Cellular and Molecular Life Sciences

, Volume 76, Issue 5, pp 941–960 | Cite as

Hindbrain induction and patterning during early vertebrate development

  • Dale FrankEmail author
  • Dalit Sela-DonenfeldEmail author


The hindbrain is a key relay hub of the central nervous system (CNS), linking the bilaterally symmetric half-sides of lower and upper CNS centers via an extensive network of neural pathways. Dedicated neural assemblies within the hindbrain control many physiological processes, including respiration, blood pressure, motor coordination and different sensations. During early development, the hindbrain forms metameric segmented units known as rhombomeres along the antero-posterior (AP) axis of the nervous system. These compartmentalized units are highly conserved during vertebrate evolution and act as the template for adult brainstem structure and function. TALE and HOX homeodomain family transcription factors play a key role in the initial induction of the hindbrain and its specification into rhombomeric cell fate identities along the AP axis. Signaling pathways, such as canonical-Wnt, FGF and retinoic acid, play multiple roles to initially induce the hindbrain and regulate Hox gene-family expression to control rhombomeric identity. Additional transcription factors including Krox20, Kreisler and others act both upstream and downstream to Hox genes, modulating their expression and protein activity. In this review, we will examine the earliest embryonic signaling pathways that induce the hindbrain and subsequent rhombomeric segmentation via Hox and other gene expression. We will examine how these signaling pathways and transcription factors interact to activate downstream targets that organize the segmented AP pattern of the embryonic vertebrate hindbrain.


Hindbrain Neural specification and patterning Hox proteins Meis and Pbx proteins FGF, Wnt and retinoic acid signaling Rhombomere patterning 



We wish to thank Dr. Yuval Peretz for his help with the illustrations. DF was supported by grants from the Israel Science Foundation (ISF, 658/15) and the Israel Cancer Research Fund (ICRF). DSD was supported by grants from the ISF (1515/16), The Chief Scientist Office of the Ministry of Health, Israel (3-0000-15441) and United States–Israel Binational Science Foundation (2015087).


  1. 1.
    Shoja MM, Johal J, Oakes WJ, Tubbs RS (2018) Embryology and pathophysiology of the Chiari I and II malformations: a comprehensive review. Clin Anat 31:202–215PubMedGoogle Scholar
  2. 2.
    Shoja MM, Ramdhan R, Jensen CJ, Chern JJ, Oakes WJ, Tubbs RS (2018) Embryology of the craniocervical junction and posterior cranial fossa, part II: embryogenesis of the hindbrain. Clin Anat 31:488–500PubMedGoogle Scholar
  3. 3.
    Spemann H, Mangold H (1924) Uber Induktion von Embryonalanlagen durch Implantation artfremder Organisatoren. Arch mikr Anat Entw mech 100:599–638Google Scholar
  4. 4.
    Oppenheimer JM (1936) Transplantation experiments on developing teleosts (Fundulus and Perca). J Exp Biol 72:409–437Google Scholar
  5. 5.
    Waddington CH (1933) Induction by the primitive streak and its derivatives in the chick. J Exp Biol 10:38–46Google Scholar
  6. 6.
    Beddington RS, Robertson EJ (1999) Axis development and early asymmetry in mammals. Cell 96:195–209PubMedGoogle Scholar
  7. 7.
    Nieuwkoop PD (1952) Activation and organization of the central nervous system in amphibians. III Synthesis of a new working hypothesis. J Exp Zool 120:83–108Google Scholar
  8. 8.
    Eyal-Giladi H (1954) Dynamic aspects of neural induction. Arc Biol 65:180–259Google Scholar
  9. 9.
    Toivonen S, Saxen L (1968) Morphogenetic interaction of presumptive neural and mesodermal cells mixed in different ratios. Science 159:539–540PubMedGoogle Scholar
  10. 10.
    Lamb TM, Knecht AK, Smith WC, Stachel SE, Economides AN, Stahl N, Yancopolous GD, Harland RM (1993) Neural induction by the secreted polypeptide noggin. Science 262:713–718PubMedGoogle Scholar
  11. 11.
    Hemmati-Brivanlou A, Kelly OG, Melton DA (1994) Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell 77:283–295PubMedGoogle Scholar
  12. 12.
    Sasai Y, Lu B, Steinbeisser H, De Robertis EM (1995) Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus. Nature 376:333–336PubMedGoogle Scholar
  13. 13.
    Re’em-Kalma Y, Lamb T, Frank D (1995) Competition between noggin and bone morphogenetic protein 4 activities may regulate dorsalization during Xenopus development. Proc Natl Acad Sci USA 92:12141–12145PubMedGoogle Scholar
  14. 14.
    Fainsod A, Deissler K, Yelin R, Marom K, Epstein M, Pillemer G, Steinbeisser H, Blum M (1997) The dorsalizing and neural inducing gene follistatin is an antagonist of BMP-4. Mech Dev 63:39–50PubMedGoogle Scholar
  15. 15.
    Zimmerman LB, De Jesus-Escobar JM, Harland RM (1996) The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86:599–606PubMedGoogle Scholar
  16. 16.
    Piccolo S, Sasai Y, Lu B, De Robertis EM (1996) Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86:589–598PubMedPubMedCentralGoogle Scholar
  17. 17.
    Hemmati-Brivanlou A, Melton DA (1994) Inhibition of activin receptor signaling promotes neuralization in Xenopus. Cell 77:273–281PubMedGoogle Scholar
  18. 18.
    Wilson PA, Hemmati-Brivanlou A (1995) Induction of epidermis and inhibition of neural fate by Bmp-4. Nature 376:331–333PubMedGoogle Scholar
  19. 19.
    Wilson SI, Rydstrom A, Trimborn T, Willert K, Nusse R, Jessell TM, Edlund T (2001) The status of Wnt signalling regulates neural and epidermal fates in the chick embryo. Nature 411:325–330PubMedGoogle Scholar
  20. 20.
    Cox WG, Hemmati-Brivanlou A (1995) Caudalization of neural fate by tissue recombination and bFGF. Development 121:4349–4358PubMedGoogle Scholar
  21. 21.
    Lamb TM, Harland RM (1995) Fibroblast growth factor is a direct neural inducer, which combined with noggin generates anterior-posterior neural pattern. Development 121:3627–3636PubMedGoogle Scholar
  22. 22.
    Holowacz T, Sokol S (1999) FGF is required for posterior neural patterning but not for neural induction. Dev Biol 205:296–308PubMedGoogle Scholar
  23. 23.
    Kudoh T, Wilson SW, Dawid IB (2002) Distinct roles for Fgf, Wnt and retinoic acid in posteriorizing the neural ectoderm. Development 129:4335–4346PubMedGoogle Scholar
  24. 24.
    Ribisi S, Mariani FV, Aamar E, Lamb TM, Frank D, Harland RM (2000) Ras-mediated FGF signaling is required for the formation of posterior but not anterior neural tissue in Xenopus laevis. Dev Biol 227:183–196PubMedGoogle Scholar
  25. 25.
    Fletcher RB, Baker JC, Harland RM (2006) FGF8 spliceforms mediate early mesoderm and posterior neural tissue formation in Xenopus. Development 133:1703–1714PubMedGoogle Scholar
  26. 26.
    Durston AJ, Timmermans JP, Hage WJ, Hendriks HF, de Vries NJ, Heideveld M, Nieuwkoop PD (1989) Retinoic acid causes an anteroposterior transformation in the developing central nervous system. Nature 340:140–144PubMedGoogle Scholar
  27. 27.
    Sive HL, Draper BW, Harland RM, Weintraub H (1990) Identification of a retinoic acid-sensitive period during primary axis formation in Xenopus laevis. Genes Dev 4:932–942PubMedGoogle Scholar
  28. 28.
    Sharpe CR (1991) Retinoic acid can mimic endogenous signals involved in transformation of the Xenopus nervous system. Neuron 7:239–247PubMedGoogle Scholar
  29. 29.
    Ruiz i Altaba A, Jessell TM (1991) Retinoic acid modifies the pattern of cell differentiation in the central nervous system of neurula stage Xenopus embryos. Development 112:945–958PubMedGoogle Scholar
  30. 30.
    Kolm PJ, Sive H (1995) Hindbrain patterning requires retinoid signaling. Dev Biol 192:1–16Google Scholar
  31. 31.
    Papalopulu N, Kintner C (1996) A posteriorising factor, retinoic acid, reveals that anteroposterior patterning controls the timing of neuronal differentiation in Xenopus neuroectoderm. Development 122:3409–3418PubMedGoogle Scholar
  32. 32.
    Blumberg B, Bolado J Jr, Moreno TA, Kintner C, Evans RM, Papalopulu N (1997) An essential role for retinoid signaling in anteroposterior neural patterning. Development 124:373–379PubMedGoogle Scholar
  33. 33.
    McGrew LL, Lai CJ, Moon RT (1995) Specification of the anteroposterior neural axis through synergistic interaction of the Wnt signaling cascade with noggin and follistatin. Dev Biol 172:337–342PubMedGoogle Scholar
  34. 34.
    McGrew LL, Hoppler S, Moon RT (1997) Wnt and FGF pathways cooperatively pattern anteroposterior neural ectoderm in Xenopus. Mech Dev 69:105–114PubMedGoogle Scholar
  35. 35.
    Domingos PM, Itasaki N, Jones CM, Mercurio S, Sargent MG, Smith JC, Krumlauf R (2001) The Wnt/beta-catenin pathway posteriorizes neural tissue in Xenopus by an indirect mechanism requiring FGF signaling. Dev Biol 239:148–160PubMedGoogle Scholar
  36. 36.
    Schulte D, Frank D (2014) TALE transcription factors during early development of the vertebrate brain and eye. Dev Dyn 24:99–116Google Scholar
  37. 37.
    Krumlauf R (2016) Hox genes and the hindbrain: a study in segments. Curr Top Dev Biol 116:581–596PubMedGoogle Scholar
  38. 38.
    Hernandez-Miranda LR, Müller T, Birchmeier C (2017) The dorsal spinal cord and hindbrain: from developmental mechanisms to functional circuits. Dev Biol 432:34–42PubMedGoogle Scholar
  39. 39.
    Parker HJ, Krumlauf R (2017) Segmental arithmetic: summing up the Hox gene regulatory network for hindbrain development in chordates. WIRE Dev Biol. Google Scholar
  40. 40.
    Burglin T (1997) Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. Nucleic Acids Res 25:4173–4180PubMedPubMedCentralGoogle Scholar
  41. 41.
    Pöpperl H, Rikhof H, Chang H, Haffter P, Kimmel CB, Moens CB (2000) lazarus is a novel pbx gene that globally mediates hox gene function in zebrafish. Mol Cell 6:255–267PubMedGoogle Scholar
  42. 42.
    Dibner C, Elias S, Frank D (2001) XMeis3 protein activity is required for proper hindbrain patterning in Xenopus laevis embryos. Development 128:3415–3426PubMedGoogle Scholar
  43. 43.
    Waskiewicz AJ, Rikhof HA, Hernandez RE, Moens CB (2001) Zebrafish Meis functions to stabilize Pbx proteins and regulate hindbrain patterning. Development 128:4139–4151PubMedGoogle Scholar
  44. 44.
    Elkouby YM, Elias S, Casey ES, Blythe SA, Tsabar N, Klein PS, Root H, Liu KJ, Frank D (2010) Mesodermal Wnt signaling organizes the neural plate via Meis3. Development 137:1531–1541PubMedPubMedCentralGoogle Scholar
  45. 45.
    Rohrschneider MR, Elsen GE, Prince VE (2007) Zebrafish Hoxb1a regulates multiple downstream genes including prickle1b. Dev Biol 309:358–372PubMedGoogle Scholar
  46. 46.
    Choe S, Zhang X, Hirsch N, StraubhaarJ Sagerstrom CG (2011) A screen for hoxb1-regulated genes identifies ppp1r14al as a regulator of the rhombomere 4 Fgf-signaling center. Dev Biol 358:356–367PubMedPubMedCentralGoogle Scholar
  47. 47.
    Salzberg A, Elias S, Nachaliel N, Bonstein L, Henig C, Frank D (1999) A Meis family protein caudalizes neural cell fates in Xenopus. Mech Dev 80:3–13PubMedGoogle Scholar
  48. 48.
    Vlachakis N, Choe SK, Sagerstrom CG (2001) Meis3 synergizes with Pbx4 and Hoxb1b in promoting hindbrain fates in the zebrafish. Development 128:1299–1312PubMedGoogle Scholar
  49. 49.
    Choe S, Vlachakis N, Sagerstrom CG (2002) Meis family proteins are required for hindbrain development in the zebrafish. Development 129:585–595PubMedGoogle Scholar
  50. 50.
    Maeda R, Ishimura A, Mood K, Park EK, Buchberg AM, Daar IO (2002) Xpbx1b and Xmeis1b play a collaborative role in hindbrain and neural crest gene expression in Xenopus embryos. Proc Natl Acad Sci USA 99:5448–5453PubMedGoogle Scholar
  51. 51.
    Oulad-Abdelghani M, Chazaud C, Bouillet P, Sapin V, Chambon P, Dolle P (1997) Meis2, a novel mouse Pbx-related homeobox gene induced by retinoic acid during differentiation of P19 embryonal carcinoma cells. Dev Dyn 210:173–183PubMedGoogle Scholar
  52. 52.
    Cecconi F, Proetzel G, Alvarez-Bolado G, Jay D, Gruss P (1997) Expression of Meis2, a Knotted-related murine homeobox gene, indicates a role in the differentiation of the forebrain and the somatic mesoderm. Dev Dyn 210:184–190PubMedGoogle Scholar
  53. 53.
    Maeda R, Mood K, Jones TL, Aruga J, Buchberg AM, Daar IO (2001) Xmeis1, a protooncogene involved in specifying neural crest cell fate in Xenopus embryos. Oncogene 20:1329–1342PubMedGoogle Scholar
  54. 54.
    Zerucha T, Prince VE (2001) Cloning and developmental expression of a zebrafish meis2 homeobox gene. Mech Dev 102:247–250PubMedGoogle Scholar
  55. 55.
    Bumsted-O’Brien KM, Hendrickson A, Haverkamp S, Ashery-Padan R, Schulte D (2007) Expression of the homeodomain transcription factor Meis2 in the embryonic and postnatal retina. J Comp Neurol 505:58–72PubMedGoogle Scholar
  56. 56.
    Sanchez-Guardado LO, Irimia M, Sanchez-Arrones L, Burguera D, Rodrıguez-Gallardo L, Garcia-Fernandez J, Puelles L, Ferran JL, Hidalgo-Sanchez M (2011) Distinct and redundant expression and transcriptional diversity of MEIS gene paralogs during chicken development. Dev Dyn 240:1475–1492PubMedGoogle Scholar
  57. 57.
    Gutkovich YE, Ofir R, Elkouby YM, Dibner C, Gefen A, Elias S, Frank D (2010) Xenopus Meis3 protein lies at a nexus downstream to Zic1 and Pax3 proteins, regulating multiple cell-fates during early nervous system development. Dev Biol 338:50–62PubMedGoogle Scholar
  58. 58.
    Ferretti E, Cambronero F, Tumpel S, Longobardi E, Wiedemann LM, Blasi F, Krumlauf R (2005) Hoxb1 enhancer and control of rhombomere 4 expression: complex interplay between PREP1- PBX1-HOXB1 binding sites. Mol Cell Biol 25:8541–8552PubMedPubMedCentralGoogle Scholar
  59. 59.
    Ferretti E, Marshall H, Popperl H, Maconochie M, Krumlauf R, Blasi F (2000) Segmental expression of Hoxb2 in r4 requires two separate sites that integrate cooperative interactions between Prep1, Pbx and Hox proteins. Development 127:155–166PubMedGoogle Scholar
  60. 60.
    Maconochie MK, Nonchev S, Studer M, Chan SK, Popperl H, Sham MH, Mann RS, Krumlauf R (1997) Cross-regulation in the mouse HoxB complex: the expression of Hoxb2 in rhombomere 4 is regulated by Hoxb1. Genes Dev 11:1885–1895PubMedGoogle Scholar
  61. 61.
    Jacobs Y, Schnabel CA, Cleary ML (1999) Trimeric association of Hox and TALE homeodomain proteins mediates Hoxb2 hindbrain enhancer activity. Mol Cell Biol 19:5134–5142PubMedPubMedCentralGoogle Scholar
  62. 62.
    Dibner C, Elias S, Ofir R, Souopgui J, Kolm PJ, Sive H, Pieler T, Frank D (2004) The Meis3 protein and retinoid signaling interact to pattern the Xenopus hindbrain. Dev Biol 271:75–86PubMedGoogle Scholar
  63. 63.
    Wassef MA, Chomette D, Pouilhe M, Stedman A, Havis E, Dinh CD, Schneider- Maunoury S, Gilardi-Hebenstreit P, Charnay P, Ghislain J (2008) Rostral hindbrain patterning involves the direct activation of a Krox20 transcriptional enhancer by Hox/Pbx and Meis factors. Development 135:3369–3378PubMedGoogle Scholar
  64. 64.
    Stedman A, Lecaudey V, Havis E, Anselme I, Wassef M, Gilardi- Hebenstreit P, Schneider-Maunoury S (2009) A functional interaction between Irx and Meis patterns the anterior hindbrain and activates krox20 expression in rhombomere 3. Dev Biol 327:566–577PubMedGoogle Scholar
  65. 65.
    Popperl H, Bienz M, Studer M, Chan SK, Aparicio S, Brenner S, Mann RS, Krumlauf R (1995) Segmental expression of Hoxb-1 is controlled by a highly conserved autoregulatory loop dependent upon exd/pbx. Cell 81:1031–1042PubMedGoogle Scholar
  66. 66.
    Waskiewicz AJ, Rikhof HA, Moens CB (2002) Eliminating zebrafish pbx proteins reveals a hindbrain ground state. Dev Cell 3:723–733PubMedGoogle Scholar
  67. 67.
    Chan SK, Popperl H, Krumlauf R, Mann RS (1996) An extradenticle-induced conformational change in a HOX protein overcomes an inhibitory function of the conserved hexapeptide motif. EMBO J 15:2476–2487PubMedPubMedCentralGoogle Scholar
  68. 68.
    Wilkinson DG, Bhatt S, Cook M, Boncinelli E, Krumlauf R (1989) Segmental expression of Hox-2 homoeobox containing genes in the developing mouse hindbrain. Nature 341:405–409PubMedGoogle Scholar
  69. 69.
    Sundin OH, Busse HG, Rogers MB, Gudas LJ, Eichele G (1990) Region-specific expression in early chick and mouse embryos of Ghox-lab and Hox 1.6, vertebrate homeobox-containing genes related to Drosophila labial. Development 108:47–58PubMedGoogle Scholar
  70. 70.
    Frohman MA, Boyle M, Martin GR (1990) Isolation of the mouse Hox-2.9 gene; analysis of embryonic expression suggests that positional information along the anterior-posterior axis is specified by mesoderm. Development 110:589–607PubMedGoogle Scholar
  71. 71.
    Murphy P, Hill RE (1991) Expression of the mouse labial-like homeobox-containing genes, Hox 2.9 and Hox 1.6, during segmentation of the hindbrain. Development 111:61–74PubMedGoogle Scholar
  72. 72.
    Frohman MA, Martin GR (1992) Isolation and analysis of embryonic expression of Hox-4.9, a member of the murine labial-like gene family. Mech Dev 38:55–67PubMedGoogle Scholar
  73. 73.
    Godsave S, Dekker EJ, Holling T, Pannese M, Boncinelli E, Durston A (1994) Expression patterns of Hoxb genes in the Xenopus embryo suggest roles in anteroposterior specification of the hindbrain and in dorsoventral patterning of the mesoderm. Dev Biol 166:465–476PubMedGoogle Scholar
  74. 74.
    Kolm PJ, Apekin V, Sive H (1997) Xenopus hindbrain patterning requires retinoid signaling. Dev Biol 192:1–16PubMedGoogle Scholar
  75. 75.
    Rossel M, Capecchi MR (1999) Mice mutant for both Hoxa1 and Hoxb1 show extensive remodeling of the hindbrain and defects in craniofacial development. Development 126:5027–5040PubMedGoogle Scholar
  76. 76.
    McClintock JM, Kheirbek MA, Prince VE (2002) Knockdown of duplicated zebrafish hoxb1 genes reveals distinct roles in hindbrain patterning and a novel mechanism of duplicate gene retention. Development 129:2339–2354PubMedGoogle Scholar
  77. 77.
    McNulty CL, Peres JN, Bardine N, van den Akker WM, Durston AJ (2005) Knockdown of the complete Hox paralogous group 1 leads to dramatic hindbrain and neural crest defects. Development 132:2861–2871PubMedGoogle Scholar
  78. 78.
    Gavalas A, Studer M, Lumsden A, Rijli FM, Krumlauf R, Chambon P (1998) Hoxa1 and Hoxb1 synergize in patterning the hindbrain, cranial nerves and second pharyngeal arch. Development 125:1123–1136PubMedGoogle Scholar
  79. 79.
    Studer M, Gavalas A, Marshall H, Ariza-McNaughton L, Rijli FM, Chambon P, Krumlauf R (1998) Genetic interactions between Hoxa1 and Hoxb1 reveal new roles in regulation of early hindbrain patterning. Development 125:1025–1036PubMedGoogle Scholar
  80. 80.
    Remacle S, Abbas L, de Backer O, Pacico N, Gavalas A, Gofflot F, Picard JJ, Rezsohazy R (2004) Loss of function but no gain of function caused by amino acid substitutions in the hexapeptide of Hoxa1 in vivo. Mol Cell Biol 24:8567–8575PubMedPubMedCentralGoogle Scholar
  81. 81.
    Makki N, Capecchi MR (2011) Identification of novel Hoxa1 downstream targets regulating hindbrain, neural crest and inner ear development. Dev Biol 357:295–304PubMedPubMedCentralGoogle Scholar
  82. 82.
    Tischfield MA, Bosley TM, Salih MA, Alorainy IA, Sener EC, Nester MJ, Oystreck DT, Chan WM, Andrews C, Erickson RP, Engle EC (2015) Homozygous HOXA1 mutations disrupt human brainstem, inner ear, cardiovascular and cognitive development. Nat Genet 37:1035–1037Google Scholar
  83. 83.
    Prince V, Lumsden A (1994) Hoxa-2 expression in normal and transposed rhombomeres: independent regulation in the neural tube and neural crest. Development 120:911–923PubMedGoogle Scholar
  84. 84.
    Gavalas A, Davenne M, Lumsden A, Chambon P, Rijli FM (1997) Role of Hoxa-2 in axon pathfinding and rostral hindbrain patterning. Development 124:3693–3702PubMedGoogle Scholar
  85. 85.
    Barrow JR, Stadler HS, Capecchi MR (2000) Roles of Hoxa1 and Hoxa2 in patterning the early hindbrain of the mouse. Development 127:933–944PubMedGoogle Scholar
  86. 86.
    Ren S, Angran P, Rijli FM (2002) Targeted insertion results in a rhombomere 2- specific Hoxa2 knockdown and ectopic activation of Hoxa1 expression. Dev Dyn 225:305–315PubMedGoogle Scholar
  87. 87.
    Oury F, Murakami Y, Renaud J, Pasqualetti M, Charnay P, Ren S, Rijli FM (2006) Hoxa2- and rhombomere-dependent development of the mouse facial somatosensory map. Science 313:1408–1413PubMedGoogle Scholar
  88. 88.
    Davenne M, Maconochie MK, Neun R, Pattyn A, Chambon P, Krumlauf R, Rijli FM (1999) Hoxa2 and Hoxb2 control dorsoventral patterns of neuronal development in the rostral hindbrain. Neuron 22:677–691PubMedGoogle Scholar
  89. 89.
    McEllin JA, Alexander TB, Tümpel S, Wiedemann LM, Krumlauf R (2016) Analyses of fugu hoxa2 genes provide evidence for subfunctionalization of neural crest cell and rhombomere cis-regulatory modules during vertebrate evolution. Dev Biol 409:530–542PubMedGoogle Scholar
  90. 90.
    Wong EY, Wang XA, Mak SS, Sae-Pang JJ, Ling KW, Fritzsch B, Sham MH (2011) Hoxb3 negatively regulates Hoxb1 expression in mouse hindbrain patterning. Dev Biol 352:382–392PubMedGoogle Scholar
  91. 91.
    Gaufo GO, Thomas KR, Capecchi MR (2003) Hox3 genes coordinate mechanisms of genetic suppression and activation in the generation of branchial and somatic motoneurons. Development 130:5191–5201PubMedGoogle Scholar
  92. 92.
    Horan GS, Ramırez-Solis R, Featherstone MS, Wolgemuth DJ, Bradley A, Behringer RR (1995) Compound mutants for the paralogous hoxa-4, hoxb-4, and hoxd-4 genes show more complete homeotic transformations and a dose-dependent increase in the number of vertebrae transformed. Genes Dev 9:1667–1677PubMedGoogle Scholar
  93. 93.
    De Kumar B, Parker HJ, Paulson A, Parrish ME, Zeitlinger J, Krumlauf R (2017) Hoxa1 targets signaling pathways during neural differentiation of ES cells and mouse embryogenesis. Dev Biol 432:151–164PubMedGoogle Scholar
  94. 94.
    De Kumar B, Parker HJ, Paulson A, Parrish ME, Pushel I, Singh NP, Zhang Y, Slaughter BD, Unruh JR, Florens L, Zeitlinger J, Krumlauf R (2017) HOXA1 and TALE proteins display cross-regulatory interactions and form a combinatorial binding code on HOXA1 targets. Genome Res 27:1501–1512PubMedPubMedCentralGoogle Scholar
  95. 95.
    Choe S, Lu P, Nakamura M, Lee J, Sagerstrom CG (2009) Meis cofactors control HDAC and CBP accessibility at Hox-regulated promoters during zebrafish embryogenesis. Dev Cell 17:561–567PubMedPubMedCentralGoogle Scholar
  96. 96.
    Choe SK, Ladam F, Sagerström CG (2014) TALE factors poise promoters for activation by Hox proteins. Dev Cell 28:203–211PubMedPubMedCentralGoogle Scholar
  97. 97.
    Grice J, Noyvert B, Doglio L, Elgar G (2015) A simple predictive enhancer syntax for hindbrain patterning is conserved in vertebrate genomes. PLoS One 10:e0130413PubMedPubMedCentralGoogle Scholar
  98. 98.
    Tümpel S, Cambronero F, Sims C, Krumlauf R, Wiedemann LM (2008) A regulatory module embedded in the coding region of Hoxa2 controls expression in rhombomere 2. Proc Natl Acad Sci USA 105:20077–20082PubMedGoogle Scholar
  99. 99.
    Lampe X, Samad OA, Guiguen A, Matis C, Remacle S, Picard JJ, Rijli FM, Rezsohazy R (2008) An ultraconserved Hox-Pbx responsive element resides in the coding sequence of Hoxa2 and is active on rhombomere 4. Nucleic Acids Res 36:3214–3225PubMedPubMedCentralGoogle Scholar
  100. 100.
    Gavalas A, Ruhrberg C, Livet J, Henderson CE, Krumlauf R (2003) Neuronal defects in the hindbrain of Hoxa1, Hoxb1 and Hoxb2 mutants reflect regulatory interactions among these Hox genes. Development 130:5663–5679PubMedGoogle Scholar
  101. 101.
    Tümpel S, Cambronero F, Ferretti E, Blasi F, Wiedemann LM, Krumlauf R (2007) Expression of Hoxa2 in rhombomere 4 is regulated by a conserved cross-regulatory mechanism dependent upon Hoxb1. Dev Biol 302:646–660PubMedGoogle Scholar
  102. 102.
    Manzanares M, Bel-Vialar S, Ariza-McNaughton L, Ferretti E, Marshall H, Maconochie MM, Blasi F, Krumlauf R (2001) Independent regulation of initiation and maintenance phases of Hoxa3 expression in the vertebrate hindbrain involve auto- and cross-regulatory mechanisms. Development 128:3595–3607PubMedGoogle Scholar
  103. 103.
    Gould A, Morrison A, Sproat G, White RA, Krumlauf R (1997) Positive crossregulation and enhancer sharing: two mechanisms for specifying overlapping Hox expression patterns. Genes Dev 11:900–913PubMedGoogle Scholar
  104. 104.
    Gould A, Itasaki N, Krumlauf R (1998) Initiation of rhombomeric Hoxb4 expression requires induction by somites and a retinoid pathway. Neuron 21:39–51PubMedGoogle Scholar
  105. 105.
    Serpente P, Tumpel S, Ghyselinck NB, Niederreither K, Wiedemann LM, Dolle P, Chambon P, Krumlauf R, Gould AP (2005) Direct crossregulation between retinoic acid receptor beta and Hox genes during hindbrain segmentation. Development 132:503–513PubMedGoogle Scholar
  106. 106.
    Sun Z, Hopkins N (2001) vhnf1, the MODY5 and familial GCKD-associated gene, regulates regional specification of the zebrafish gut, pronephros, and hindbrain. Genes Dev 15:3217–3229PubMedPubMedCentralGoogle Scholar
  107. 107.
    Wiellette EL, Sive H (2003) vhnf1 and Fgf signals synergize to specify rhombomere identity in the zebrafish hindbrain. Development 130:3821–3829PubMedGoogle Scholar
  108. 108.
    Hernandez RE, Rikhof HA, Bachmann R, Moens CB (2004) vhnf1 integrates global RA patterning and local FGF signals to direct posterior hindbrain development in zebrafish. Development 131:4511–4520PubMedGoogle Scholar
  109. 109.
    Kim FA, Sing A, Kaneko T, Bieman M, Stallwood N, Sadl VS, Cordes SP (2005) The vHNF1 homeodomain protein establishes early rhombomere identity by direct regulation of Kreisler expression. Mech Dev 122:1300–1309PubMedGoogle Scholar
  110. 110.
    Moens CB, Cordes SP, Giorgianni MW, Barsh GS, Kimmel CB (1998) Equivalence in the genetic control of hindbrain segmentation in fish and mouse. Development 125:381–391PubMedGoogle Scholar
  111. 111.
    Voiculescu O, Taillebourg E, Pujades C, Kress C, Buart S, Charnay P, Schneider-Maunoury S (2001) Hindbrain patterning: Krox20 couples segmentation and specification of regional identity. Development 128:4967–4978PubMedGoogle Scholar
  112. 112.
    Aragón F, Vázquez-Echeverría C, Ulloa E, Reber M, Cereghini S, Alsina B, Giraldez F, Pujades C (2005) vHnf1 regulates specification of caudal rhombomere identity in the chick hindbrain. Dev Dyn 234:567–576PubMedGoogle Scholar
  113. 113.
    Chomette D, Frain M, Cereghini S, Charnay P, Ghislain J (2006) Krox20 hindbrain cis-regulatory landscape: interplay between multiple long-range initiation and autoregulatory elements. Development 133:1253–1262PubMedGoogle Scholar
  114. 114.
    Bouchoucha YX, Reingruber J, Labalette C, Wassef MA, Thierion E, Desmarquet-Trin Dinh C, Holcman D, Gilardi-Hebenstreit P, Charnay P (2013) Dissection of a Krox20 positive feedback loop driving cell fate choices in hindbrain patterning. Mol Syst Biol 9:690PubMedPubMedCentralGoogle Scholar
  115. 115.
    Labalette C, Wassef MA, Desmarquet-Trin Dinh C, Bouchoucha YX, Le Men J, Charnay P, Gilardi-Hebenstreit P (2015) Molecular dissection of segment formation in the developing hindbrain. Development 142:185–195PubMedGoogle Scholar
  116. 116.
    Thierion E, Le Men J, Collombet S, Hernandez C, Coulpier F, Torbey P, Thomas-Chollier M, Noordermeer D, Charnay P, Gilardi-Hebenstreit P (2017) Krox20 hindbrain regulation incorporates multiple modes of cooperation between cis-acting elements. PLoS Genet 13:e1006903PubMedPubMedCentralGoogle Scholar
  117. 117.
    Bae CJ, Jeong J, Saint-Jeannet JP (2015) A novel function for Egr4 in posterior hindbrain development. Sci Rep 5:7750PubMedPubMedCentralGoogle Scholar
  118. 118.
    Theil T, Frain M, Gilardi-Hebenstreit P, Flenniken A, Charnay P, Wilkinson DG (1998) Segmental expression of the EphA4 (Sek-1) receptor tyrosine kinase in the hindbrain is under direct transcriptional control of Krox-20. Development 125:443–452PubMedGoogle Scholar
  119. 119.
    Cooke JE, Kemp HA, Moens CB (2005) EphA4 is required for cell adhesion and rhombomere-boundary formation in the zebrafish. Curr Biol 15:536–542PubMedGoogle Scholar
  120. 120.
    Sela-Donenfeld D, Kayam G, Wilkinson DG (2009) Boundary cells regulate a switch in the expression of FGF3 in hindbrain rhombomeres. BMC Dev Biol. PubMedPubMedCentralGoogle Scholar
  121. 121.
    Mechta-Grigoriou F, Garel S, Charnay P (2000) Nab proteins mediate a negative feedback loop controlling Krox-20 activity in the developing hindbrain. Development 127:119–128PubMedGoogle Scholar
  122. 122.
    Runko AP, Sagerström CG (2003) Nlz belongs to a family of zinc-finger-containing repressors and controls segmental gene expression in the zebrafish hindbrain. Dev Biol 262:254–267PubMedGoogle Scholar
  123. 123.
    García-Gutiérrez P, Juárez-Vicente F, Gallardo-Chamizo F, Charnay P, García-Domínguez M (2011) The transcription factor Krox20 is an E3 ligase that sumoylates its Nab coregulators. EMBO Rep 12:1018–1023PubMedPubMedCentralGoogle Scholar
  124. 124.
    Kayam G, Kohl A, Magen Z, Peretz Y, Weisinger K, Bar A, Novikov O, Brodski C, Sela-Donenfeld D (2013) A novel role for Pax6 in the segmental organization of the hindbrain. Development 140:2190–2202PubMedGoogle Scholar
  125. 125.
    Moens CB, Yan YL, Appel B, Force AG, Kimmel CB (1996) Valentino: a zebrafish gene required for normal hindbrain segmentation. Development 122:3981–3990PubMedGoogle Scholar
  126. 126.
    Prince VE, Moens CB, Kimmel CB, Ho RK (1998) Zebrafish hox genes: expression in the hindbrain region of wild-type and mutants of the segmentation gene, valentino. Development 125:393–406PubMedGoogle Scholar
  127. 127.
    Cooke J, Moens C, Roth L, Durbin L, Shiomi K, Brennan C, Kimmel C, Wilson S, Holder N (2001) Eph signalling functions downstream of Val to regulate cell sorting and boundary formation in the caudal hindbrain. Development 128:571–580PubMedGoogle Scholar
  128. 128.
    Manzanares M, Cordes S, Ariza-McNaughton L, Sadl V, Maruthainar K, Barsh G, Krumlauf R (1999) Conserved and distinct roles of kreisler in regulation of the paralogous Hoxa3 and Hoxb3 genes. Development 126:759–769PubMedGoogle Scholar
  129. 129.
    Manzanares M, Nardelli J, Gilardi- Hebenstreit P, Marshall H, Giudicelli F, Martinez-Pastor MT, Krumlauf R, Charnay P (2002) Krox20 and Kreisler co-operate in the transcriptional control of segmental expression of Hoxb3 in the developing hindbrain. EMBO J 21:365–376PubMedPubMedCentralGoogle Scholar
  130. 130.
    Rao BR (1968) The appearance and extension of neural differentiation tendencies in the neurectoderm of the early chick embryo. Wilhelm Roux Arch Entwickl Mech Org 160:187–236PubMedGoogle Scholar
  131. 131.
    Garcia-Martinez V, Alvarez IS, Schoenwolf GC (1993) Locations of the ectodermal and nonectodermal subdivisions of the epiblast at stages 3 and 4 of avian gastrulation and neurulation. J Exp Zool 267:431–446PubMedGoogle Scholar
  132. 132.
    Niswander L, Martin GR (1992) Fgf-4 expression during gastrulation, myogenesis, limb and tooth development in the mouse. Development 114:755–768PubMedGoogle Scholar
  133. 133.
    Mahmood R, Kiefer P, Guthrie S, Dickson C, Mason I (1995) Multiple roles for FGF-3 during cranial neural development in the chicken. Development 121:1399–1410PubMedGoogle Scholar
  134. 134.
    Muhr J, Graziano E, Wilson S, Jessell TM, Edlund T (1999) Convergent inductive signals specify midbrain, hindbrain, and spinal cord identity in gastrula stage chick embryos. Neuron 23:689–702PubMedGoogle Scholar
  135. 135.
    Maves L, Jackman W, Kimmel CB (2002) FGF3 and FGF8 mediate a rhombomere 4 signaling activity in the zebrafish hindbrain. Development 129:3825–3837PubMedGoogle Scholar
  136. 136.
    Walshe J, Maroon H, McGonnell IM, Dickson C, Mason I (2002) Establishment of hindbrain segmental identity requires signaling by FGF3 and FGF8. Curr Biol 12:1117–1123PubMedGoogle Scholar
  137. 137.
    Wright TJ, Mansour SL (2003) Fgf3 and Fgf10 are required for mouse otic placode induction. Development 130:3379–3390PubMedGoogle Scholar
  138. 138.
    Mahmood R, Mason IJ, Morriss-Kay GM (1996) Expression of Fgf-3 in relation to hindbrain segmentation, otic pit position and pharyngeal arch morphology in normal and retinoic acid-exposed mouse embryos. Anat Embryol (Berl) 194:13–22Google Scholar
  139. 139.
    Lombardo A, Isaacs HV, Slack JM (1998) Expression and functions of FGF-3 in Xenopus development. Int J Dev Biol 42:1101–1107PubMedGoogle Scholar
  140. 140.
    Powles N, Marshall H, Economou A, Chiang C, Murakami A, Dickson C, Krumlauf R, Maconochie M (2004) Regulatory analysis of the mouse Fgf3 gene: control of embryonic expression patterns and dependence upon sonic hedgehog (Shh) signalling. Dev Dyn 230:44–56PubMedGoogle Scholar
  141. 141.
    Weisinger K, Wilkinson DG, Sela-Donenfeld D (2008) Inhibition of BMPs by follistatin is required for FGF3 expression and segmental patterning of the hindbrain. Dev Biol 324:213–225PubMedGoogle Scholar
  142. 142.
    Weisinger K, Kayam G, Missulawin-Drillman T, Sela-Donenfeld D (2010) Analysis of expression and function of FGF-MAPK signaling components in the hindbrain reveals a central role for FGF3 in the regulation of Krox20, mediated by Pea3. Dev Biol 344:881–895PubMedGoogle Scholar
  143. 143.
    Marín F, Charnay P (2000) Hindbrain patterning: FGFs regulate Krox20 and mafB/kr expression in the otic/preotic region. Development 127:4925–4935PubMedGoogle Scholar
  144. 144.
    Weisinger K, Kohl A, Kayam G, Monsonego-Ornan E, Sela-Donenfeld D (2012) Expression of hindbrain boundary markers is regulated by FGF3. Biol Open 1:67–74PubMedGoogle Scholar
  145. 145.
    Guthrie S, Lumsden A (1991) Formation and regeneration of rhombomere boundaries in the developing chick hindbrain. Development 112:221–229PubMedGoogle Scholar
  146. 146.
    Martinez S, Geijo E, Sánchez-Vives MV, Puelles L, Gallego R (1992) Reduced junctional permeability at interrhombomeric boundaries. Development 116:1069–1076PubMedGoogle Scholar
  147. 147.
    Heyman I, Faissner A, Lumsden A (1995) Cell and matrix specialisations of rhombomere boundaries. Dev Dyn 204:301–315PubMedGoogle Scholar
  148. 148.
    Cayuso J, Xu Q, Wilkinson DG (2015) Mechanisms of boundary formation by Eph receptor and ephrin signaling. Dev Biol 401:122–131PubMedGoogle Scholar
  149. 149.
    Terriente J, Pujades C (2015) Cell segregation in the vertebrate hindbrain: a matter of boundaries. Cell Mol Life Sci 72:3721–3730PubMedGoogle Scholar
  150. 150.
    Peretz Y, Eren N, Kohl A, Hen G, Yaniv K, Weisinger K, Cinnamon Y, Sela-Donenfeld D (2016) A new role of hindbrain boundaries as pools of neural stem/progenitor cells regulated by Sox2. BMC Biol 14:57PubMedPubMedCentralGoogle Scholar
  151. 151.
    Aamar E, Frank D (2004) Xenopus Meis3 protein forms a hindbrain inducing center by activating FGF/MAP kinase and PCP pathways. Development 131:153–163PubMedGoogle Scholar
  152. 152.
    Maconochie MK, Nonchev S, Manzanares M, Marshall H, Krumlauf R (2001) Differences in Krox20-dependent regulation of Hoxa2 and Hoxb2 during hindbrain development. Dev Biol 233:468–481PubMedGoogle Scholar
  153. 153.
    Lunn JS, Fishwick KJ, Halley PA, Storey KG (2007) A spatial and temporal map of FGF/Erk1/2 activity and response repertoires in the early chick embryo. Dev Biol 302:536–552PubMedGoogle Scholar
  154. 154.
    Aragon F, Pujades C (2009) FGF signaling controls caudal hindbrain specification through Ras-ERK1/2 pathway. BMC Dev Biol 9:61PubMedPubMedCentralGoogle Scholar
  155. 155.
    Roelink H, Nusse R (1991) Expression of two members of the Wnt family during mouse development—restricted temporal and spatial patterns in the developing neural tube. Genes Dev 5:381–388PubMedGoogle Scholar
  156. 156.
    Molven A, Njolstad PR, Fjose A (1991) Genomic structure and restricted neural expression of the zebrafish wnt-1 (int-1) gene. EMBO J 10:799–807PubMedPubMedCentralGoogle Scholar
  157. 157.
    McGrew LL, Otte AP, Moon RT (1992) Analysis of Xwnt-4 in embryos of Xenopus laevis: a Wnt family member expressed in the brain and floor plate. Development 115:463–473PubMedGoogle Scholar
  158. 158.
    Hume CR, Dodd J (1993) Cwnt-8C: a novel Wnt gene with a potential role in primitive streak formation and hindbrain organization. Development 119:1147–1160PubMedGoogle Scholar
  159. 159.
    Wolda SL, Moody CJ, Moon RT (1993) Overlapping expression of Xwnt-3A and Xwnt-1 in neural tissue of Xenopus laevis embryos. Dev Biol 155:46–57PubMedGoogle Scholar
  160. 160.
    Kelly GM, Lai CJ, Moon RT (1993) Expression of wnt10a in the central nervous system of developing zebrafish. Dev Biol 158:113–121PubMedGoogle Scholar
  161. 161.
    Hollyday M, McMahon JA, McMahon AP (1995) Wnt expression patterns in chick embryo nervous system. Mech Dev 52:9–25PubMedGoogle Scholar
  162. 162.
    Augustine K, Liu ET, Sadler TW (1993) Antisense attenuation of Wnt-1 and Wnt-3a expression in whole embryo culture reveals roles for these genes in craniofacial, spinal cord, and cardiac morphogenesis. Dev Genet 14:500–520PubMedGoogle Scholar
  163. 163.
    Augustine KA, Liu ET, Sadler TW (1995) Interactions of Wnt-1 and Wnt-3a are essential for neural tube patterning. Teratology 51:107–119PubMedGoogle Scholar
  164. 164.
    McMahon AP, Joyner AL, Bradley A, McMahon JA (1992) The midbrain–hindbrain phenotype of Wnt-1-/Wnt-1- mice results from stepwise deletion of engrailed-expressing cells by 9.5 days postcoitum. Cell 69:581–595PubMedGoogle Scholar
  165. 165.
    Liu P, Wakamiya M, Shea MJ, Albrecht U, Behringer RR, Bradley A (1999) Requirement for Wnt3 in vertebrate axis formation. Nat Genet 22:361–365PubMedGoogle Scholar
  166. 166.
    Nordstrom U, Jessell TM, Edlund T (2002) Progressive induction of caudal neural character by graded Wnt signaling. Nat Neurosci 5:525–532PubMedGoogle Scholar
  167. 167.
    Nordstrom U, Maier E, Jessell TM, Edlund T (2006) An early role for WNT signaling in specifying neural patterns of Cdx and Hox gene expression and motor neuron subtype identity. PLoS Biol 4:e252PubMedPubMedCentralGoogle Scholar
  168. 168.
    Lekven AC, Thorpe CJ, Waxman JS, Moon RT (2001) Zebrafish wnt8 encodes two wnt8 proteins on a bicistronic transcript and is required for mesoderm and neurectoderm patterning. Dev Cell 1:103–114PubMedGoogle Scholar
  169. 169.
    Erter CE, Wilm TP, Basler N, Wright CV, Solnica Krezel L (2001) Wnt8 is required in lateral mesendodermal precursors for neural posteriorization in vivo. Development 128:3571–3583PubMedGoogle Scholar
  170. 170.
    Shimizu T, Bae YK, Muraoka O, Hibi M (2005) Interaction of Wnt and caudal-related genes in zebrafish posterior body formation. Dev Biol 279:125–141PubMedGoogle Scholar
  171. 171.
    Lekven AC, Buckles GR, Kostakis N, Moon RT (2003) Wnt1 and wnt10b function redundantly at the zebrafish midbrain-hindbrain boundary. Dev Biol 254:172–187PubMedGoogle Scholar
  172. 172.
    Riley BB, Chiang MY, Storch EM, Heck R, Buckles GR, Lekven AC (2004) Rhombomere boundaries are Wnt signaling centers that regulate metameric patterning in the zebrafish hindbrain. Dev Dyn 231:278–291PubMedGoogle Scholar
  173. 173.
    Kiecker C, Niehrs C (2001) A morphogen gradient of Wnt/beta-catenin signaling regulates anteroposterior neural patterning in Xenopus. Development 128:4189–4201PubMedGoogle Scholar
  174. 174.
    Monsoro-Burq AH, Wang E, Harland RM (2005) Msx1 and Pax3 cooperate to mediate FGF8 and WNT signals during Xenopus neural crest induction. Dev Cell 8:167–178PubMedGoogle Scholar
  175. 175.
    Wu J, Yang J, Klein PS (2005) Neural crest induction by the canonical Wnt pathway can be dissociated from anterior–posterior neural patterning in Xenopus. Dev Biol 279:220–232PubMedGoogle Scholar
  176. 176.
    Li B, Kuriyama S, Moreno M, Mayor R (2009) The posteriorizing gene Gbx2 is a direct target of Wnt signaling and the earliest factor in neural crest induction. Development 136:3267–3278PubMedPubMedCentralGoogle Scholar
  177. 177.
    Kim CH, Oda T, Itoh M, Jiang D, Artinger KB, Chandrasekharappa SC, Driever W, Chitnis AB (2000) Repressor activity of Headless/Tcf3 is essential for vertebrate head formation. Nature 407:913–916PubMedPubMedCentralGoogle Scholar
  178. 178.
    MacDonald BT, Adamska M, Meisler MH (2004) Hypomorphic expression of Dkk1 in the doubleridge mouse: dose dependence and compensatory interactions with Lrp6. Development 131:2543–2552PubMedGoogle Scholar
  179. 179.
    Gavalas A, Krumlauf R (2000) Retinoid signalling and hindbrain patterning. Curr Opin Genet Dev 10:380–386PubMedGoogle Scholar
  180. 180.
    Schilling TF, Nie Q, Lander AD (2012) Dynamics and precision in retinoic acid morphogen gradients. Curr Opin Genet Dev 22:562–569PubMedPubMedCentralGoogle Scholar
  181. 181.
    van der Wees J, Schilthuis JG, Koster CH, Diesveld-Schipper H, Folkers GE, van der Saag PT, Dawson MI, Shudo K, van der Burg B, Durston AJ (1998) Inhibition of retinoic acid receptor-mediated signalling alters positional identity in the developing hindbrain. Development 125:545–556PubMedGoogle Scholar
  182. 182.
    Berggren K, McCaffery P, Dräger U, Forehand CJ (1999) Differential distribution of retinoic acid synthesis in the chicken embryo as determined by immunolocalization of the retinoic acid synthetic enzyme, RALDH-2. Dev Biol 210:288–304PubMedGoogle Scholar
  183. 183.
    Maden M, Gale E, Kostetskii I, Zile M (1996) Vitamin A-deficient quail embryos have half a hindbrain and other neural defects. Curr Biol 6:417–426PubMedGoogle Scholar
  184. 184.
    Gale E, Zile M, Maden M (1999) Hindbrain respecification in the retinoid-deficient quail. Mech Dev 89:43–54PubMedGoogle Scholar
  185. 185.
    Dupé V, Ghyselinck NB, Wendling O, Chambon P, Mark M (1999) Key roles of retinoic acid receptors alpha and beta in the patterning of the caudal hindbrain, pharyngeal arches and otocyst in the mouse. Development 126:5051–5059PubMedGoogle Scholar
  186. 186.
    Niederreither K, Vermot J, Schuhbaur B, Chambon P, Dollé P (2000) Retinoic acid synthesis and hindbrain patterning in the mouse embryo. Development 127:75–85PubMedGoogle Scholar
  187. 187.
    Dickman ED, Thaller C, Smith SM (1997) Temporally-regulated retinoic acid depletion produces specific neural crest, ocular and nervous system defects. Development 124:3111–3121PubMedGoogle Scholar
  188. 188.
    White JC, Highland M, Kaiser M, Clagett-Dame M (2000) Vitamin A deficiency results in the dose-dependent acquisition of anterior character and shortening of the caudal hindbrain of the rat embryo. Dev Biol 220:263–284PubMedGoogle Scholar
  189. 189.
    Hill J, Clarke JD, Vargesson N, Jowett T, Holder N (1995) Exogenous retinoic acid causes specific alterations in the development of the midbrain and hindbrain of the zebrafish embryo including positional respecification of the Mauthner neuron. Mech Dev 50:3–16PubMedGoogle Scholar
  190. 190.
    Maves L, Kimmel CB (2005) Dynamic and sequential patterning of the zebrafish posterior hindbrain by retinoic acid. Dev Biol 285:593–605PubMedGoogle Scholar
  191. 191.
    Cai AQ, Radtke K, Linville A, Lander AD, Nie Q, Schilling TF (2012) Cellular retinoic acid-binding proteins are essential for hindbrain patterning and signal robustness in zebrafish. Development 139:2150–2155PubMedPubMedCentralGoogle Scholar
  192. 192.
    Samarut E, Fraher D, Laudet V, Gibert Y (2015) ZebRA: an overview of retinoic acid signaling during zebrafish development. Biochim Biophys Acta 1849:73–83PubMedGoogle Scholar
  193. 193.
    Sirbu IO, Gresh L, Barra J, Duester G (2005) Shifting boundaries of retinoic acid activity control hindbrain segmental gene expression. Development 132:2611–2622PubMedPubMedCentralGoogle Scholar
  194. 194.
    White RJ, Nie Q, Lander AD, Schilling TF (2007) Complex regulation of cyp26a1 creates a robust retinoic acid gradient in the zebrafish embryo. PLoS Biol 5:e304PubMedPubMedCentralGoogle Scholar
  195. 195.
    Hernandez RE, Putzke AP, Myers JP, Margaretha L, Moens CB (2007) Cyp26 enzymes generate the retinoic acid response pattern necessary for hindbrain development. Development 134:177–187PubMedPubMedCentralGoogle Scholar
  196. 196.
    McCaffery P, Dräger UC (1993) Retinoic acid synthesis in the developing retina. Adv Exp Med Biol 328:181–190PubMedGoogle Scholar
  197. 197.
    Fujii H, Sato T, Kaneko S, Gotoh O, Fujii-Kuriyama Y, Osawa K, Kato S, Hamada H (1997) Metabolic inactivation of retinoic acid by a novel P450 differentially expressed in developing mouse embryos. EMBO J 16:4163–4173PubMedPubMedCentralGoogle Scholar
  198. 198.
    Moss JB, Xavier-Neto J, Shapiro MD, Nayeem SM, McCaffery P, Dräger UC, Rosenthal N (1998) Dynamic patterns of retinoic acid synthesis and response in the developing mammalian heart. Dev Biol 199:55–71PubMedGoogle Scholar
  199. 199.
    Swindell EC, Thaller C, Sockanathan S, Petkovich M, Jessell TM, Eichele G (1999) Complementary domains of retinoic acid production and degradation in the early chick embryo. Dev Biol 216:282–296PubMedGoogle Scholar
  200. 200.
    Begemann G, Schilling TF, Rauch GJ, Geisler R, Ingham PW (2001) The zebrafish neckless mutation reveals a requirement for raldh2 in mesodermal signals that pattern the hindbrain. Development 128:3081–3094PubMedGoogle Scholar
  201. 201.
    Dobbs-McAuliffe B, Zhao Q, Linney E (2004) Feedback mechanisms regulate retinoic acid production and degradation in the zebrafish embryo. Mech Dev 121:339–350PubMedGoogle Scholar
  202. 202.
    Emoto Y, Wada H, Okamoto H, Kudo A, Imai Y (2005) Retinoic acid-metabolizing enzyme Cyp26a1 is essential for determining territories of hindbrain and spinal cord in zebrafish. Dev Biol 278:415–427PubMedGoogle Scholar
  203. 203.
    Linville A, Radtke K, Waxman JS, Yelon D, Schilling TF (2009) Combinatorial roles for zebrafish retinoic acid receptors in the hindbrain, limbs and pharyngeal arches. Dev Biol 325:60–70PubMedGoogle Scholar
  204. 204.
    McCaffery PJ, Adams J, Maden M, Rosa-Molinar E (2003) Too much of a good thing: retinoic acid as an endogenous regulator of neural differentiation and exogenous teratogen. Eur J Neurosci 18:457–472PubMedGoogle Scholar
  205. 205.
    Reijntjes S, Blentic A, Gale E, Maden M (2005) The control of morphogen signalling: regulation of the synthesis and catabolism of retinoic acid in the developing embryo. Dev Biol 285:224–237PubMedGoogle Scholar
  206. 206.
    Giguere V, Ong ES, Segui P, Evans RM (1987) Identification of a receptor for the morphogen retinoic acid. Nature 330:624–629PubMedGoogle Scholar
  207. 207.
    Petkovich M, Brand NJ, Krust A, Chambon P (1987) A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature 330:444–450PubMedGoogle Scholar
  208. 208.
    Mangelsdorf DJ, Evans RM (1995) The RXR heterodimers and orphan receptors. Cell 83:841–850PubMedGoogle Scholar
  209. 209.
    Tang XH, Gudas LJ (2011) Retinoids, retinoic acid receptors, and cancer. Annu Rev Pathol 6:345–364PubMedGoogle Scholar
  210. 210.
    Rhinn M (2012) Dollé P Retinoic acid signalling during development. Development 139:843–858PubMedGoogle Scholar
  211. 211.
    Popperl H, Featherstone MS (1993) Identification of a retinoic acid response element upstream of the murine Hox-4.2 gene. Mol Cell Biol 13:257–265PubMedPubMedCentralGoogle Scholar
  212. 212.
    Marin F, Puelles L (1994) Patterning of the embryonic avian midbrain after experimental inversions: a polarizing activity from the isthmus. Dev Biol 163:19–37PubMedGoogle Scholar
  213. 213.
    Dupé V, Davenne M, Brocard J, Dollé P, Mark M, Dierich A, Chambon P, Rijli FM (1997) In vivo functional analysis of the Hoxa-1 3′ retinoic acid response element (3′RARE). Development 124:399–410PubMedGoogle Scholar
  214. 214.
    Bel-Vialar S, Itasaki N, Krumlauf R (2002) Initiating Hox gene expression: in the early chick neural tube differential sensitivity to FGF and RA signaling subdivides the HoxB genes in two distinct groups. Development 129:5103–5115PubMedGoogle Scholar
  215. 215.
    Houle M, Prinos P, Iulianella A, Bouchard N, Lohnes D (2003) Retinoic acid regulation of Cdx1: an indirect mechanism for retinoids and vertebral specification. Mol Cell Biol 20:6579–6586Google Scholar
  216. 216.
    Nolte C, Amores A, Kovacs EN, Postlethwait J, Featherstone M (2003) The role of a retinoic acid response element in establishing the anterior neural expression border of Hoxd4 transgenes. Mech Dev 120:325–335PubMedGoogle Scholar
  217. 217.
    Bertrand S, Thisse B, Tavares R, Sachs L, Chaumot A, Bardet PL, Escrivà H, Duffraisse M, Marchand O, Safi R, Thisse C, Laudet V (2007) Unexpected novel relational links uncovered by extensive developmental profiling of nuclear receptor expression. PLoS Genet 3:e188PubMedPubMedCentralGoogle Scholar
  218. 218.
    Pouilhe M, Gilardi-Hebenstreit P, Desmarquet-Trin Dinh C, Charnay P (2007) Direct regulation of vHnf1 by retinoic acid signaling and MAF-related factors in the neural tube. Dev Biol 309:344–357PubMedGoogle Scholar
  219. 219.
    Ahn Y, Mullan HE, Krumlauf R (2014) Long-range regulation by shared retinoic acid response elements modulates dynamic expression of posterior Hoxb genes in CNS development. Dev Biol 388:134–144PubMedGoogle Scholar
  220. 220.
    Studer M, Pöpperl H, Marshall H, Kuroiwa A, Krumlauf R (1994) Role of a conserved retinoic acid response element in rhombomere restriction of Hoxb-1. Science 265:1728–1732PubMedGoogle Scholar
  221. 221.
    Marshall H, Studer M, Pöpperl H, Aparicio S, Kuroiwa A, Brenner S, Krumlauf R (1994) A conserved retinoic acid response element required for early expression of the homeobox gene Hoxb-1. Nature 370:567–571PubMedGoogle Scholar
  222. 222.
    Niederreither K, McCaffery P, Dräger UC, Chambon P, Dollé P (1997) Restricted expression and retinoic acid-induced downregulation of the retinaldehyde dehydrogenase type 2 (RALDH-2) gene during mouse development. Mech Dev 62:67–78PubMedGoogle Scholar
  223. 223.
    Laue K, Jänicke M, Plaster N, Sonntag C, Hammerschmidt M (2008) Restriction of retinoic acid activity by Cyp26b1 is required for proper timing and patterning of osteogenesis during zebrafish development. Development 135:3775–3787PubMedPubMedCentralGoogle Scholar
  224. 224.
    Strate I, Min TH, Iliev D, Pera EM (2009) Retinol dehydrogenase 10 is a feedback regulator of retinoic acid signalling during axis formation and patterning of the central nervous system. Development 136:461–472PubMedGoogle Scholar
  225. 225.
    Feng L, Hernandez RE, Waxman JS, Yelon D, Moens CB (2010) Dhrs3a regulates retinoic acid biosynthesis through a feedback inhibition mechanism. Dev Biol 338:1–14PubMedGoogle Scholar
  226. 226.
    Vitobello A, Ferretti E, Lampe X, Vilain N, Ducret S, Ori M, Spetz JF, Selleri L, Rijli FM (2011) Hox and Pbx factors control retinoic acid synthesis during hindbrain segmentation. Dev Cell 20:469–482PubMedPubMedCentralGoogle Scholar
  227. 227.
    Kim YK, Wassef L, Hamberger L, Piantedosi R, Palczewski K, Blaner WS, Quadro L (2008) Retinyl ester formation by lecithin: retinol acyltransferase is a key regulator of retinoid homeostasis in mouse embryogenesis. J Biol Chem 283:5611–5621PubMedGoogle Scholar
  228. 228.
    Zhang YR, Zhao YQ, Huang JF (2012) Retinoid-binding proteins: similar protein architectures bind similar ligands via completely different ways. PLoS One 7:e36772PubMedPubMedCentralGoogle Scholar
  229. 229.
    Addison M, Xu Q, Cayuso J, Wilkinson DG (2018) Cell identity switching regulated by retinoic acid signaling maintains homogeneous segments in the hindbrain. Dev Cell 45:606–620PubMedPubMedCentralGoogle Scholar
  230. 230.
    Wilkinson DG (2018) Establishing sharp and homogeneous segments in the hindbrain. F1000 Res 7.
  231. 231.
    Schilling TF, Sosnik J, Nie Q (2016) Visualizing retinoic acid morphogen gradients. Methods Cell Biol 133:139–163PubMedPubMedCentralGoogle Scholar
  232. 232.
    Rossant J, Zirngibl R, Cado D, Shago M, Giguère V (1991) Expression of a retinoic acid response element-hsplacZ transgene defines specific domains of transcriptional activity during mouse embryogenesis. Genes Dev 5:1333–1344PubMedGoogle Scholar
  233. 233.
    Perz-Edwards A, Hardison NL, Linney E (2001) Retinoic acid-mediated gene expression in transgenic reporter zebrafish. Dev Biol 229:89–101PubMedGoogle Scholar
  234. 234.
    Waxman JS, Yelon D (2011) Zebrafish retinoic acid receptors function as context-dependent transcriptional activators. Dev Biol 352:128–140PubMedPubMedCentralGoogle Scholar
  235. 235.
    Li J, Hu P, Li K, Zhao Q (2012) Identification and characterization of a novel retinoic acid response element in zebrafish cyp26a1 promoter. Anat Rec 295:268–277Google Scholar
  236. 236.
    Mandal A, Rydeen A, Anderson J, Sorrell MR, Zygmunt T, Torres-Vázquez J, Waxman JS (2013) Transgenic retinoic acid sensor lines in zebrafish indicate regions of available embryonic retinoic acid. Dev Dyn 242:989–1000PubMedPubMedCentralGoogle Scholar
  237. 237.
    Shimozono S, Iimura T, Kitaguchi T, Higashijima S, Miyawaki A (2013) Visualization of an endogenous retinoic acid gradient across embryonic development. Nature 496:363–366PubMedGoogle Scholar
  238. 238.
    Sosnik J, Zheng L, Rackauckas CV, Digman M, Gratton E, Nie Q, Schilling TF (2016) Noise modulation in retinoic acid signaling sharpens segmental boundaries of gene expression in the embryonic zebrafish hindbrain. Elife 5:e14034PubMedPubMedCentralGoogle Scholar
  239. 239.
    Hollemann T, Chen Y, Grunz H, Pieler T (1998) Regionalized metabolic activity establishes boundaries of retinoic acid signalling. EMBO J 17:7361–7372PubMedPubMedCentralGoogle Scholar
  240. 240.
    Grandel H, Lun K, Rauch GJ, Rhinn M, Piotrowski T, Houart C, Sordino P, Küchler AM, Schulte-Merker S, Geisler R, Holder N, Wilson SW, Brand M (2002) Retinoic acid signalling in the zebrafish embryo is necessary during pre-segmentation stages to pattern the anterior-posterior axis of the CNS and to induce a pectoral fin bud. Development 129:2851–2865PubMedGoogle Scholar
  241. 241.
    Kastner P, Messaddeq N, Mark M, Wendling O, Grondona JM, Ward S, Ghyselinck N, Chambon P (1997) Vitamin A deficiency and mutations of RXRalpha, RXRbeta and RARalpha lead to early differentiation of embryonic ventricular cardiomyocytes. Development 124:4749–4758PubMedGoogle Scholar
  242. 242.
    Dupé V, Lumsden A (2001) Hindbrain patterning involves graded responses to retinoic acid signalling. Development 128:2199–2208PubMedGoogle Scholar
  243. 243.
    Escriva H, Bertrand S, Germain P, Robinson-Rechavi M, Umbhauer M, Cartry J, Duffraisse M, Holland L, Gronemeyer H, Laudet V (2006) Neofunctionalization in vertebrates: the example of retinoic acid receptors. PLoS Genet 2:e102PubMedPubMedCentralGoogle Scholar
  244. 244.
    Bouillet P, Oulad-Abdelghani M, Ward SJ, Bronner S, Chambon P, Dolle P (1996) A new mouse member of the Wnt gene family, mWnt-8, is expressed during early embryogenesis and is ectopically induced by retinoic acid. Mech Dev 58:141–152PubMedGoogle Scholar
  245. 245.
    Hans S, Westerfield M (2007) Changes in retinoic acid signaling alter otic patterning. Development 134:2449–2458PubMedGoogle Scholar
  246. 246.
    Niederreither K, Subbarayan V, Dollé P, Chambon P (1999) Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat Genet 21:444–448PubMedGoogle Scholar
  247. 247.
    Urness LD, Paxton CN, Wang X, Schoenwolf GC, Mansour SL (2010) FGF signaling regulates otic placode induction and refinement by controlling both ectodermal target genes and hindbrain Wnt8a. Dev Biol 340:595–604PubMedPubMedCentralGoogle Scholar
  248. 248.
    Mahoney Rogers AA, Zhang J, Shim K (2011) Sprouty1 and Sprouty2 limit both the size of the otic placode and hindbrain Wnt8a by antagonizing FGF signaling. Dev Biol 353:94–104PubMedPubMedCentralGoogle Scholar
  249. 249.
    In der Rieden PM, Vilaspasa FL, Durston AJ (2010) Xwnt8 directly initiates expression of labial Hox genes. Dev Dyn 239:126–139PubMedGoogle Scholar
  250. 250.
    Janssens S, Denayer T, Deroo T, van Roy F, Vleminckx K (2010) Direct control of Hoxd1 and Irx3 expression by Wnt/beta catenin signaling during anteroposterior patterning of the neural axis in Xenopus. Int J Dev Biol 54:1435–1442PubMedGoogle Scholar
  251. 251.
    Diez del Corral R, Storey KG (2004) Opposing FGF and retinoid pathways: a signalling switch that controls differentiation and patterning onset in the extending vertebrate body axis. BioEssays 26:857–869PubMedGoogle Scholar
  252. 252.
    Shimizu T, Bae YK, Hibi M (2006) Cdx-Hox code controls competence for responding to Fgfs and retinoic acid in zebrafish neural tissue. Development 133:4709–4719PubMedGoogle Scholar
  253. 253.
    Zhao X, Duester G (2009) Effect of retinoic acid signaling on Wnt/beta-catenin and FGF signaling during body axis extension. Gene Expr Patterns 9:430–435PubMedPubMedCentralGoogle Scholar
  254. 254.
    Martínez S, Marín F, Nieto MA, Puelles L (1995) Induction of ectopic engrailed expression and fate change in avian rhombomeres: intersegmental boundaries as barriers. Mech Dev 51:289–303PubMedGoogle Scholar
  255. 255.
    Crossley PH, Martinez S, Martin GR (1996) Midbrain development induced by FGF8 in the chick embryo. Nature 380:66–68PubMedGoogle Scholar
  256. 256.
    Irving C, Mason I (2000) Signalling by FGF8 from the isthmus patterns anterior hindbrain and establishes the anterior limit of Hox gene expression. Development 127:177–186PubMedGoogle Scholar
  257. 257.
    Wendling O, Ghyselinck NB, Chambon P, Mark M (2001) Roles of retinoic acid receptors in early embryonic morphogenesis and hindbrain patterning. Development 128:2031–2038PubMedGoogle Scholar
  258. 258.
    Linville A, Gumusaneli E, Chandraratna RA, Schilling TF (2004) Independent roles for retinoic acid in segmentation and neuronal differentiation in the zebrafish hindbrain. Dev Biol 270:186–199PubMedGoogle Scholar
  259. 259.
    Nittenberg R, Patel K, Joshi Y, Krumlauf R, Wilkinson DG, Brickell PM, Tickle C, Clarke JD (1997) Cell movements, neuronal organisation and gene expression in hindbrains lacking morphological boundaries. Development 124:2297–2306PubMedGoogle Scholar
  260. 260.
    Sato T, Joyner AL (2009) The duration of Fgf8 isthmic organizer expression is key to patterning different tectal-isthmo-cerebellum structures. Development 136:3617–3626PubMedPubMedCentralGoogle Scholar
  261. 261.
    Diez del Corral R, Olivera-Martinez I, Goriely A, Gale E, Maden M, Storey K (2003) Opposing FGF and retinoid pathways control ventral neural pattern, neuronal differentiation, and segmentation during body axis extension. Neuron 40:65–79PubMedGoogle Scholar
  262. 262.
    Duester G (2013) Retinoid signaling in control of progenitor cell differentiation during mouse development. Semin Cell Dev Biol 24:694–700PubMedGoogle Scholar
  263. 263.
    Parker HJ, Bronner ME, Krumlauf R (2016) The vertebrate Hox gene regulatory network for hindbrain segmentation: evolution and diversification: Coupling of a Hox gene regulatory network to hindbrain segmentation is an ancient trait originating at the base of vertebrates. BioEssays 38:526–538PubMedGoogle Scholar
  264. 264.
    Skromne I, Thorsen D, Hale M, Prince VE, Ho RK (2007) Repression of the hindbrain developmental program by Cdx factors is required for the specification of the vertebrate spinal cord. Development 134:2147–2158PubMedPubMedCentralGoogle Scholar
  265. 265.
    Chang J, Skromne I, Ho RK (2016) CDX4 and retinoic acid interact to position the hindbrain-spinal cord transition. Dev Biol 410:178–189PubMedPubMedCentralGoogle Scholar
  266. 266.
    Lee K, Skromne I (2014) Retinoic acid regulates size, pattern and alignment of tissues at the head-trunk transition. Development 141:4375–4384PubMedGoogle Scholar
  267. 267.
    Isaacs HV, Pownall ME, Slack JM (1998) Regulation of Hox gene expression and posterior development by the Xenopus caudal homologue Xcad3. EMBO J 17:3413–3427PubMedPubMedCentralGoogle Scholar
  268. 268.
    Gaunt SJ, Drage D, Cockley A (2003) Vertebrate caudal gene expression gradients investigated by use of chick cdx-A/lacZ and mouse cdx-1/lacZ reporters in transgenic mouse embryos: evidence for an intron enhancer. Mech Dev 120:573–586PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical SciencesTechnion-Israel Institute of TechnologyHaifaIsrael
  2. 2.Koret School of Veterinary Medicine, The Robert H Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael

Personalised recommendations