Skip to main content

Advertisement

Log in

Molecular pathways of nonalcoholic fatty liver disease development and progression

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Nonalcoholic fatty liver disease (NAFLD) is a main hepatic manifestation of metabolic syndrome. It represents a wide spectrum of histopathological abnormalities ranging from simple steatosis to nonalcoholic steatohepatitis (NASH) with or without fibrosis and, eventually, cirrhosis and hepatocellular carcinoma. While hepatic simple steatosis seems to be a rather benign manifestation of hepatic triglyceride accumulation, the buildup of highly toxic free fatty acids associated with insulin resistance-induced massive free fatty acid mobilization from adipose tissue and the increased de novo hepatic fatty acid synthesis from glucose acts as the “first hit” for NAFLD development. NAFLD progression seems to involve the occurrence of “parallel, multiple-hit” injuries, such as oxidative stress-induced mitochondrial dysfunction, endoplasmic reticulum stress, endotoxin-induced, TLR4-dependent release of inflammatory cytokines, and iron overload, among many others. These deleterious factors are responsible for the triggering of a number of signaling cascades leading to inflammation, cell death, and fibrosis, the hallmarks of NASH. This review is aimed at integrating the overwhelming progress made in the characterization of the physiopathological mechanisms of NAFLD at a molecular level, to better understand the factor influencing the initiation and progression of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ACC2:

Acetyl-CoA carboxylase 2

AhR:

Aryl hydrocarbon receptor

AIF:

Apoptosis-inducing factor

AMPK:

AMP-activated protein kinase

AP-1:

Adaptor protein-1

Apaf-1:

Apoptotic protease-activating factor 1

Apo:

Apolipoprotein

ASC:

Apoptotic speck-like protein containing caspase-1 activation and recruitment domain

ATG13:

Autophagy-related protein 13

Bad:

Bcl-2 antagonist of cell death

Bak:

Bcl-2-associated X killer

Bax:

Bcl-2-associated X protein

Bcl-2:

B cell lymphoma-2

Bcl-xL :

B-cell lymphoma-extra large

BH3:

Bcl-2 homology-3

Bim:

BCL-2-interacting mediator of cell death

CaMKII:

Calcium- and calmodulin-dependent protein kinase II

CAT:

Carnitine acetyl transferase

CHOP:

CCAAT/enhancer-binding protein homologous protein

ChREBP:

Carbohydrate response element binding protein

CoA:

Coenzyme A

CPT1:

Carnitine palmitoyltransferase 1

CTGF:

Connective tissue growth factor

CYP2E1:

Cytochrome P450 family 2 subfamily E member 1

DAMP:

Danger-associated molecular pattern

DIABLO:

Direct inhibitor of apoptosis protein binding protein with low pi

DISC:

Death-inducing signaling complex

ER:

Endoplasmic reticulum

Erk:

Ras/extracellular signal-regulated kinase

FasL:

Fas ligand

FIP200:

FAK family-interacting protein of 200 kDa

FoxO1:

Forkhead box protein O1

FP-1:

Ferroportin-1

FFA:

Free fatty acid

G6P:

Glucose-6 phosphatase

GK:

Glycogen kinase

GSK:

Glycogen synthase kinase

HCC:

Hepatocellular carcinoma

Hh:

Hedgehog

HJV:

Hemojuvelin

HSC:

Hepatic stellate cell

IAP:

Inhibitors of apoptosis protein

IGF2BP2-2:

Insulin-like growth factor 2 (IGF2) mRNA-binding protein-2

I-κB:

Inhibitor of κB

IKK:

IκB kinase

IL:

Interleukin

InsP3R1:

Inositol 1,4,5-triphosphate receptor 1

IR:

Insulin resistance

IRS1/2:

Insulin receptor substrates 1/2

JAK:

Janus activated kinase

JNK:

c-Jun N-terminal kinase

LPS:

Lipopolysaccharide

LXR:

Liver X receptor

L-PK:

Liver-type pyruvate kinase

Mcl-1:

Myeloid cell leukemia sequence-1

MCP-1:

Monocyte chemoattractant protein 1

MEK1:

Mitogen activated protein kinase 1

MMP:

Matrix metalloproteinase

MPTP:

Mitochondrial permeability transition pore

mTOR:

Mammalian target of rapamycin

MyD88:

Myeloid differentiation primary response 88

NAFLD:

Nonalcoholic fatty liver disease

NALP3:

NACHT, LRR and PYD domains-containing protein 3

NASH:

Nonalcoholic steatohepatitis

NLR:

NOD-like receptor

NOX4:

NADPH oxidase 4

NF-κB:

Nuclear factor-κB

PCK1:

Phosphoenolpyruvate carboxykinase

OS:

Oxidative stress

PUMA:

p53 upregulated modulator of apoptosis

PDGF:

Platelet-derived growth factor

PEMT:

Phosphatidylethanolamine N-methyltransferase

PI3K:

Phosphoinositide 3-kinase

PKCθ:

Protein kinase C-θ

PP2A:

Protein phosphatase 2A

PPAR-α:

Peroxisome proliferator-activated receptor-α

PTPRO:

Protein tyrosine phosphatase receptor type O

ROS:

Radical oxygen species

SAMe:

S-adenosylmethionine

SCAP:

SREBP-cleavage activating protein

SMAC:

Second mitochondria-derived activator of caspases

SOCS:

Suppressor of cytokine signaling

SREBP-1c:

Sterol regulatory binding protein-1c

STAT3:

Signal transducer and activator of transcription 3

TAK1:

TGF-β activated kinase-1

TG:

Triglyceride

TGF-β:

Transforming growth factor-β

TIMP-1:

Tissue inhibitor of metalloproteinase-1

TLR4:

Toll-like receptor 4

TNF-α:

Tumor necrosis factor-α

Ulk1/2:

Unc-51 like autophagy activating kinase 1/2

VLDL:

Very low density lipoprotein

References

  1. Angulo P (2002) Nonalcoholic fatty liver disease. N Engl J Med 346:1221–1231. https://doi.org/10.1056/NEJMra011775

    Article  CAS  PubMed  Google Scholar 

  2. Tolman KG, Dalpiaz AS (2007) Treatment of non-alcoholic fatty liver disease. Ther Clin Risk Manag 3:1153–1163. https://doi.org/10.1136/pgmj.2005.042200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vernon G, Baranova A, Younossi ZM (2011) Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther 34:274–285. https://doi.org/10.1111/j.1365-2036.2011.04724.x

    Article  CAS  PubMed  Google Scholar 

  4. Younossi ZM, Stepanova M, Afendy M, Fang Y, Younossi Y, Mir H, Srishord M (2011) Changes in the prevalence of the most common causes of chronic liver diseases in the United States from 1988 to 2008. Clin Gastroenterol Hepatol 9:524–530. https://doi.org/10.1016/j.cgh.2011.03.020

    Article  PubMed  Google Scholar 

  5. Calzadilla Berlot L, Adams LA (2016) The natural course of non-alcoholic fatty liver disease. Int J Mol Sci 17:E774. https://doi.org/10.3390/ijms17050774

    Article  CAS  Google Scholar 

  6. Musso G, Gambino R, De MF, Cassader M, Rizzetto M, Durazzo M, Faga E, Silli B, Pagano G (2003) Dietary habits and their relations to insulin resistance and postprandial lipemia in nonalcoholic steatohepatitis. Hepatology 37:909–916. https://doi.org/10.1053/jhep.2003.50132

    Article  CAS  PubMed  Google Scholar 

  7. Kim D, Kim WR (2017) Nonobese fatty liver disease. Clin Gastroenterol Hepatol 15:474–485. https://doi.org/10.1016/j.cgh.2016.08.028

    Article  CAS  PubMed  Google Scholar 

  8. Schwimmer JB, Celedon MA, Lavine JE, Salem R, Campbell N, Schork NJ, Shiehmorteza M, Yokoo T, Chavez A, Middleton MS, Sirlin CB (2009) Heritability of nonalcoholic fatty liver disease. Gastroenterology 136:1585–1592. https://doi.org/10.1053/j.gastro.2009.01.050

    Article  PubMed  Google Scholar 

  9. Guerrero R, Vega GL, Grundy SM, Browning JD (2009) Ethnic differences in hepatic steatosis: an insulin resistance paradox? Hepatology 49:791–801. https://doi.org/10.1002/hep.22726

    Article  PubMed  Google Scholar 

  10. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL, Mackay TF, McCarroll SA, Visscher PM (2009) Finding the missing heritability of complex diseases. Nature 461:747–753. https://doi.org/10.1038/nature08494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Williams CD, Stengel J, Asike MI, Torres DM, Shaw J, Contreras M, Landt CL, Harrison SA (2011) Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology 140:124–131. https://doi.org/10.1053/j.gastro.2010.09.038

    Article  PubMed  Google Scholar 

  12. Wagenknecht LE, Scherzinger AL, Stamm ER, Hanley AJ, Norris JM, Chen YD, Bryer-Ash M, Haffner SM, Rotter JI (2009) Correlates and heritability of nonalcoholic fatty liver disease in a minority cohort. Obesity (Silver Spring) 17:1240–1246. https://doi.org/10.1038/oby.2009.4

    Article  CAS  Google Scholar 

  13. Dongiovanni P, Anstee QM, Valenti L (2013) Genetic predisposition in NAFLD and NASH: impact on severity of liver disease and response to treatment. Curr Pharm Des 19:5219–5238. https://doi.org/10.2174/13816128113199990381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sookoian S, Pirola CJ (2017) Genetic predisposition in nonalcoholic fatty liver disease. Clin Mol Hepatol 23:1–12. https://doi.org/10.3350/cmh.2016.0109

    Article  PubMed  PubMed Central  Google Scholar 

  15. Makkonen J, Pietilainen KH, Rissanen A, Kaprio J, Yki-Jarvinen H (2009) Genetic factors contribute to variation in serum alanine aminotransferase activity independent of obesity and alcohol: a study in monozygotic and dizygotic twins. J Hepatol 50:1035–1042. https://doi.org/10.1016/j.jhep.2008.12.025

    Article  CAS  PubMed  Google Scholar 

  16. Severson TJ, Besur S, Bonkovsky HL (2016) Genetic factors that affect nonalcoholic fatty liver disease: a systematic clinical review. World J Gastroenterol 22:6742–6756. https://doi.org/10.3748/wjg.v22.i29.6742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Macaluso FS, Maida M, Petta S (2015) Genetic background in nonalcoholic fatty liver disease: a comprehensive review. World J Gastroenterol 21:11088–11111. https://doi.org/10.3748/wjg.v21.i39.11088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hardy T, Oakley F, Anstee QM, Day CP (2016) Nonalcoholic fatty liver disease: pathogenesis and disease spectrum. Annu Rev Pathol 11:451–496. https://doi.org/10.1146/annurev-pathol-012615-044224

    Article  CAS  PubMed  Google Scholar 

  19. Levene AP, Goldin RD (2012) The epidemiology, pathogenesis and histopathology of fatty liver disease. Histopathology 61:141–152. https://doi.org/10.1111/j.1365-2559.2011.04145.x

    Article  PubMed  Google Scholar 

  20. Piscaglia F, Svegliati-Baroni G, Barchetti A, Pecorelli A, Marinelli S, Tiribelli C, Bellentani S (2016) Clinical patterns of hepatocellular carcinoma in nonalcoholic fatty liver disease: a multicenter prospective study. Hepatology 63:827–838. https://doi.org/10.1002/hep.28368

    Article  PubMed  Google Scholar 

  21. Day CP, James OF (1998) Steatohepatitis: a tale of two “hits”? Gastroenterology 114:842–845. https://doi.org/10.1016/S0016-5085(98)70599-2

    Article  CAS  PubMed  Google Scholar 

  22. Brunt EM (2000) Grading and staging the histopathological lesions of chronic hepatitis: the Knodell histology activity index and beyond. Hepatology 31:241–246. https://doi.org/10.1002/hep.510310136

    Article  CAS  PubMed  Google Scholar 

  23. Tilg H, Moschen AR (2010) Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 52:1836–1846. https://doi.org/10.1002/hep.24001

    Article  CAS  PubMed  Google Scholar 

  24. Eguchi Y, Eguchi T, Mizuta T, Ide Y, Yasutake T, Iwakiri R, Hisatomi A, Ozaki I, Yamamoto K, Kitajima Y, Kawaguchi Y, Kuroki S, Ono N (2006) Visceral fat accumulation and insulin resistance are important factors in nonalcoholic fatty liver disease. J Gastroenterol 41:462–469. https://doi.org/10.1007/s00535-006-1790-5

    Article  CAS  PubMed  Google Scholar 

  25. Yilmaz Y (2012) Review article: is non-alcoholic fatty liver disease a spectrum, or are steatosis and non-alcoholic steatohepatitis distinct conditions? Aliment Pharmacol Ther 36:815–823. https://doi.org/10.1111/apt.12046

    Article  CAS  PubMed  Google Scholar 

  26. Tiniakos DG, Vos MB, Brunt EM (2010) Nonalcoholic fatty liver disease: pathology and pathogenesis. Annu Rev Pathol 5:145–171. https://doi.org/10.1146/annurev-pathol-121808-102132

    Article  CAS  PubMed  Google Scholar 

  27. Kasumov T, Li L, Li M, Gulshan K, Kirwan JP, Liu X, Previs S, Willard B, Smith JD, McCullough A (2015) Ceramide as a mediator of non-alcoholic Fatty liver disease and associated atherosclerosis. PLoS One 10:e0126910. https://doi.org/10.1371/journal.pone.0126910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mota M, Banini BA, Cazanave SC, Sanyal AJ (2016) Molecular mechanisms of lipotoxicity and glucotoxicity in nonalcoholic fatty liver disease. Metabolism 65:1049–1061. https://doi.org/10.1016/j.metabol.2016.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hirsova P, Ibrahim SH, Gores GJ, Malhi H (2016) Lipotoxic lethal and sublethal stress signaling in hepatocytes: relevance to NASH pathogenesis. J Lipid Res 57:1758–1770. https://doi.org/10.1194/jlr.R066357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chaurasia B, Summers SA (2015) Ceramides—lipotoxic inducers of metabolic disorders. Trends Endocrinol Metab 26:538–550. https://doi.org/10.1016/j.tem.2015.07.006

    Article  CAS  PubMed  Google Scholar 

  31. Malhi H, Gores GJ (2008) Molecular mechanisms of lipotoxicity in nonalcoholic fatty liver disease. Semin Liver Dis 28:360–369. https://doi.org/10.1055/s-0028-1091980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cortez-Pinto H, de Moura MC, Day CP (2006) Non-alcoholic steatohepatitis: from cell biology to clinical practice. J Hepatol 44:197–208. https://doi.org/10.1016/j.jhep.2005.09.002

    Article  CAS  PubMed  Google Scholar 

  33. Yamaguchi K, Yang L, McCall S, Huang J, Yu XX, Pandey SK, Bhanot S, Monia BP, Li YX, Diehl AM (2007) Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology 45:1366–1374. https://doi.org/10.1002/hep.21655

    Article  CAS  PubMed  Google Scholar 

  34. Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ (2005) Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 115:1343–1351. https://doi.org/10.1172/JCI23621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kwanten WJ, Martinet W, Michielsen PP, Francque SM (2014) Role of autophagy in the pathophysiology of nonalcoholic fatty liver disease: a controversial issue. World J Gastroenterol 20:7325–7338. https://doi.org/10.3748/wjg.v20.i23.7325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tamura S, Shimomura I (2005) Contribution of adipose tissue and de novo lipogenesis to nonalcoholic fatty liver disease. J Clin Invest 115:1139–1142. https://doi.org/10.1172/JCI24930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Marchesini G, Brizi M, Morselli-Labate AM, Bianchi G, Bugianesi E, McCullough AJ, Forlani G, Melchionda N (1999) Association of nonalcoholic fatty liver disease with insulin resistance. Am J Med 107:450–455. https://doi.org/10.1016/S0002-9343(99)00271-5

    Article  CAS  PubMed  Google Scholar 

  38. Al-Goblan AS, Al-Alfi MA, Khan MZ (2014) Mechanism linking diabetes mellitus and obesity. Diabetes Metab Syndr Obes 7:587–591. https://doi.org/10.2147/DMSO.S67400

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pliquett RU, Fuhrer D, Falk S, Zysset S, von Cramon DY, Stumvoll M (2006) The effects of insulin on the central nervous system–focus on appetite regulation. Horm Metab Res 38:442–446. https://doi.org/10.1055/s-2006-947840

    Article  CAS  PubMed  Google Scholar 

  40. Ye J (2013) Mechanisms of insulin resistance in obesity. Front Med 7:14–24. https://doi.org/10.1007/s11684-013-0262-6

    Article  PubMed  PubMed Central  Google Scholar 

  41. Baranova A, Gowder SJ, Schlauch K, Elariny H, Collantes R, Afendy A, Ong JP, Goodman Z, Chandhoke V, Younossi ZM (2006) Gene expression of leptin, resistin, and adiponectin in the white adipose tissue of obese patients with non-alcoholic fatty liver disease and insulin resistance. Obes Surg 16:1118–1125. https://doi.org/10.1381/096089206778392149

    Article  PubMed  Google Scholar 

  42. Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM (1995) Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 95:2409–2415. https://doi.org/10.1172/JCI117936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Siddle K, Hales CN (1975) Hormonal control of adipose tissue lipolysis. Proc Nutr Soc 34:233–239. https://doi.org/10.1079/PNS19750044

    Article  CAS  PubMed  Google Scholar 

  44. Shulman GI (2000) Cellular mechanisms of insulin resistance. J Clin Invest 106:171–176. https://doi.org/10.1172/JCI10583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Guilherme A, Virbasius JV, Puri V, Czech MP (2008) Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 9:367–377. https://doi.org/10.1038/nrm2391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yki-Jarvinen H (2005) Fat in the liver and insulin resistance. Ann Med 37:347–356. https://doi.org/10.1080/07853890510037383

    Article  CAS  PubMed  Google Scholar 

  47. Lonardo A, Lombardini S, Ricchi M, Scaglioni F, Loria P (2005) Review article: hepatic steatosis and insulin resistance. Aliment Pharmacol Ther 22:64–70. https://doi.org/10.1111/j.1365-2036.2005.02600.x

    Article  CAS  PubMed  Google Scholar 

  48. Xu X, So JS, Park JG, Lee AH (2013) Transcriptional control of hepatic lipid metabolism by SREBP and ChREBP. Semin Liver Dis 33:301–311. https://doi.org/10.1055/s-0033-1358523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Horton JD, Goldstein JL, Brown MS (2002) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109:1125–1131. https://doi.org/10.1172/JCI0215593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Uyeda K, Yamashita H, Kawaguchi T (2002) Carbohydrate responsive element-binding protein (ChREBP): a key regulator of glucose metabolism and fat storage. Biochem Pharmacol 63:2075–2080. https://doi.org/10.1016/S0006-2952(02)01012-2

    Article  CAS  PubMed  Google Scholar 

  51. Yamashita H, Takenoshita M, Sakurai M, Bruick RK, Henzel WJ, Shillinglaw W, Arnot D, Uyeda K (2001) A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver. Proc Natl Acad Sci USA 98:9116–9121. https://doi.org/10.1073/pnas.161284298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ishii S, Iizuka K, Miller BC, Uyeda K (2004) Carbohydrate response element binding protein directly promotes lipogenic enzyme gene transcription. Proc Natl Acad Sci USA 101:15597–15602. https://doi.org/10.1073/pnas.0405238101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Enjoji M, Yasutake K, Kohjima M, Nakamuta M (2012) Nutrition and nonalcoholic fatty liver disease: the significance of cholesterol. Int J Hepatol 2012:925807. https://doi.org/10.1155/2012/925807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang X, Han J, Man K, Li X, Du J, Chu ES, Go MY, Sung JJ, Yu J (2016) CXC chemokine receptor 3 promotes steatohepatitis in mice through mediating inflammatory cytokines, macrophages and autophagy. J Hepatol 64:160–170. https://doi.org/10.1016/j.jhep.2015.09.005

    Article  CAS  PubMed  Google Scholar 

  55. Jump DB (2002) Dietary polyunsaturated fatty acids and regulation of gene transcription. Curr Opin Lipidol 13:155–164. https://doi.org/10.1097/00041433-200204000-00007

    Article  CAS  PubMed  Google Scholar 

  56. Fisher FM, Kim M, Doridot L, Cunniff JC, Parker TS, Levine DM, Hellerstein MK, Hudgins LC, Maratos-Flier E, Herman MA (2017) A critical role for ChREBP-mediated FGF21 secretion in hepatic fructose metabolism. Mol Metab 6:14–21. https://doi.org/10.1016/j.molmet.2016.11.008

    Article  CAS  PubMed  Google Scholar 

  57. Jegatheesan P, De Bandt JP (2017) Fructose and NAFLD: the multifaceted aspects of fructose metabolism. Nutrients 9:E230. https://doi.org/10.3390/nu9030230

    Article  CAS  PubMed  Google Scholar 

  58. Mastrocola R, Collino M, Rogazzo M, Medana C, Nigro D, Boccuzzi G, Aragno M (2013) Advanced glycation end products promote hepatosteatosis by interfering with SCAP-SREBP pathway in fructose-drinking mice. Am J Physiol Gastrointest Liver Physiol 305:G398–G407. https://doi.org/10.1152/ajpgi.00450.2012

    Article  CAS  PubMed  Google Scholar 

  59. Geidl-Flueck B, Gerber PA (2017) Insights into the hexose liver metabolism-glucose versus fructose. Nutrients 9:E1026. https://doi.org/10.3390/nu9091026

    Article  CAS  PubMed  Google Scholar 

  60. Charlton M, Sreekumar R, Rasmussen D, Lindor K, Nair KS (2002) Apolipoprotein synthesis in nonalcoholic steatohepatitis. Hepatology 35:898–904. https://doi.org/10.1053/jhep.2002.32527

    Article  CAS  PubMed  Google Scholar 

  61. Sookoian S, Puri P, Castano GO, Scian R, Mirshahi F, Sanyal AJ, Pirola CJ (2017) Nonalcoholic steatohepatitis is associated with a state of betaine-insufficiency. Liver Int 37:611–619. https://doi.org/10.1111/liv.13249

    Article  CAS  PubMed  Google Scholar 

  62. Noureddin M, Mato JM, Lu SC (2015) Nonalcoholic fatty liver disease: update on pathogenesis, diagnosis, treatment and the role of S-adenosylmethionine. Exp Biol Med (Maywood) 240:809–820. https://doi.org/10.1177/1535370215579161

    Article  CAS  Google Scholar 

  63. Fast DG, Vance DE (1995) Nascent VLDL phospholipid composition is altered when phosphatidylcholine biosynthesis is inhibited: evidence for a novel mechanism that regulates VLDL secretion. Biochim Biophys Acta 1258:159–168. https://doi.org/10.1016/0005-2760(95)00116-T

    Article  PubMed  Google Scholar 

  64. Noga AA, Zhao Y, Vance DE (2002) An unexpected requirement for phosphatidylethanolamine N-methyltransferase in the secretion of very low density lipoproteins. J Biol Chem 277:42358–42365. https://doi.org/10.1074/jbc.M204542200

    Article  CAS  PubMed  Google Scholar 

  65. Obeid R (2013) The metabolic burden of methyl donor deficiency with focus on the betaine homocysteine methyltransferase pathway. Nutrients 5:3481–3495. https://doi.org/10.3390/nu5093481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fasano T, Pisciotta L, Bocchi L, Guardamagna O, Assandro P, Rabacchi C, Zanoni P, Filocamo M, Bertolini S, Calandra S (2012) Lysosomal lipase deficiency: molecular characterization of eleven patients with Wolman or cholesteryl ester storage disease. Mol Genet Metab 105:450–456. https://doi.org/10.1016/j.ymgme.2011.12.008

    Article  CAS  PubMed  Google Scholar 

  67. Baratta F, Pastori D, Del BM, Polimeni L, Labbadia G, Di SS, Piemonte F, Tozzi G, Violi F, Angelico F (2015) Reduced Lysosomal acid lipase activity in adult patients with non-alcoholic fatty liver disease. EBioMedicine 2:750–754. https://doi.org/10.1016/j.ebiom.2015.05.018

    Article  PubMed  PubMed Central  Google Scholar 

  68. Dubland JA, Francis GA (2015) Lysosomal acid lipase: at the crossroads of normal and atherogenic cholesterol metabolism. Front Cell Dev Biol 3:3. https://doi.org/10.3389/fcell.2015.00003

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zechner R, Madeo F, Kratky D (2017) Cytosolic lipolysis and lipophagy: two sides of the same coin. Nat Rev Mol Cell Biol 18:671–684. https://doi.org/10.1038/nrm.2017.76

    Article  CAS  PubMed  Google Scholar 

  70. Fon Tacer K, Rozman D (2011) Nonalcoholic Fatty liver disease: focus on lipoprotein and lipid deregulation. J Lipids 2011:783976. https://doi.org/10.1155/2011/783976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Petrosillo G, Portincasa P, Grattagliano I, Casanova G, Matera M, Ruggiero FM, Ferri D, Paradies G (2007) Mitochondrial dysfunction in rat with nonalcoholic fatty liver Involvement of complex I, reactive oxygen species and cardiolipin. Biochim Biophys Acta 1767:1260–1267. https://doi.org/10.1016/j.bbabio.2007.07.011

    Article  CAS  PubMed  Google Scholar 

  72. Paradies G, Paradies V, Ruggiero FM, Petrosillo G (2014) Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease. World J Gastroenterol 20:14205–14218. https://doi.org/10.3748/wjg.v20.i39.14205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Raichur S, Wang ST, Chan PW, Li Y, Ching J, Chaurasia B, Dogra S, Ohman MK, Takeda K, Sugii S, Pewzner-Jung Y, Futerman AH, Summers SA (2014) CerS2 haploinsufficiency inhibits beta-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance. Cell Metab 20:687–695. https://doi.org/10.1016/j.cmet.2014.10.007

    Article  CAS  PubMed  Google Scholar 

  74. Fromenty B, Robin MA, Igoudjil A, Mansouri A, Pessayre D (2004) The ins and outs of mitochondrial dysfunction in NASH. Diabetes Metab 30:121–138. https://doi.org/10.1016/S1262-3636(07)70098-8

    Article  CAS  PubMed  Google Scholar 

  75. Sanyal AJ, Campbell-Sargent C, Mirshahi F, Rizzo WB, Contos MJ, Sterling RK, Luketic VA, Shiffman ML, Clore JN (2001) Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology 120:1183–1192. https://doi.org/10.1053/gast.2001.23256

    Article  CAS  PubMed  Google Scholar 

  76. Begriche K, Igoudjil A, Pessayre D, Fromenty B (2006) Mitochondrial dysfunction in NASH: causes, consequences and possible means to prevent it. Mitochondrion 6:1–28. https://doi.org/10.1016/j.mito.2005.10.004

    Article  CAS  PubMed  Google Scholar 

  77. Kerner J, Hoppel C (2000) Fatty acid import into mitochondria. Biochim Biophys Acta 1486:1–17. https://doi.org/10.1016/S1388-1981(00)00044-5

    Article  CAS  PubMed  Google Scholar 

  78. Kohjima M, Enjoji M, Higuchi N, Kato M, Kotoh K, Yoshimoto T, Fujino T, Yada M, Yada R, Harada N, Takayanagi R, Nakamuta M (2007) Re-evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease. Int J Mol Med 20:351–358. https://doi.org/10.3892/ijmm.20.3.351

    Article  CAS  PubMed  Google Scholar 

  79. Angelico F, Del BM, Conti R, Francioso S, Feole K, Fiorello S, Cavallo MG, Zalunardo B, Lirussi F, Alessandri C, Violi F (2005) Insulin resistance, the metabolic syndrome, and nonalcoholic fatty liver disease. J Clin Endocrinol Metab 90:1578–1582. https://doi.org/10.1210/jc.2004-1024

    Article  CAS  PubMed  Google Scholar 

  80. Larter CZ, Farrell GC (2006) Insulin resistance, adiponectin, cytokines in NASH: which is the best target to treat? J Hepatol 44:253–261. https://doi.org/10.1016/j.jhep.2005.11.030

    Article  PubMed  Google Scholar 

  81. Johnston AM, Pirola L, Van OE (2003) Molecular mechanisms of insulin receptor substrate protein-mediated modulation of insulin signalling. FEBS Lett 546:32–36. https://doi.org/10.1016/S0014-5793(03)00438-1

    Article  CAS  PubMed  Google Scholar 

  82. Galbo T, Perry RJ, Jurczak MJ, Camporez JP, Alves TC, Kahn M, Guigni BA, Serr J, Zhang D, Bhanot S, Samuel VT, Shulman GI (2013) Saturated and unsaturated fat induce hepatic insulin resistance independently of TLR-4 signaling and ceramide synthesis in vivo. Proc Natl Acad Sci USA 110:12780–12785. https://doi.org/10.1073/pnas.1311176110

    Article  PubMed  PubMed Central  Google Scholar 

  83. Holland WL, Bikman BT, Wang LP, Yuguang G, Sargent KM, Bulchand S, Knotts TA, Shui G, Clegg DJ, Wenk MR, Pagliassotti MJ, Scherer PE, Summers SA (2011) Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice. J Clin Invest 121:1858–1870. https://doi.org/10.1172/JCI43378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ueki K, Kadowaki T, Kahn CR (2005) Role of suppressors of cytokine signaling SOCS-1 and SOCS-3 in hepatic steatosis and the metabolic syndrome. Hepatol Res 33:185–192. https://doi.org/10.1016/j.hepres.2005.09.032

    Article  CAS  PubMed  Google Scholar 

  85. Farrell GC (2005) Signalling links in the liver: knitting SOCS with fat and inflammation. J Hepatol 43:193–196. https://doi.org/10.1016/j.jhep.2005.04.004

    Article  CAS  PubMed  Google Scholar 

  86. Emanuelli B, Peraldi P, Filloux C, Sawka-Verhelle D, Hilton D, Van OE (2000) SOCS-3 is an insulin-induced negative regulator of insulin signaling. J Biol Chem 275:15985–15991. https://doi.org/10.1074/jbc.275.21.15985

    Article  CAS  PubMed  Google Scholar 

  87. Michael MD, Kulkarni RN, Postic C, Previs SF, Shulman GI, Magnuson MA, Kahn CR (2000) Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell 6:87–97. https://doi.org/10.1016/S1097-2765(05)00015-8

    Article  CAS  PubMed  Google Scholar 

  88. Radziuk J, Pye S (2001) Hepatic glucose uptake, gluconeogenesis and the regulation of glycogen synthesis. Diabetes Metab Res Rev 17:250–272. https://doi.org/10.1002/dmrr.217

    Article  CAS  PubMed  Google Scholar 

  89. Oh KJ, Han HS, Kim MJ, Koo SH (2013) CREB and FoxO1: two transcription factors for the regulation of hepatic gluconeogenesis. BMB Rep 46:567–574. https://doi.org/10.5483/BMBRep

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Davies MN, O’Callaghan BL, Towle HC (2008) Glucose activates ChREBP by increasing its rate of nuclear entry and relieving repression of its transcriptional activity. J Biol Chem 283:24029–24038. https://doi.org/10.1074/jbc.M801539200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Iozzo P, Bucci M, Roivainen A, Nagren K, Jarvisalo MJ, Kiss J, Guiducci L, Fielding B, Naum AG, Borra R, Virtanen K, Savunen T, Salvadori PA, Ferrannini E, Knuuti J, Nuutila P (2010) Fatty acid metabolism in the liver, measured by positron emission tomography, is increased in obese individuals. Gastroenterology 139:846–856. https://doi.org/10.1053/j.gastro.2010.05.039

    Article  CAS  PubMed  Google Scholar 

  92. Sunny NE, Parks EJ, Browning JD, Burgess SC (2011) Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metab 14:804–810. https://doi.org/10.1016/j.cmet.2011.11.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Weltman MD, Farrell GC, Hall P, Ingelman-Sundberg M, Liddle C (1998) Hepatic cytochrome P450 2E1 is increased in patients with nonalcoholic steatohepatitis. Hepatology 27:128–133. https://doi.org/10.1002/hep.510270121

    Article  CAS  PubMed  Google Scholar 

  94. Chalasani N, Gorski JC, Asghar MS, Asghar A, Foresman B, Hall SD, Crabb DW (2003) Hepatic cytochrome P450 2E1 activity in nondiabetic patients with nonalcoholic steatohepatitis. Hepatology 37:544–550. https://doi.org/10.1053/jhep.2003.50095

    Article  CAS  PubMed  Google Scholar 

  95. Diehl AM (2004) Tumor necrosis factor and its potential role in insulin resistance and nonalcoholic fatty liver disease. Clin Liver Dis 8:619–638. https://doi.org/10.1016/j.cld.2004.04.012

    Article  PubMed  Google Scholar 

  96. Koek GH, Liedorp PR, Bast A (2011) The role of oxidative stress in non-alcoholic steatohepatitis. Clin Chim Acta 412:1297–1305. https://doi.org/10.1016/j.cca.2011.04.013

    Article  CAS  PubMed  Google Scholar 

  97. Feldstein AE, Canbay A, Angulo P, Taniai M, Burgart LJ, Lindor KD, Gores GJ (2003) Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology 125:437–443. https://doi.org/10.1016/S0016-5085(03)00907-7

    Article  PubMed  Google Scholar 

  98. Spahis S, Delvin E, Borys JM, Levy E (2017) Oxidative stress as a critical factor in nonalcoholic fatty liver disease pathogenesis. Antioxid Redox Signal 26:519–541. https://doi.org/10.1089/ars.2016.6776

    Article  CAS  PubMed  Google Scholar 

  99. Seki S, Kitada T, Sakaguchi H (2005) Clinicopathological significance of oxidative cellular damage in non-alcoholic fatty liver diseases. Hepatol Res 33:132–134. https://doi.org/10.1016/j.hepres.2005.09.020

    Article  CAS  PubMed  Google Scholar 

  100. Feldstein AE, Lopez R, Tamimi TA, Yerian L, Chung YM, Berk M, Zhang R, McIntyre TM, Hazen SL (2010) Mass spectrometric profiling of oxidized lipid products in human nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. J Lipid Res 51:3046–3054. https://doi.org/10.1194/jlr.M007096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Liu W, Baker SS, Baker RD, Zhu L (2015) Antioxidant mechanisms in nonalcoholic fatty liver disease. Curr Drug Targets 16:1301–1314. https://doi.org/10.2174/1389450116666150427155342

    Article  CAS  PubMed  Google Scholar 

  102. Begriche K, Massart J, Robin MA, Borgne-Sanchez A, Fromenty B (2011) Drug-induced toxicity on mitochondria and lipid metabolism: mechanistic diversity and deleterious consequences for the liver. J Hepatol 54:773–794

    Article  CAS  PubMed  Google Scholar 

  103. Pessayre D, Fromenty B, Berson A, Robin MA, Letteron P, Moreau R, Mansouri A (2012) Central role of mitochondria in drug-induced liver injury. Drug Metab Rev 44:34–87

    Article  CAS  PubMed  Google Scholar 

  104. Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134:707–716. https://doi.org/10.1042/bj1340707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sookoian S, Rosselli MS, Gemma C, Burgueno AL, Fernandez GT, Castano GO, Pirola CJ (2010) Epigenetic regulation of insulin resistance in nonalcoholic fatty liver disease: impact of liver methylation of the peroxisome proliferator-activated receptor gamma coactivator 1α promoter. Hepatology 52:1992–2000. https://doi.org/10.1002/hep.23927

    Article  CAS  PubMed  Google Scholar 

  106. Chiappini F, Barrier A, Saffroy R, Domart MC, Dagues N, Azoulay D, Sebagh M, Franc B, Chevalier S, Debuire B, Dudoit S, Lemoine A (2006) Exploration of global gene expression in human liver steatosis by high-density oligonucleotide microarray. Lab Invest 86:154–165. https://doi.org/10.1038/labinvest.3700374

    Article  CAS  PubMed  Google Scholar 

  107. Caldwell SH, Swerdlow RH, Khan EM, Iezzoni JC, Hespenheide EE, Parks JK, Parker WD Jr (1999) Mitochondrial abnormalities in non-alcoholic steatohepatitis. J Hepatol 31:430–434. https://doi.org/10.1016/S0168-8278(99)80033-6

    Article  CAS  PubMed  Google Scholar 

  108. Fujita N, Miyachi H, Tanaka H, Takeo M, Nakagawa N, Kobayashi Y, Iwasa M, Watanabe S, Takei Y (2009) Iron overload is associated with hepatic oxidative damage to DNA in nonalcoholic steatohepatitis. Cancer Epidemiol Biomarkers Prev 18:424–432. https://doi.org/10.1158/1055-9965.EPI-08-0725

    Article  CAS  PubMed  Google Scholar 

  109. Kawahara H, Fukura M, Tsuchishima M, Takase S (2007) Mutation of mitochondrial DNA in livers from patients with alcoholic hepatitis and nonalcoholic steatohepatitis. Alcohol Clin Exp Res 31:S54–S60. https://doi.org/10.1111/j.1530-0277.2006.00287.x

    Article  PubMed  Google Scholar 

  110. Hui JM, Hodge A, Farrell GC, Kench JG, Kriketos A, George J (2004) Beyond insulin resistance in NASH: tNF-alpha or adiponectin? Hepatology 40:46–54. https://doi.org/10.1002/hep.20280

    Article  CAS  PubMed  Google Scholar 

  111. Bugianesi E, Pagotto U, Manini R, Vanni E, Gastaldelli A, Gentilcore E, Natale S, Cassader M, Rizzetto M, Pasquali R, Marchesini G (2005) Plasma adiponectin in nonalcoholic fatty liver is related to hepatic insulin resistance and hepatic fat content, not to liver disease severity. J Clin Endocrinol Metab 90:3498–3504. https://doi.org/10.1210/jc.2004-2240

    Article  CAS  PubMed  Google Scholar 

  112. Kaser S, Moschen A, Cayon A, Kaser A, Crespo J, Pons-Romero F, Ebenbichler CF, Patsch JR, Tilg H (2005) Adiponectin and its receptors in non-alcoholic steatohepatitis. Gut 54:117–121. https://doi.org/10.1136/gut.2003.037010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yoshikawa T, Ide T, Shimano H, Yahagi N, Amemiya-Kudo M, Matsuzaka T, Yatoh S, Kitamine T, Okazaki H, Tamura Y, Sekiya M, Takahashi A, Hasty AH, Sato R, Sone H, Osuga J, Ishibashi S, Yamada N (2003) Cross-talk between peroxisome proliferator-activated receptor (PPAR) alpha and liver X receptor (LXR) in nutritional regulation of fatty acid metabolism. I. PPARs suppress sterol regulatory element binding protein-1c promoter through inhibition of LXR signaling. Mol Endocrinol 17:1240–1254. https://doi.org/10.1210/me.2002-0190

    Article  CAS  PubMed  Google Scholar 

  114. Osmundsen H, Bremer J, Pedersen JI (1991) Metabolic aspects of peroxisomal beta-oxidation. Biochim Biophys Acta 1085:141–158. https://doi.org/10.1016/0005-2760(91)90089-Z

    Article  CAS  PubMed  Google Scholar 

  115. Robertson G, Leclercq I, Farrell GC (2001) Nonalcoholic steatosis and steatohepatitis. II. Cytochrome P-450 enzymes and oxidative stress. Am J Physiol Gastrointest Liver Physiol 281:G1135–G1139. https://doi.org/10.1152/ajpgi.2001.281.5.G1135

    Article  CAS  PubMed  Google Scholar 

  116. Zangar RC, Novak RF (1997) Effects of fatty acids and ketone bodies on cytochromes P450 2B, 4A, and 2E1 expression in primary cultured rat hepatocytes. Arch Biochem Biophys 337:217–224. https://doi.org/10.1006/abbi.1996.9785

    Article  CAS  PubMed  Google Scholar 

  117. Woodcroft KJ, Novak RF (1997) Insulin effects on CYP2E1, 2B, 3A, and 4A expression in primary cultured rat hepatocytes. Chem Biol Interact 107:75–91. https://doi.org/10.1016/S0009-2797(97)00075-6

    Article  CAS  PubMed  Google Scholar 

  118. Valenti L, Fracanzani AL, Bugianesi E, Dongiovanni P, Galmozzi E, Vanni E, Canavesi E, Lattuada E, Roviaro G, Marchesini G, Fargion S (2010) HFE genotype, parenchymal iron accumulation, and liver fibrosis in patients with nonalcoholic fatty liver disease. Gastroenterology 138:905–912. https://doi.org/10.1053/j.gastro.2009.11.013

    Article  CAS  PubMed  Google Scholar 

  119. Chtioui H, Semela D, Ledermann M, Zimmermann A, Dufour JF (2007) Expression and activity of the cytochrome P450 2E1 in patients with nonalcoholic steatosis and steatohepatitis. Liver Int 27:764–771. https://doi.org/10.1111/j.1478-3231.2007.01524.x

    Article  CAS  PubMed  Google Scholar 

  120. Videla LA, Rodrigo R, Orellana M, Fernandez V, Tapia G, Quinones L, Varela N, Contreras J, Lazarte R, Csendes A, Rojas J, Maluenda F, Burdiles P, Diaz JC, Smok G, Thielemann L, Poniachik J (2004) Oxidative stress-related parameters in the liver of non-alcoholic fatty liver disease patients. Clin Sci (Lond) 106:261–268. https://doi.org/10.1042/CS20030285

    Article  CAS  Google Scholar 

  121. Leclercq IA (2004) Antioxidant defence mechanisms: new players in the pathogenesis of non-alcoholic steatohepatitis? Clin Sci (Lond) 106:235–237. https://doi.org/10.1042/CS20030368

    Article  CAS  Google Scholar 

  122. Orellana M, Rodrigo R, Varela N, Araya J, Poniachik J, Csendes A, Smok G, Videla LA (2006) Relationship between in vivo chlorzoxazone hydroxylation, hepatic cytochrome P450 2E1 content and liver injury in obese non-alcoholic fatty liver disease patients. Hepatol Res 34:57–63. https://doi.org/10.1016/j.hepres.2005.10.001

    Article  CAS  PubMed  Google Scholar 

  123. Bettaieb A, Jiang JX, Sasaki Y, Chao TI, Kiss Z, Chen X, Tian J, Katsuyama M, Yabe-Nishimura C, Xi Y, Szyndralewiez C, Schroder K, Shah A, Brandes RP, Haj FG, Torok NJ (2015) Hepatocyte nicotinamide adenine dinucleotide phosphate reduced oxidase 4 regulates stress signaling, fibrosis, and insulin sensitivity during development of steatohepatitis in mice. Gastroenterology 149:468–480. https://doi.org/10.1053/j.gastro.2015.04.009

    Article  CAS  PubMed  Google Scholar 

  124. de Mochel NS, Seronello S, Wang SH, Ito C, Zheng JX, Liang TJ, Lambeth JD, Choi J (2010) Hepatocyte NAD(P)H oxidases as an endogenous source of reactive oxygen species during hepatitis C virus infection. Hepatology 52:47–59. https://doi.org/10.1002/hep.23671

    Article  CAS  PubMed  Google Scholar 

  125. Jiang JX, Chen X, Serizawa N, Szyndralewiez C, Page P, Schroder K, Brandes RP, Devaraj S, Torok NJ (2012) Liver fibrosis and hepatocyte apoptosis are attenuated by GKT137831, a novel NOX4/NOX1 inhibitor in vivo. Free Radic Biol Med 53:289–296. https://doi.org/10.1016/j.freeradbiomed.2012.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lanaspa MA, Sanchez-Lozada LG, Choi YJ, Cicerchi C, Kanbay M, Roncal-Jimenez CA, Ishimoto T, Li N, Marek G, Duranay M, Schreiner G, Rodriguez-Iturbe B, Nakagawa T, Kang DH, Sautin YY, Johnson RJ (2012) Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress: potential role in fructose-dependent and -independent fatty liver. J Biol Chem 287:40732–40744. https://doi.org/10.1074/jbc.M112.399899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Smith CM, Rovamo LM, Raivio KO (1977) Fructose-induced adenine nucleotide catabolism in isolated rat hepatocytes. Can J Biochem 55:1237–1240. https://doi.org/10.1139/o77-185

    Article  CAS  PubMed  Google Scholar 

  128. Zelber-Sagi S, Nitzan-Kaluski D, Halpern Z, Oren R (2007) NAFLD and hyperinsulinemia are major determinants of serum ferritin levels. J Hepatol 46:700–707. https://doi.org/10.1016/j.jhep.2006.09.018

    Article  CAS  PubMed  Google Scholar 

  129. Turlin B, Mendler MH, Moirand R, Guyader D, Guillygomarc’h A, Deugnier Y (2001) Histologic features of the liver in insulin resistance-associated iron overload. A study of 139 patients. Am J Clin Pathol 116:263–270. https://doi.org/10.1309/WWNE-KW2C-4KTW-PTJ5

    Article  CAS  PubMed  Google Scholar 

  130. Aigner E, Theurl I, Theurl M, Lederer D, Haufe H, Dietze O, Strasser M, Datz C, Weiss G (2008) Pathways underlying iron accumulation in human nonalcoholic fatty liver disease. Am J Clin Nutr 87:1374–1383. https://doi.org/10.1093/ajcn/87.5.1374

    Article  CAS  PubMed  Google Scholar 

  131. Nelson JE, Klintworth H, Kowdley KV (2012) Iron metabolism in nonalcoholic fatty liver disease. Curr Gastroenterol Rep 14:8–16. https://doi.org/10.1007/s11894-011-0234-4

    Article  PubMed  Google Scholar 

  132. Green A, Basile R, Rumberger JM (2006) Transferrin and iron induce insulin resistance of glucose transport in adipocytes. Metabolism 55:1042–1045. https://doi.org/10.1016/j.metabol.2006.03.015

    Article  CAS  PubMed  Google Scholar 

  133. Niederau C, Berger M, Stremmel W, Starke A, Strohmeyer G, Ebert R, Siegel E, Creutzfeldt W (1984) Hyperinsulinaemia in non-cirrhotic haemochromatosis: impaired hepatic insulin degradation? Diabetologia 26:441–444. https://doi.org/10.1007/BF00262217

    Article  CAS  PubMed  Google Scholar 

  134. Hevi S, Chuck SL (2003) Ferritins can regulate the secretion of apolipoprotein B. J Biol Chem 278:31924–31929. https://doi.org/10.1074/jbc.M303081200

    Article  CAS  PubMed  Google Scholar 

  135. Sreekumar R, Rosado B, Rasmussen D, Charlton M (2003) Hepatic gene expression in histologically progressive nonalcoholic steatohepatitis. Hepatology 38:244–251. https://doi.org/10.1053/jhep.2003.50290

    Article  CAS  PubMed  Google Scholar 

  136. Bessone F, Dirchwolf M, Rodil MA, Razori MV, Roma MG (2018) Review article drug-induced liver injury in the context of nonalcoholic fatty liver disease—a physiopathological and clinical integrated view. Aliment Pharmacol Ther. https://doi.org/10.1111/apt.14952

    Article  PubMed  Google Scholar 

  137. Mari M, Morales A, Colell A, Garcia-Ruiz C, Fernandez-Checa JC (2009) Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal 11:2685–2700. https://doi.org/10.1089/ars.2009.2695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Fromenty B, Pessayre D (1995) Inhibition of mitochondrial beta-oxidation as a mechanism of hepatotoxicity. Pharmacol Ther 67:101–154. https://doi.org/10.1016/0163-7258(95)00012-6

    Article  CAS  PubMed  Google Scholar 

  139. Abdelmegeed MA, Ha SK, Choi Y, Akbar M, Song BJ (2017) Role of CYP2E1 in mitochondrial dysfunction and hepatic injury by alcohol and non-alcoholic substances. Curr Mol Pharmacol 10:207–225. https://doi.org/10.2174/1874467208666150817111114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Dam-Larsen S, Franzmann M, Andersen IB, Christoffersen P, Jensen LB, Sorensen TI, Becker U, Bendtsen F (2004) Long term prognosis of fatty liver: risk of chronic liver disease and death. Gut 53:750–755. https://doi.org/10.1136/gut.2003.019984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Tilg H, Diehl AM (2000) Cytokines in alcoholic and nonalcoholic steatohepatitis. N Engl J Med 343:1467–1476. https://doi.org/10.1056/NEJM200011163432007

    Article  CAS  PubMed  Google Scholar 

  142. El Husseny MW, Mamdouh M, Shaban S, Ibrahim AA, Zaki MM, Ahmed OM, Abdel-Daim MM (2017) Adipokines: potential therapeutic targets for vascular dysfunction in type II diabetes mellitus and obesity. J Diabetes Res 2017:8095926. https://doi.org/10.1155/2017/8095926

    Article  CAS  PubMed  Google Scholar 

  143. Skurk T, Alberti-Huber C, Herder C, Hauner H (2007) Relationship between adipocyte size and adipokine expression and secretion. J Clin Endocrinol Metab 92:1023–1033. https://doi.org/10.1210/jc.2006-1055

    Article  CAS  PubMed  Google Scholar 

  144. Rotter V, Nagaev I, Smith U (2003) Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-α, overexpressed in human fat cells from insulin-resistant subjects. J Biol Chem 278:45777–45784. https://doi.org/10.1074/jbc.M301977200

    Article  CAS  PubMed  Google Scholar 

  145. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808. https://doi.org/10.1172/JCI200319246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Lumeng CN, Bodzin JL, Saltiel AR (2007) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117:175–184. https://doi.org/10.1172/JCI29881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Polyzos SA, Toulis KA, Goulis DG, Zavos C, Kountouras J (2011) Serum total adiponectin in nonalcoholic fatty liver disease: a systematic review and meta-analysis. Metabolism 60:313–326. https://doi.org/10.1016/j.metabol.2010.09.003

    Article  CAS  PubMed  Google Scholar 

  148. Moschen AR, Molnar C, Wolf AM, Weiss H, Graziadei I, Kaser S, Ebenbichler CF, Stadlmann S, Moser PL, Tilg H (2009) Effects of weight loss induced by bariatric surgery on hepatic adipocytokine expression. J Hepatol 51:765–777. https://doi.org/10.1016/j.jhep.2009.06.016

    Article  CAS  PubMed  Google Scholar 

  149. Ghadge AA, Khaire AA, Kuvalekar AA (2018) Adiponectin: a potential therapeutic target for metabolic syndrome. Cytokine Growth Factor Rev 39:151–158. https://doi.org/10.1016/j.cytogfr.2018.01.004

    Article  CAS  PubMed  Google Scholar 

  150. La Cava A, Matarese G (2004) The weight of leptin in immunity. Nat Rev Immunol 4:371–379. https://doi.org/10.1038/nri1350

    Article  CAS  PubMed  Google Scholar 

  151. Ikejima K, Okumura K, Kon K, Takei Y, Sato N (2007) Role of adipocytokines in hepatic fibrogenesis. J Gastroenterol Hepatol 22:S87–S92. https://doi.org/10.1111/j.1440-1746.2007.04961.x

    Article  CAS  PubMed  Google Scholar 

  152. Shen J, Sakaida I, Uchida K, Terai S, Okita K (2005) Leptin enhances TNF-alpha production via p38 and JNK MAPK in LPS-stimulated Kupffer cells. Life Sci 77:1502–1515. https://doi.org/10.1016/j.lfs.2005.04.004

    Article  CAS  PubMed  Google Scholar 

  153. Alisi A, Ceccarelli S, Panera N, Nobili V (2012) Causative role of gut microbiota in non-alcoholic fatty liver disease pathogenesis. Front Cell Infect Microbiol 2:132. https://doi.org/10.3389/fcimb.2012.00132

    Article  PubMed  PubMed Central  Google Scholar 

  154. Spruss A, Bergheim I (2009) Dietary fructose and intestinal barrier: potential risk factor in the pathogenesis of nonalcoholic fatty liver disease. J Nutr Biochem 20:657–662. https://doi.org/10.1016/j.jnutbio.2009.05.006

    Article  CAS  PubMed  Google Scholar 

  155. Amar J, Burcelin R, Ruidavets JB, Cani PD, Fauvel J, Alessi MC, Chamontin B, Ferrieres J (2008) Energy intake is associated with endotoxemia in apparently healthy men. Am J Clin Nutr 87:1219–1223. https://doi.org/10.1093/ajcn/87.5.1219

    Article  CAS  PubMed  Google Scholar 

  156. Le Roy T, Llopis M, Lepage P, Bruneau A, Rabot S, Bevilacqua C, Martin P, Philippe C, Walker F, Bado A, Perlemuter G, Cassard-Doulcier AM, Gerard P (2013) Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut 62:1787–1794. https://doi.org/10.1136/gutjnl-2012-303816

    Article  CAS  PubMed  Google Scholar 

  157. Miura K, Ohnishi H (2014) Role of gut microbiota and Toll-like receptors in nonalcoholic fatty liver disease. World J Gastroenterol 20:7381–7391. https://doi.org/10.3748/wjg.v20.i23.7381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Thuy S, Ladurner R, Volynets V, Wagner S, Strahl S, Konigsrainer A, Maier KP, Bischoff SC, Bergheim I (2008) Nonalcoholic fatty liver disease in humans is associated with increased plasma endotoxin and plasminogen activator inhibitor 1 concentrations and with fructose intake. J Nutr 138:1452–1455. https://doi.org/10.1093/jn/138.8.1452

    Article  CAS  PubMed  Google Scholar 

  159. Miele L, Valenza V, La TG, Montalto M, Cammarota G, Ricci R, Masciana R, Forgione A, Gabrieli ML, Perotti G, Vecchio FM, Rapaccini G, Gasbarrini G, Day CP, Grieco A (2009) Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 49:1877–1887. https://doi.org/10.1002/hep.22848

    Article  CAS  PubMed  Google Scholar 

  160. Bergheim I, Weber S, Vos M, Kramer S, Volynets V, Kaserouni S, McClain CJ, Bischoff SC (2008) Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin. J Hepatol 48:983–992. https://doi.org/10.1016/j.jhep.2008.01.035

    Article  CAS  PubMed  Google Scholar 

  161. Pradere JP, Troeger JS, Dapito DH, Mencin AA, Schwabe RF (2010) Toll-like receptor 4 and hepatic fibrogenesis. Semin Liver Dis 30:232–244. https://doi.org/10.1055/s-0030-1255353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, Waget A, Delmee E, Cousin B, Sulpice T, Chamontin B, Ferrieres J, Tanti JF, Gibson GR, Casteilla L, Delzenne NM, Alessi MC, Burcelin R (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761–1772. https://doi.org/10.2337/db06-1491

    Article  CAS  PubMed  Google Scholar 

  163. Baffy G (2009) Kupffer cells in non-alcoholic fatty liver disease: the emerging view. J Hepatol 51:212–223. https://doi.org/10.1016/j.jhep.2009.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Seki E, Brenner DA (2008) Toll-like receptors and adaptor molecules in liver disease: update. Hepatology 48:322–335. https://doi.org/10.1002/hep.22306

    Article  CAS  PubMed  Google Scholar 

  165. Carter-Kent C, Zein NN, Feldstein AE (2008) Cytokines in the pathogenesis of fatty liver and disease progression to steatohepatitis: implications for treatment. Am J Gastroenterol 103:1036–1042. https://doi.org/10.1111/j.1572-0241.2007.01709.x

    Article  CAS  PubMed  Google Scholar 

  166. Matsumura T, Degawa T, Takii T, Hayashi H, Okamoto T, Inoue J, Onozaki K (2003) TRAF6-NF-κB pathway is essential for interleukin-1-induced TLR2 expression and its functional response to TLR2 ligand in murine hepatocytes. Immunology 109:127–136. https://doi.org/10.1046/j.1365-2567.2003.01627.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Csak T, Ganz M, Pespisa J, Kodys K, Dolganiuc A, Szabo G (2011) Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells. Hepatology 54:133–144. https://doi.org/10.1002/hep.24341

    Article  CAS  PubMed  Google Scholar 

  168. Feldstein AE, Werneburg NW, Canbay A, Guicciardi ME, Bronk SF, Rydzewski R, Burgart LJ, Gores GJ (2004) Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression via a lysosomal pathway. Hepatology 40:185–194. https://doi.org/10.1097/00005176-200406001-00042

    Article  CAS  PubMed  Google Scholar 

  169. Chen L, Xiong S, She H, Lin SW, Wang J, Tsukamoto H (2007) Iron causes interactions of TAK1, p21ras, and phosphatidylinositol 3-kinase in caveolae to activate IκB kinase in hepatic macrophages. J Biol Chem 282:5582–5588. https://doi.org/10.1074/jbc.M609273200

    Article  CAS  PubMed  Google Scholar 

  170. Schilling JD, Machkovech HM, He L, Sidhu R, Fujiwara H, Weber K, Ory DS, Schaffer JE (2013) Palmitate and lipopolysaccharide trigger synergistic ceramide production in primary macrophages. J Biol Chem 288:2923–2932. https://doi.org/10.1074/jbc.M112.419978

    Article  CAS  PubMed  Google Scholar 

  171. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS (2006) TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 116:3015–3025. https://doi.org/10.1172/JCI28898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ribeiro PS, Cortez-Pinto H, Sola S, Castro RE, Ramalho RM, Baptista A, Moura MC, Camilo ME, Rodrigues CM (2004) Hepatocyte apoptosis, expression of death receptors, and activation of NF-κB in the liver of nonalcoholic and alcoholic steatohepatitis patients. Am J Gastroenterol 99:1708–1717. https://doi.org/10.1111/j.1572-0241.2004.40009.x

    Article  CAS  PubMed  Google Scholar 

  173. Alkhouri N, Carter-Kent C, Feldstein AE (2011) Apoptosis in nonalcoholic fatty liver disease: diagnostic and therapeutic implications. Expert Rev Gastroenterol Hepatol 5:201–212. https://doi.org/10.1586/egh.11.6

    Article  PubMed  PubMed Central  Google Scholar 

  174. Susca M, Grassi A, Zauli D, Volta U, Lenzi M, Marchesini G, Bianchi FB, Ballardini G (2001) Liver inflammatory cells, apoptosis, regeneration and stellate cell activation in non-alcoholic steatohepatitis. Dig Liver Dis 33:768–777. https://doi.org/10.1016/S1590-8658(01)80694-0

    Article  CAS  PubMed  Google Scholar 

  175. Ulukaya E, Acilan C, Yilmaz Y (2011) Apoptosis: why and how does it occur in biology? Cell Biochem Funct 29:468–480. https://doi.org/10.1002/cbf.1774

    Article  CAS  PubMed  Google Scholar 

  176. Diehl AM (2005) Lessons from animal models of NASH. Hepatol Res 33:138–144. https://doi.org/10.1016/j.hepres.2005.09.022

    Article  CAS  PubMed  Google Scholar 

  177. Jou J, Choi SS, Diehl AM (2008) Mechanisms of disease progression in nonalcoholic fatty liver disease. Semin Liver Dis 28:370–379. https://doi.org/10.1055/s-0028-1091981

    Article  CAS  PubMed  Google Scholar 

  178. Pop C, Salvesen GS (2009) Human caspases: activation, specificity, and regulation. J Biol Chem 284:21777–21781. https://doi.org/10.1074/jbc.R800084200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Adrain C, Creagh EM, Martin SJ (2001) Apoptosis-associated release of Smac/DIABLO from mitochondria requires active caspases and is blocked by Bcl-2. EMBO J 20:6627–6636. https://doi.org/10.1093/emboj/20.23.6627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Cande C, Cecconi F, Dessen P, Kroemer G (2002) Apoptosis-inducing factor (AIF): key to the conserved caspase-independent pathways of cell death? J Cell Sci 115:4727–4734. https://doi.org/10.1242/jcs.00210

    Article  CAS  PubMed  Google Scholar 

  181. Siddiqui WA, Ahad A, Ahsan H (2015) The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update. Arch Toxicol 89:289–317. https://doi.org/10.1007/s00204-014-1448-7

    Article  CAS  PubMed  Google Scholar 

  182. Barreyro FJ, Kobayashi S, Bronk SF, Werneburg NW, Malhi H, Gores GJ (2007) Transcriptional regulation of Bim by FoxO3A mediates hepatocyte lipoapoptosis. J Biol Chem 282:27141–27154. https://doi.org/10.1074/jbc.M704391200

    Article  CAS  PubMed  Google Scholar 

  183. Malhi H, Bronk SF, Werneburg NW, Gores GJ (2006) Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis. J Biol Chem 281:12093–12101. https://doi.org/10.1074/jbc.M510660200

    Article  CAS  PubMed  Google Scholar 

  184. Cazanave SC, Mott JL, Elmi NA, Bronk SF, Werneburg NW, Akazawa Y, Kahraman A, Garrison SP, Zambetti GP, Charlton MR, Gores GJ (2009) JNK1-dependent PUMA expression contributes to hepatocyte lipoapoptosis. J Biol Chem 284:26591–26602. https://doi.org/10.1074/jbc.M109.022491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Kakisaka K, Cazanave SC, Fingas CD, Guicciardi ME, Bronk SF, Werneburg NW, Mott JL, Gores GJ (2012) Mechanisms of lysophosphatidylcholine-induced hepatocyte lipoapoptosis. Am J Physiol Gastrointest Liver Physiol 302:G77–G84. https://doi.org/10.1152/ajpgi.00301.2011

    Article  CAS  PubMed  Google Scholar 

  186. Cazanave SC, Elmi NA, Akazawa Y, Bronk SF, Mott JL, Gores GJ (2010) CHOP and AP-1 cooperatively mediate PUMA expression during lipoapoptosis. Am J Physiol Gastrointest Liver Physiol 299:G236–G243. https://doi.org/10.1152/ajpgi.00091.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Hikisz P, Kilianska ZM (2012) PUMA, a critical mediator of cell death–one decade on from its discovery. Cell Mol Biol Lett 17:646–669. https://doi.org/10.2478/s11658-012-0032-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Lee J, Ozcan U (2014) Unfolded protein response signaling and metabolic diseases. J Biol Chem 289:1203–1211. https://doi.org/10.1074/jbc.R113.534743

    Article  CAS  PubMed  Google Scholar 

  189. Bozaykut P, Sahin A, Karademir B, Ozer NK (2016) Endoplasmic reticulum stress related molecular mechanisms in nonalcoholic steatohepatitis. Mech Ageing Dev 157:17–29. https://doi.org/10.1016/j.mad.2016.07.001

    Article  CAS  PubMed  Google Scholar 

  190. Wei Y, Wang D, Topczewski F, Pagliassotti MJ (2006) Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells. Am J Physiol Endocrinol Metab 291:E275–E281. https://doi.org/10.1152/ajpendo.00644.2005

    Article  CAS  PubMed  Google Scholar 

  191. Faitova J, Krekac D, Hrstka R, Vojtesek B (2006) Endoplasmic reticulum stress and apoptosis. Cell Mol Biol Lett 11:488–505. https://doi.org/10.2478/s11658-006-0040-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Lamkanfi M, Kalai M, Vandenabeele P (2004) Caspase-12: an overview. Cell Death Differ 11:365–368. https://doi.org/10.1038/sj.cdd.4401364

    Article  CAS  PubMed  Google Scholar 

  193. Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T, Korsmeyer SJ (2003) BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300:135–139. https://doi.org/10.1126/science.1081208

    Article  CAS  PubMed  Google Scholar 

  194. Waring P, Mullbacher A (1999) Cell death induced by the Fas/Fas ligand pathway and its role in pathology. Immunol Cell Biol 77:312–317. https://doi.org/10.1046/j.1440-1711.1999.00837.x

    Article  CAS  PubMed  Google Scholar 

  195. Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501. https://doi.org/10.1016/S0092-8674(00)81590-1

    Article  CAS  PubMed  Google Scholar 

  196. Milhas D, Cuvillier O, Therville N, Clave P, Thomsen M, Levade T, Benoist H, Segui B (2005) Caspase-10 triggers Bid cleavage and caspase cascade activation in FasL-induced apoptosis. J Biol Chem 280:19836–19842. https://doi.org/10.1074/jbc.M414358200

    Article  CAS  PubMed  Google Scholar 

  197. Malhi H, Barreyro FJ, Isomoto H, Bronk SF, Gores GJ (2007) Free fatty acids sensitise hepatocytes to TRAIL mediated cytotoxicity. Gut 56:1124–1131. https://doi.org/10.1136/gut.2006.118059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Volkmann X, Fischer U, Bahr MJ, Ott M, Lehner F, Macfarlane M, Cohen GM, Manns MP, Schulze-Osthoff K, Bantel H (2007) Increased hepatotoxicity of tumor necrosis factor-related apoptosis-inducing ligand in diseased human liver. Hepatology 46:1498–1508. https://doi.org/10.1002/hep.21846

    Article  CAS  PubMed  Google Scholar 

  199. Feldstein AE, Canbay A, Guicciardi ME, Higuchi H, Bronk SF, Gores GJ (2003) Diet associated hepatic steatosis sensitizes to Fas mediated liver injury in mice. J Hepatol 39:978–983. https://doi.org/10.1016/S0168-8278(03)00460-4

    Article  CAS  PubMed  Google Scholar 

  200. Li Z, Berk M, McIntyre TM, Gores GJ, Feldstein AE (2008) The lysosomal-mitochondrial axis in free fatty acid-induced hepatic lipotoxicity. Hepatology 47:1495–1503. https://doi.org/10.1002/hep.22183

    Article  CAS  PubMed  Google Scholar 

  201. Feldstein AE, Werneburg NW, Li Z, Bronk SF, Gores GJ (2006) Bax inhibition protects against free fatty acid-induced lysosomal permeabilization. Am J Physiol Gastrointest Liver Physiol 290:G1339–G1346

    Article  CAS  PubMed  Google Scholar 

  202. Guicciardi ME, Bronk SF, Werneburg NW, Yin XM, Gores GJ (2005) Bid is upstream of lysosome-mediated caspase 2 activation in tumor necrosis factor alpha-induced hepatocyte apoptosis. Gastroenterology 129:269–284. https://doi.org/10.1053/j.gastro.2005.05.022

    Article  CAS  PubMed  Google Scholar 

  203. Kinnally KW, Peixoto PM, Ryu SY, Dejean LM (2011) Is mPTP the gatekeeper for necrosis, apoptosis, or both? Biochim Biophys Acta 1813:616–622. https://doi.org/10.1016/j.bbamcr.2010.09.013

    Article  CAS  PubMed  Google Scholar 

  204. Lemasters JJ, Nieminen AL, Qian T, Trost LC, Elmore SP, Nishimura Y, Crowe RA, Cascio WE, Bradham CA, Brenner DA, Herman B (1998) The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim Biophys Acta 1366:177–196. https://doi.org/10.1016/S0005-2728(98)00112-1

    Article  CAS  PubMed  Google Scholar 

  205. Toledo FD, Perez LM, Basiglio CL, Ochoa JE, Sanchez Pozzi EJ, Roma MG (2014) The Ca2+-calmodulin-Ca2+/calmodulin-dependent protein kinase II signaling pathway is involved in oxidative stress-induced mitochondrial permeability transition and apoptosis in isolated rat hepatocytes. Arch Toxicol 88:1695–1709. https://doi.org/10.1007/s00204-014-1219-5

    Article  CAS  PubMed  Google Scholar 

  206. Toledo FD, Basiglio CL, Barosso IR, Boaglio AC, Zucchetti AE, Sanchez Pozzi EJ, Roma MG (2017) Mitogen-activated protein kinases are involved in hepatocanalicular dysfunction and cholestasis induced by oxidative stress. Arch Toxicol 91:2391–2403. https://doi.org/10.1007/s00204-016-1898-1

    Article  CAS  PubMed  Google Scholar 

  207. Camello-Almaraz C, Gomez-Pinilla PJ, Pozo MJ, Camello PJ (2006) Mitochondrial reactive oxygen species and Ca2+ signaling. Am J Physiol Cell Physiol 291:C1082–C1088. https://doi.org/10.1152/ajpcell.00217.2006

    Article  CAS  PubMed  Google Scholar 

  208. Malhotra JD, Kaufman RJ (2007) Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal 9:2277–2293. https://doi.org/10.1089/ars.2007.1782

    Article  CAS  PubMed  Google Scholar 

  209. Egnatchik RA, Leamy AK, Jacobson DA, Shiota M, Young JD (2014) ER calcium release promotes mitochondrial dysfunction and hepatic cell lipotoxicity in response to palmitate overload. Mol Metab 3:544–553. https://doi.org/10.1016/j.molmet.2014.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Teodoro JS, Rolo AP, Duarte FV, Simoes AM, Palmeira CM (2008) Differential alterations in mitochondrial function induced by a choline-deficient diet: understanding fatty liver disease progression. Mitochondrion 8:367–376. https://doi.org/10.1016/j.mito.2008.07.008

    Article  CAS  PubMed  Google Scholar 

  211. Martinez L, Torres S, Baulies A, Alarcon-Vila C, Elena M, Fabrias G, Casas J, Caballeria J, Fernandez-Checa JC, Garcia-Ruiz C (2015) Myristic acid potentiates palmitic acid-induced lipotoxicity and steatohepatitis associated with lipodystrophy by sustaning de novo ceramide synthesis. Oncotarget 6:41479–41496. https://doi.org/10.18632/oncotarget.6286

    Article  PubMed  PubMed Central  Google Scholar 

  212. Mehrpour M, Esclatine A, Beau I, Codogno P (2010) Autophagy in health and disease. 1. Regulation and significance of autophagy: an overview. Am J Physiol Cell Physiol 298:C776–C785. https://doi.org/10.1152/ajpcell.00507.2009

    Article  CAS  PubMed  Google Scholar 

  213. Wang Z, Han W, Sui X, Fang Y, Pan H (2014) Autophagy: a novel therapeutic target for hepatocarcinoma (Review). Oncol Lett 7:1345–1351. https://doi.org/10.3892/ol.2014.1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Czaja MJ (2016) Function of autophagy in nonalcoholic fatty liver disease. Dig Dis Sci 61:1304–1313. https://doi.org/10.1007/s10620-015-4025-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ (2009) Autophagy regulates lipid metabolism. Nature 458:1131–1135. https://doi.org/10.1038/nature07976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Orenstein SJ, Cuervo AM (2010) Chaperone-mediated autophagy: molecular mechanisms and physiological relevance. Semin Cell Dev Biol 21:719–726. https://doi.org/10.1016/j.semcdb.2010.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Kwanten WJ, Vandewynckel YP, Martinet W, De Winter BY, Michielsen PP, Van Hoof VO, Driessen A, Timmermans JP, Bedossa P, Van VH, Francque SM (2016) Hepatocellular autophagy modulates the unfolded protein response and fasting-induced steatosis in mice. Am J Physiol Gastrointest Liver Physiol 311:G599–G609. https://doi.org/10.1152/ajpgi.00418.2015

    Article  PubMed  PubMed Central  Google Scholar 

  218. Xiong X, Tao R, DePinho RA, Dong XC (2012) The autophagy-related gene 14 (Atg14) is regulated by forkhead box O transcription factors and circadian rhythms and plays a critical role in hepatic autophagy and lipid metabolism. J Biol Chem 287:39107–39114. https://doi.org/10.1074/jbc.M112.412569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Fukuo Y, Yamashina S, Sonoue H, Arakawa A, Nakadera E, Aoyama T, Uchiyama A, Kon K, Ikejima K, Watanabe S (2014) Abnormality of autophagic function and cathepsin expression in the liver from patients with non-alcoholic fatty liver disease. Hepatol Res 44:1026–1036. https://doi.org/10.1111/hepr.12282

    Article  CAS  PubMed  Google Scholar 

  220. Kashima J, Shintani-Ishida K, Nakajima M, Maeda H, Unuma K, Uchiyama Y, Yoshida K (2014) Immunohistochemical study of the autophagy marker microtubule-associated protein 1 light chain 3 in normal and steatotic human livers. Hepatol Res 44:779–787. https://doi.org/10.1111/hepr.12183

    Article  CAS  PubMed  Google Scholar 

  221. Gonzalez-Rodriguez A, Mayoral R, Agra N, Valdecantos MP, Pardo V, Miquilena-Colina ME, Vargas-Castrillon J, Lo IO, Corazzari M, Fimia GM, Piacentini M, Muntane J, Bosca L, Garcia-Monzon C, Martin-Sanz P, Valverde AM (2014) Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis 5:e1179. https://doi.org/10.1038/cddis.2014.162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Yang L, Li P, Fu S, Calay ES, Hotamisligil GS (2010) Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab 11:467–478. https://doi.org/10.1016/j.cmet.2010.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Liu HY, Han J, Cao SY, Hong T, Zhuo D, Shi J, Liu Z, Cao W (2009) Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: inhibition of FoxO1-dependent expression of key autophagy genes by insulin. J Biol Chem 284:31484–31492. https://doi.org/10.1074/jbc.M109.033936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Czaja MJ (2011) Functions of autophagy in hepatic and pancreatic physiology and disease. Gastroenterology 140:1895–1908. https://doi.org/10.1053/j.gastro.2011.04.038

    Article  PubMed  Google Scholar 

  225. Koga H, Kaushik S, Cuervo AM (2010) Altered lipid content inhibits autophagic vesicular fusion. FASEB J 24:3052–3065. https://doi.org/10.1096/fj.09-144519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Park HW, Park H, Semple IA, Jang I, Ro SH, Kim M, Cazares VA, Stuenkel EL, Kim JJ, Kim JS, Lee JH (2014) Pharmacological correction of obesity-induced autophagy arrest using calcium channel blockers. Nat Commun 5:4834. https://doi.org/10.1038/ncomms5834

    Article  CAS  PubMed  Google Scholar 

  227. Zhang W, Hou J, Wang X, Jiang R, Yin Y, Ji J, Deng L, Huang X, Wang K, Sun B (2015) PTPRO-mediated autophagy prevents hepatosteatosis and tumorigenesis. Oncotarget 6:9420–9433. https://doi.org/10.18632/oncotarget.3353

    Article  PubMed  PubMed Central  Google Scholar 

  228. Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–141. https://doi.org/10.1038/ncb2152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Hardie DG (2011) AMPK and autophagy get connected. EMBO J 30:634–635. https://doi.org/10.1038/emboj.2011.12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Muse ED, Obici S, Bhanot S, Monia BP, McKay RA, Rajala MW, Scherer PE, Rossetti L (2004) Role of resistin in diet-induced hepatic insulin resistance. J Clin Invest 114:232–239. https://doi.org/10.1172/JCI200421270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Yu X, McCorkle S, Wang M, Lee Y, Li J, Saha AK, Unger RH, Ruderman NB (2004) Leptinomimetic effects of the AMP kinase activator AICAR in leptin-resistant rats: prevention of diabetes and ectopic lipid deposition. Diabetologia 47:2012–2021. https://doi.org/10.1007/s00125-004-1570-9

    Article  CAS  PubMed  Google Scholar 

  232. Singh R (2010) Autophagy and regulation of lipid metabolism. Results Probl Cell Differ 52:35–46. https://doi.org/10.1007/978-3-642-14426-4_4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Kim KH, Jeong YT, Oh H, Kim SH, Cho JM, Kim YN, Kim SS, Kim DH, Hur KY, Kim HK, Ko T, Han J, Kim HL, Kim J, Back SH, Komatsu M, Chen H, Chan DC, Konishi M, Itoh N, Choi CS, Lee MS (2013) Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat Med 19:83–92. https://doi.org/10.1038/nm.3014

    Article  CAS  PubMed  Google Scholar 

  234. Wang Y, Singh R, Xiang Y, Czaja MJ (2010) Macroautophagy and chaperone-mediated autophagy are required for hepatocyte resistance to oxidant stress. Hepatology 52:266–277. https://doi.org/10.1002/hep.23645

    Article  CAS  PubMed  Google Scholar 

  235. Lemasters JJ (2005) Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res 8:3–5. https://doi.org/10.1089/rej.2005.8.3

    Article  CAS  PubMed  Google Scholar 

  236. Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469:323–335. https://doi.org/10.1038/nature09782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Fukushima H, Yamashina S, Arakawa A, Taniguchi G, Aoyama T, Uchiyama A, Kon K, Ikejima K, Watanabe S (2018) Formation of p62-positive inclusion body is associated with macrophage polarization in non-alcoholic fatty liver disease. Hepatol Res 48:757–767. https://doi.org/10.1111/hepr.13071

    Article  CAS  PubMed  Google Scholar 

  238. Schneider JL, Suh Y, Cuervo AM (2014) Deficient chaperone-mediated autophagy in liver leads to metabolic dysregulation. Cell Metab 20:417–432. https://doi.org/10.1016/j.cmet.2014.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Kaushik S, Cuervo AM (2015) Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat Cell Biol 17:759–770. https://doi.org/10.1038/ncb3166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Carr RM, Dhir R, Mahadev K, Comerford M, Chalasani NP, Ahima RS (2017) Perilipin staining distinguishes between steatosis and nonalcoholic steatohepatitis in adults and children. Clin Gastroenterol Hepatol 15:145–147. https://doi.org/10.1016/j.cgh.2016.08.023

    Article  PubMed  Google Scholar 

  241. Imai Y, Varela GM, Jackson MB, Graham MJ, Crooke RM, Ahima RS (2007) Reduction of hepatosteatosis and lipid levels by an adipose differentiation-related protein antisense oligonucleotide. Gastroenterology 132:1947–1954. https://doi.org/10.1053/j.gastro.2007.02.046

    Article  CAS  PubMed  Google Scholar 

  242. Carr RM, Patel RT, Rao V, Dhir R, Graham MJ, Crooke RM, Ahima RS (2012) Reduction of TIP47 improves hepatic steatosis and glucose homeostasis in mice. Am J Physiol Regul Integr Comp Physiol 302:R996–R1003. https://doi.org/10.1152/ajpregu.00177.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Libby AE, Bales E, Orlicky DJ, McManaman JL (2016) Perilipin-2 deletion impairs hepatic lipid accumulation by interfering with sterol regulatory element-binding protein (SREBP) activation and altering the hepatic lipidome. J Biol Chem 291:24231–24246. https://doi.org/10.1074/jbc.M116.759795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Angulo P, Keach JC, Batts KP, Lindor KD (1999) Independent predictors of liver fibrosis in patients with nonalcoholic steatohepatitis. Hepatology 30:1356–1362. https://doi.org/10.1002/hep.510300604

    Article  CAS  PubMed  Google Scholar 

  245. Wong VW, Wong GL, Choi PC, Chan AW, Li MK, Chan HY, Chim AM, Yu J, Sung JJ, Chan HL (2010) Disease progression of non-alcoholic fatty liver disease: a prospective study with paired liver biopsies at 3 years. Gut 59:969–974. https://doi.org/10.1136/gut.2009.205088

    Article  PubMed  Google Scholar 

  246. Angulo P, Kleiner DE, Dam-Larsen S, Adams LA, Bjornsson ES, Charatcharoenwitthaya P, Mills PR, Keach JC, Lafferty HD, Stahler A, Haflidadottir S, Bendtsen F (2015) Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology 149:389–397. https://doi.org/10.1053/j.gastro.2015.04.043

    Article  PubMed  Google Scholar 

  247. Sanchez-Valle V, Chavez-Tapia NC, Uribe M, Mendez-Sanchez N (2012) Role of oxidative stress and molecular changes in liver fibrosis: a review. Curr Med Chem 19:4850–4860. https://doi.org/10.2174/092986712803341520

    Article  CAS  PubMed  Google Scholar 

  248. Friedman SL (1999) Cytokines and fibrogenesis. Semin Liver Dis 19:129–140. https://doi.org/10.1055/s-2007-1007105

    Article  CAS  PubMed  Google Scholar 

  249. Friedman SL (2008) Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 88:125–172. https://doi.org/10.1152/physrev.00013.2007

    Article  CAS  PubMed  Google Scholar 

  250. Fabregat I, Moreno-Caceres J, Sanchez A, Dooley S, Dewidar B, Giannelli G, Ten DP (2016) TGF-beta signalling and liver disease. FEBS J 283:2219–2232

    Article  CAS  PubMed  Google Scholar 

  251. Sancho P, Mainez J, Crosas-Molist E, Roncero C, Fernandez-Rodriguez CM, Pinedo F, Huber H, Eferl R, Mikulits W, Fabregat I (2012) NADPH oxidase NOX4 mediates stellate cell activation and hepatocyte cell death during liver fibrosis development. PLoS One 7:e45285. https://doi.org/10.1371/journal.pone.0045285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Liu Y, Liu H, Meyer C, Li J, Nadalin S, Konigsrainer A, Weng H, Dooley S, Ten DP (2013) Transforming growth factor-β (TGF-β)-mediated connective tissue growth factor (CTGF) expression in hepatic stellate cells requires Stat3 signaling activation. J Biol Chem 288:30708–30719. https://doi.org/10.1074/jbc.M113.478685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Paradis V, Perlemuter G, Bonvoust F, Dargere D, Parfait B, Vidaud M, Conti M, Huet S, Ba N, Buffet C, Bedossa P (2001) High glucose and hyperinsulinemia stimulate connective tissue growth factor expression: a potential mechanism involved in progression to fibrosis in nonalcoholic steatohepatitis. Hepatology 34:738–744. https://doi.org/10.1053/jhep.2001.28055

    Article  CAS  PubMed  Google Scholar 

  254. Li L, Wang JY, Yang CQ, Jiang W (2012) Effect of RhoA on transforming growth factor β1-induced rat hepatic stellate cell migration. Liver Int 32:1093–1102. https://doi.org/10.1111/j.1478-3231.2012.02809.x

    Article  CAS  PubMed  Google Scholar 

  255. Shah R, Reyes-Gordillo K, Arellanes-Robledo J, Lechuga CG, Hernandez-Nazara Z, Cotty A, Rojkind M, Lakshman MR (2013) TGF-β1 up-regulates the expression of PDGF-beta receptor mRNA and induces a delayed PI3K-, AKT-, and p70(S6K) -dependent proliferative response in activated hepatic stellate cells. Alcohol Clin Exp Res 37:1838–1848. https://doi.org/10.1111/acer.12167

    Article  CAS  PubMed  Google Scholar 

  256. Galli A, Svegliati-Baroni G, Ceni E, Milani S, Ridolfi F, Salzano R, Tarocchi M, Grappone C, Pellegrini G, Benedetti A, Surrenti C, Casini A (2005) Oxidative stress stimulates proliferation and invasiveness of hepatic stellate cells via a MMP2-mediated mechanism. Hepatology 41:1074–1084. https://doi.org/10.1002/hep.20683

    Article  CAS  PubMed  Google Scholar 

  257. Svegliati Baroni G, D’Ambrosio L, Ferretti G, Casini A, Di SA, Salzano R, Ridolfi F, Saccomanno S, Jezequel AM, Benedetti A (1998) Fibrogenic effect of oxidative stress on rat hepatic stellate cells. Hepatology 27:720–726. https://doi.org/10.1002/hep.510270313

    Article  CAS  PubMed  Google Scholar 

  258. Casini A, Ceni E, Salzano R, Biondi P, Parola M, Galli A, Foschi M, Caligiuri A, Pinzani M, Surrenti C (1997) Neutrophil-derived superoxide anion induces lipid peroxidation and stimulates collagen synthesis in human hepatic stellate cells: role of nitric oxide. Hepatology 25:361–367. https://doi.org/10.1002/hep.510250218

    Article  CAS  PubMed  Google Scholar 

  259. Nieto N, Friedman SL, Cederbaum AI (2002) Cytochrome P450 2E1-derived reactive oxygen species mediate paracrine stimulation of collagen I protein synthesis by hepatic stellate cells. J Biol Chem 277:9853–9864. https://doi.org/10.1074/jbc.M110506200

    Article  CAS  PubMed  Google Scholar 

  260. Lee TF, Lin YL, Huang YT (2011) Kaerophyllin inhibits hepatic stellate cell activation by apoptotic bodies from hepatocytes. Liver Int 31:618–629. https://doi.org/10.1111/j.1478-3231.2011.02485.x

    Article  CAS  PubMed  Google Scholar 

  261. Canbay A, Feldstein AE, Higuchi H, Werneburg N, Grambihler A, Bronk SF, Gores GJ (2003) Kupffer cell engulfment of apoptotic bodies stimulates death ligand and cytokine expression. Hepatology 38:1188–1198. https://doi.org/10.1053/jhep.2003.50472

    Article  CAS  PubMed  Google Scholar 

  262. Guicciardi ME, Gores GJ (2010) Apoptosis as a mechanism for liver disease progression. Semin Liver Dis 30:402–410. https://doi.org/10.1055/s-0030-1267540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Zhan SS, Jiang JX, Wu J, Halsted C, Friedman SL, Zern MA, Torok NJ (2006) Phagocytosis of apoptotic bodies by hepatic stellate cells induces NADPH oxidase and is associated with liver fibrosis in vivo. Hepatology 43:435–443. https://doi.org/10.1002/hep.21093

    Article  CAS  PubMed  Google Scholar 

  264. Paik YH, Schwabe RF, Bataller R, Russo MP, Jobin C, Brenner DA (2003) Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells. Hepatology 37:1043–1055. https://doi.org/10.1053/jhep.2003.50182

    Article  CAS  PubMed  Google Scholar 

  265. Henderson NC, Iredale JP (2007) Liver fibrosis: cellular mechanisms of progression and resolution. Clin Sci (Lond) 112:265–280. https://doi.org/10.1042/CS20060242

    Article  CAS  Google Scholar 

  266. Friedman SL (2000) Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 275:2247–2250. https://doi.org/10.1074/jbc.275.4.2247

    Article  CAS  PubMed  Google Scholar 

  267. Pinzani M, Marra F, Carloni V (1998) Signal transduction in hepatic stellate cells. Liver 18:2–13. https://doi.org/10.1111/j.1600-0676.1998.tb00120.x

    Article  CAS  PubMed  Google Scholar 

  268. Marra F, Gentilini A, Pinzani M, Choudhury GG, Parola M, Herbst H, Dianzani MU, Laffi G, Abboud HE, Gentilini P (1997) Phosphatidylinositol 3-kinase is required for platelet-derived growth factor’s actions on hepatic stellate cells. Gastroenterology 112:1297–1306. https://doi.org/10.1016/S0016-5085(97)70144-6

    Article  CAS  PubMed  Google Scholar 

  269. Marra F, Romanelli RG, Giannini C, Failli P, Pastacaldi S, Arrighi MC, Pinzani M, Laffi G, Montalto P, Gentilini P (1999) Monocyte chemotactic protein-1 as a chemoattractant for human hepatic stellate cells. Hepatology 29:140–148. https://doi.org/10.1002/hep.510290107

    Article  CAS  PubMed  Google Scholar 

  270. Roeb E (2018) Matrix metalloproteinases and liver fibrosis (translational aspects). Matrix Biol 68–69:463–473. https://doi.org/10.1016/j.matbio.2017.12.012

    Article  CAS  PubMed  Google Scholar 

  271. Verdelho MM, Diehl AM (2018) The hedgehog pathway in nonalcoholic fatty liver disease. Crit Rev Biochem Mol Biol 53:264–278. https://doi.org/10.1080/10409238.2018.1448752

    Article  CAS  Google Scholar 

  272. Verdelho MM, Diehl AM (2016) Role of hedgehog signaling pathway in NASH. Int J Mol Sci 17:857. https://doi.org/10.3390/ijms17060857

    Article  CAS  Google Scholar 

  273. Guy CD, Suzuki A, Zdanowicz M et al (2012) Hedgehog pathway activation parallels histologic severity of injury and fibrosis in human nonalcoholic fatty liver disease. Hepatology 55:1711–1721. https://doi.org/10.1002/hep.25559

    Article  CAS  PubMed  Google Scholar 

  274. Dugum M, Hanouneh I, McIntyre T et al (2016) Sonic hedgehog signaling in hepatocellular carcinoma: a pilot study. Mol Clin Oncol 4:369–374. https://doi.org/10.3892/mco.2016.728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Al-Bahrani R, Nagamori S, Leng R, Petryk A, Sergi C (2015) Differential expression of sonic hedgehog protein in human hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Pathol Oncol Res 21:901–908. https://doi.org/10.1007/s12253-015-9918-7

    Article  CAS  PubMed  Google Scholar 

  276. Sicklick JK, Li YX, Melhem A et al (2006) Hedgehog signaling maintains resident hepatic progenitors throughout life. Am J Physiol Gastrointest Liver Physiol 290:G859–G870

    Article  CAS  PubMed  Google Scholar 

  277. Kakisaka K, Cazanave SC, Werneburg NW et al (2012) A hedgehog survival pathway in ‘undead’ lipotoxic hepatocytes. J Hepatol 57:844–851. https://doi.org/10.1152/ajpgi.00456.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Sommerfeld A, Reinehr R, Haussinger D (2015) Free fatty acids shift insulin-induced hepatocyte proliferation towards CD95-dependent apoptosis. J Biol Chem 290:4398–4409. https://doi.org/10.1074/jbc.M114.617035

    Article  CAS  PubMed  Google Scholar 

  279. Syn WK, Jung Y, Omenetti A et al (2009) Hedgehog-mediated epithelial-to-mesenchymal transition and fibrogenic repair in nonalcoholic fatty liver disease. Gastroenterology 137:1478–1488. https://doi.org/10.1053/j.gastro.2009.06.051

    Article  CAS  PubMed  Google Scholar 

  280. Jung Y, Witek RP, Syn WK et al (2010) Signals from dying hepatocytes trigger growth of liver progenitors. Gut 59:655–665. https://doi.org/10.1136/gut.2009.204354

    Article  CAS  PubMed  Google Scholar 

  281. Cai H, Li H, Li J et al (2016) Sonic hedgehog signaling pathway mediates development of hepatocellular carcinoma. Tumour Biol 37:16199–16205. https://doi.org/10.1007/s13277-016-5463-6

    Article  CAS  Google Scholar 

  282. Zhang DW, Li HY, Lau WY et al (2014) Gli2 silencing enhances TRAIL-induced apoptosis and reduces tumor growth in human hepatoma cells in vivo. Cancer Biol Ther 15:1667–1676. https://doi.org/10.4161/15384047.2014.972286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Chen JS, Li HS, Huang JQ et al (2014) Down-regulation of Gli-1 inhibits hepatocellular carcinoma cell migration and invasion. Mol Cell Biochem 393:283–291. https://doi.org/10.1007/s11010-014-2071-x

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo G. Roma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bessone, F., Razori, M.V. & Roma, M.G. Molecular pathways of nonalcoholic fatty liver disease development and progression. Cell. Mol. Life Sci. 76, 99–128 (2019). https://doi.org/10.1007/s00018-018-2947-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2947-0

Keywords

Navigation