers DR, Sakurai Y, Mannino RG, Tran R, Ahn B, Hardy ET, Kee MF, Kumar S, Bao G, Barker TH, Lam WA (2014) Platelet mechanosensing of substrate stiffness during clot formation mediates adhesion, spreading, and activation. Proc Natl Acad Sci USA 111(40):14430–14435. https://doi.org/10.1073/pnas.1322917111

    CAS  Article  PubMed  Google Scholar 

  74. Cai Y, Rossier O, Gauthier NC, Biais N, Fardin MA, Zhang X, Miller LW, Ladoux B, Cornish VW, Sheetz MP (2010) Cytoskeletal coherence requires myosin-IIA contractility. J Cell Sci 123(Pt 3):413–423. https://doi.org/10.1242/jcs.058297

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. Wakatsuki T, Wysolmerski RB, Elson EL (2003) Mechanics of cell spreading: role of myosin II. J Cell Sci 116(Pt 8):1617–1625

    CAS  Article  Google Scholar 

  76. Mih JD, Marinkovic A, Liu F, Sharif AS, Tschumperlin DJ (2012) Matrix stiffness reverses the effect of actomyosin tension on cell proliferation. J Cell Sci 125(Pt 24):5974–5983. https://doi.org/10.1242/jcs.108886

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. Betapudi V, Licate LS, Egelhoff TT (2006) Distinct roles of nonmuscle myosin II isoforms in the regulation of MDA-MB-231 breast cancer cell spreading and migration. Cancer Res 66(9):4725–4733. https://doi.org/10.1158/0008-5472.CAN-05-4236

    CAS  Article  PubMed  Google Scholar 

  78. Nisenholz N, Paknikar A, Koster S, Zemel A (2016) Contribution of myosin II activity to cell spreading dynamics. Soft Matter 12(2):500–507. https://doi.org/10.1039/c5sm01733e

    CAS  Article  PubMed  Google Scholar 

  79. Nobes CD, Hall A (1995) Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81(1):53–62

    CAS  Article  Google Scholar 

  80. Rohatgi R, Ma L, Miki H, Lopez M, Kirchhausen T, Takenawa T, Kirschner MW (1999) The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97(2):221–231

    CAS  Article  Google Scholar 

  81. Carlier MF, Ducruix A, Pantaloni D (1999) Signalling to actin: the Cdc42-N-WASP-Arp2/3 connection. Chem Biol 6(9):R235–R240

    CAS  Article  Google Scholar 

  82. Svitkina TM, Bulanova EA, Chaga OY, Vignjevic DM, Kojima S, Vasiliev JM, Borisy GG (2003) Mechanism of filopodia initiation by reorganization of a dendritic network. J Cell Biol 160(3):409–421. https://doi.org/10.1083/jcb.200210174

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. Manser E, Leung T, Salihuddin H, Zhao ZS, Lim L (1994) A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 367(6458):40–46. https://doi.org/10.1038/367040a0

    CAS  Article  PubMed  Google Scholar 

  84. Edwards DC, Sanders LC, Bokoch GM, Gill GN (1999) Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol 1(5):253–259. https://doi.org/10.1038/12963

    CAS  Article  PubMed  Google Scholar 

  85. van Leeuwen FN, van Delft S, Kain HE, van der Kammen RA, Collard JG (1999) Rac regulates phosphorylation of the myosin-II heavy chain, actinomyosin disassembly and cell spreading. Nat Cell Biol 1(4):242–248. https://doi.org/10.1038/12068

    CAS  Article  PubMed  Google Scholar 

  86. Ridley AJ (2001) Rho GTPases and cell migration. J Cell Sci 114(Pt 15):2713–2722

    CAS  PubMed  Google Scholar 

  87. Jian Q, Miao Y, Tang L, Huang M, Yang Y, Ba W, Liu Y, Chi S, Li C (2016) Rab23 promotes squamous cell carcinoma cell migration and invasion via integrin beta1/Rac1 pathway. Oncotarget 7(5):5342–5352. https://doi.org/10.18632/oncotarget.6701

    Article  PubMed  Google Scholar 

  88. Margiotta A, Progida C, Bakke O (1864) Bucci C (2017) Rab7a regulates cell migration through Rac1 and vimentin. Biochim Biophys Acta 2:367–381. https://doi.org/10.1016/j.bbamcr.2016.11.020

    CAS  Article  Google Scholar 

  89. Chevallier J, Koop C, Srivastava A, Petrie RJ, Lamarche-Vane N, Presley JF (2009) Rab35 regulates neurite outgrowth and cell shape. FEBS Lett 583(7):1096–1101. https://doi.org/10.1016/j.febslet.2009.03.012

    CAS  Article  PubMed  Google Scholar 

  90. Bravo-Cordero JJ, Cordani M, Soriano SF, Diez B, Munoz-Agudo C, Casanova-Acebes M, Boullosa C, Guadamillas MC, Ezkurdia I, Gonzalez-Pisano D, Del Pozo MA, Montoya MC (2016) A novel high-content analysis tool reveals Rab8-driven cytoskeletal reorganization through Rho GTPases, calpain and MT1-MMP. J Cell Sci 129(8):1734–1749. https://doi.org/10.1242/jcs.174920

    CAS  Article  PubMed  Google Scholar 

  91. Lee CS, Choi CK, Shin EY, Schwartz MA, Kim EG (2010) Myosin II directly binds and inhibits Dbl family guanine nucleotide exchange factors: a possible link to Rho family GTPases. J Cell Biol 190(4):663–674. https://doi.org/10.1083/jcb.201003057

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  92. Jacquemet G, Hamidi H, Ivaska J (2015) Filopodia in cell adhesion, 3D migration and cancer cell invasion. Curr Opin Cell Biol 36:23–31. https://doi.org/10.1016/j.ceb.2015.06.007

    CAS  Article  PubMed  Google Scholar 

  93. Jacquemet G, Paatero I, Carisey AF, Padzik A, Orange JS, Hamidi H, Ivaska J (2017) FiloQuant reveals increased filopodia density during breast cancer progression. J Cell Biol 216(10):3387–3403. https://doi.org/10.1083/jcb.201704045

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the NorMIC Oslo imaging platform (Department of Biosciences, University of Oslo), Catherine Anne Heyward, and Frode Skjeldal for technical assistance, Hesso Farhan and Salim Ghannoum (Institute of Basic Medical Sciences, University of Oslo) for assistance and access to the IncuCyte ZOOM instrument. We thank Luis Hodgson (Albert Einstein College of Medicine, USA), Keith Burridge (University of North Carolina, USA), and Jaap D. Van Buul (University of Amsterdam, The Netherlands), for the kind gift of the pTriEX Cdc42 constructs, pEGFP-C3 Cdc42 plasmids, and pEGFPC1-Trio respectively. We thank Guillaume Jacquemet (University of Turku, Finland) for providing the FiloQuant plugin for Fiji/ImageJ, Giorgio Scita (IFOM, Milan, Italy) and Fabio Giavazzi (University of Milan, Italy) for advice on PIV analysis. We are grateful to Bruno Goud (Institut Curie, Paris, France) for critically reading the manuscript. The financial support of the Norwegian Cancer Society [Grants 5760850 to C.P. and 4604944 to O.B.], the Research Council of Norway [grants 239903 to C.P., 230779 to O.B., and through its Centre of Excellence funding scheme, Project Number 179573], and a Mayent-Rothschild- Institut Curie Award to OB is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

KV, IK, NAG, MBD, FK, and CP performed the experiments and analyzed data. FF helped with setting up the Zebrafish xenotransplantation model. CP conceived and supervised the project. IK and CP wrote the manuscript with input from all the authors. CP and OB procured funding.

Corresponding author

Correspondence to Cinzia Progida.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Movie 1

: Cdc42 is transported towards the cell periphery in Rab6-positive vesicles. U2OS cells co-transfected with GFP-Rab6 and mCherry-Cdc42 were imaged using a spinning-disk confocal microscope at 1 second intervals. A vesicle positive for both GFP-Rab6 and mCherry-Cdc42 moving towards the cell periphery is tracked over time. Scale bar: 10 µm (AVI 2233 kb)

Movie 2: Rab6-positive vesicles are transported towards filopodia.

U2OS cells transfected with GFP-Rab6 and labeled with SiR-actin, were imaged with a Total Internal Reflection fluorescent (TIRF) microscope. (AVI 188 kb)

Supplementary figure 1: Rab6 silencing promotes cell migration in RPE-1 cells.

(a) RPE-1 cells treated with siRNA control, siRNA Rab6 #1 or siRNA Rab6 #2 were scratch-wounded and imaged every 15th minute for 24 h. Representative images of (T0) and 24 h after scratching are shown. Scale bar: 300 µm. Quantification of single-cell speed (b) and directness (c) is represented as mean ± s.e.m.; n>230 cells from five independent experiments. (d) Cell lysates from each of the indicated samples were subjected to Western blot analysis with antibodies against Rab6 and tubulin (as a loading control). (e) The intensities of the bands were quantified using densitometry, normalized against the amount of tubulin, and plotted relative to the intensities obtained in cells transfected with siRNA control. The values represent the mean ± s.e.m. for five independent experiments. *P < 0.05; **P < 0.01; ***P < 0.001 (paired Student’s t test). (f) Representative track plots of the single-cell migration distances. Individual tracks are shown so that each starts at the origin (distance 0). (g) Velocity vector fields of particle image velocimetry analysis (PIV). Scale bar: 100 µm (TIFF 1719 kb)

Supplementary figure 2: Rab6 depletion promotes cell migration independently from cell proliferation.

(a) U2OS cells treated with either siRNA control, siRNA Rab6 #1, siRNA Rab6 #2, or treated with the same siRNAs and afterwards transfected with GFP-Rab6 were scratch-wounded and imaged for 24 h. The graph represents the mean from three independent experiments of the relative wound density (%) as function of time. ***P < 0.001 compared to control (two-way repeated measures ANOVA followed by Tukey’s post test for t=24h). (b) Cell lysates from each sample were subjected to Western blot analysis with antibodies against Rab6 and tubulin (as a loading control). (c) U2OS cells treated with either siRNA control, siRNA Rab6 #1 or siRNA Rab6 #2 were scratch-wounded and imaged in medium containing Cytotox Green reagent to label dying cells green. Cell death during migration was quantified by dividing the number of green objects at each timepoint with the number of green objects at time 0. The graph represents the mean from three independent experiments. (d) U2OS cells treated with either siRNA control, siRNA Rab6 #1 or siRNA Rab6 #2 were scratch-wounded and incubated in medium (with or without serum as indicated) containing the modified thymidine analogue Edu. The graph shows the percentage of Edu-positive cells after 24 h, relative to Edu-positive control cells in medium containing serum. The data represents the mean ± s.e.m from three independent experiments. (e) HeLa cells treated with either siRNA control, siRNA Rab6 #1, or siRNA Rab6 #2 were scratch-wounded and imaged for 24 h. Representative images of (T0) and 24 h after scratching are shown. Scale bar: 300 µm. (f) Quantification of the relative wound density (%) as function of time for control cells and Rab6-depleted cells. Data represents the mean of three (siRNA #1) or two (siRNA #2) independent experiments. *P < 0.05; ***P < 0.001 compared to control (two-way repeated measures ANOVA followed by Tukey’s post test for t=24h). (g) Cell lysates from each sample were subjected to Western blot analysis with antibodies against Rab6 and tubulin (as a loading control). (TIFF 809 kb)

Supplementary figure 3: Role of Trio in Rab6-dependent Cdc42 activation and cell migration.

(a) Lysates from U2OS cells transfected with control siRNA, siRNA Rab6 #1, siRNA Trio, siRNA Rab6 #1 and siRNA Trio, or siRNA DOCK10 were mixed with beads coupled to GST–PAK–PBD to pull down the active forms of Cdc42 and analyzed by western blot. (b) Quantification of the levels of active Cdc42 were normalized to the amount of tubulin and plotted relative to the intensities of GTP-bound Cdc42 in the control sample. The graphs represent the mean ± s.e.m. normalized to the control of at least three independent experiments. *P < 0.05; **P < 0.01 (paired Student’s t test). (c) U2OS cells treated with either siRNA control, siRNA Rab6 #1, siRNA Trio, siRNA Rab6 #1 and siRNA Trio, or treated with siRNA Trio and afterwards transfected with GFP-Rab6, were scratch-wounded and imaged for 24 h. The graph represents the mean from at least three independent experiments of the relative wound density (%) as function of time. ***P < 0.001 compared to control (two-way repeated measures ANOVA followed by Tukey’s post test for t=21h). (TIFF 309 kb)

Supplementary figure 4: Rab6 and filopodia.

(a) HeLa cells treated with siRNA control or siRNA Rab6 #1 were fixed and stained with DAPI and rhodamine-conjugated phalloidin. The lower insets show magnifications of the boxed areas. Scale bar: 20 µm. (b) Quantification of the number of filopodia per 100 µm cell membrane length. The graph represents the mean ± s.e.m.; n>100 cells from four independent experiments. *P < 0.05 (paired Student’s t test). (c) U2OS cells transfected with GFP-Rab6 and labeled with SiR-actin, were imaged with a Total Internal Reflection fluorescent (TIRF) microscope. Right panels: arrows in the insets point to Rab6-positive vesicles moving towards filopodia. Scale bar: 10 µm. (TIFF 698 kb)

Supplementary figure 5: Rab6 knockdown promotes spread of cancer cells in zebrafish embryos following xenotransplantation.

(a) H1299 cells transfected with control siRNA or siRNA Rab6 #2 were stained with QDs Q-Tracker 655 and injected into the otic vesicle (red circle) of 2-dpf zebrafish wild-type embryos. Images were taken soon after the injection (T0) as well as 24 and 48 h later. In contrast to the control cells (left panels) that remained confined to the injection area, cell silenced for Rab6 (right panels) showed higher ability to migrate outside from the otic vesicle, both at 24 h and at even more at 48 h (arrows). Magnification of the boxed areas are shown in the inset on the right of each panel. Scale bar: 100 µm. (b) Quantification of cell migration was performed by measuring the area occupied by the cells at 24 h and 48 h after injection and was normalized to the area occupied by the cells in the otic vesicle at T0. The graph represents the mean ± s.e.m. from n>15 embryos. *P < 0.05 (paired Student’s t test). (c) H1299 cells transfected with control siRNA or siRNA Rab6 #2 for 24 or 48 h were subjected to western blot analysis using antibodies against Rab6 and tubulin (as a loading control). (TIFF 477 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vestre, K., Kjos, I., Guadagno, N.A. et al. Rab6 regulates cell migration and invasion by recruiting Cdc42 and modulating its activity. Cell. Mol. Life Sci. 76, 2593–2614 (2019). https://doi.org/10.1007/s00018-019-03057-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03057-w

Keywords

  • Rab proteins
  • Rab6
  • small GTPases
  • cell migration