Parallel generation of easily selectable multiple nephronal cell types from human pluripotent stem cells


Human pluripotent stem cells (hPSCs) provide a source for the generation of defined kidney cells and renal organoids applicable in regenerative medicine, disease modeling, and drug screening. These applications require the provision of hPSC-derived renal cells by reproducible, scalable, and efficient methods. We established a chemically defined protocol by application of Activin A, BMP4, and Retinoic acid followed by GDNF, which steered hPSCs to the renal lineage and resulted in populations of SIX2+/CITED1+ metanephric mesenchyme- (MM) and of HOXB7+/GRHL2+ ureteric bud (UB)-like cells already by 6 days. Transcriptome analysis corroborated that the PSC-derived cell types at day 8 resemble their renal vesicle and ureteric epithelial counterpart in vivo, forming tubular and glomerular renal cells 6 days later. We demonstrate that starting from hPSCs, our in vitro protocol generates a pool of nephrogenic progenitors at the renal vesicle stage, which can be further directed into specialized nephronal cell types including mesangial-, proximal tubular-, distal tubular, collecting duct epithelial cells, and podocyte precursors after 14 days. This simple and rapid method to produce renal cells from a common precursor pool in 2D culture provides the basis for scaled-up production of tailored renal cell types, which are applicable for drug testing or cell-based regenerative therapies.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B et al (2013) Chronic kidney disease: global dimension and perspectives. Lancet 382(9888):260–272

    Article  Google Scholar 

  2. 2.

    Al-Awqati Q, Oliver JA (2002) Stem cells in the kidney. Kidney Int 61(2):387–395

    Article  Google Scholar 

  3. 3.

    Grobstein C (1953) Inductive epitheliomesenchymal interaction in cultured organ rudiments of the mouse. Science 118(3054):52–55

    CAS  Article  Google Scholar 

  4. 4.

    Mae S-I, Shono A, Shiota F, Yasuno T, Kajiwara M, Gotoda-Nishimura N et al (2013) Monitoring and robust induction of nephrogenic intermediate mesoderm from human pluripotent stem cells. Nat Commun. 4:1367

    Article  Google Scholar 

  5. 5.

    Lam AQ, Freedman BS, Morizane R, Lerou PH, Valerius MT, Bonventre JV (2014) Rapid and efficient differentiation of human pluripotent stem cells into intermediate mesoderm that forms tubules expressing kidney proximal tubular markers. J Am Soc Nephrol 25(6):1211–1225

    CAS  Article  Google Scholar 

  6. 6.

    Xia Y, Nivet E, Sancho-Martinez I, Gallegos T, Suzuki K, Okamura D et al (2013) Directed differentiation of human pluripotent cells to ureteric bud kidney progenitor-like cells. Nat Cell Biol 15(12):1507–1515

    CAS  Article  Google Scholar 

  7. 7.

    Takasato M, Er PX, Becroft M, Vanslambrouck JM, Stanley EG, Elefanty AG et al (2014) Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat Cell Biol 16(1):118–126

    CAS  Article  Google Scholar 

  8. 8.

    Taguchi A, Kaku Y, Ohmori T, Sharmin S, Ogawa M, Sasaki H et al (2014) Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell 14(1):53–67

    CAS  Article  Google Scholar 

  9. 9.

    Harari-Steinberg O, Metsuyanim S, Omer D, Gnatek Y, Gershon R, Pri-Chen S et al (2013) Identification of human nephron progenitors capable of generation of kidney structures and functional repair of chronic renal disease. EMBO Mol Med. 5(10):1556–1568

    CAS  Article  Google Scholar 

  10. 10.

    Sharmin S, Taguchi A, Kaku Y, Yoshimura Y, Ohmori T, Sakuma T, Mukoyama M, Yamamoto T, Kurihara H, Nishinakamura R (2015) Human induced pluripotent stem cell-derived podocytes mature into vascularized glomeruli upon experimental transplantation. J Am Soc Nephrol 27(6):1778–1791

    Article  Google Scholar 

  11. 11.

    Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C et al (2015) Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526(7574):564–568

    CAS  Article  Google Scholar 

  12. 12.

    Sumi T, Tsuneyoshi N, Nakatsuji N, Suemori H (2008) Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical Wnt/beta-catenin, Activin/Nodal and BMP signaling. Dev Camb Engl. 135(17):2969–2979

    CAS  Google Scholar 

  13. 13.

    Mavilio F, Simeone A, Boncinelli E, Andrews PW (1988) Activation of four homeobox gene clusters in human embryonal carcinoma cells induced to differentiate by retinoic acid. Differ Res Biol Divers. 37(1):73–79

    CAS  Article  Google Scholar 

  14. 14.

    Durston AJ, Timmermans JP, Hage WJ, Hendriks HF, de Vries NJ, Heideveld M et al (1989) Retinoic acid causes an anteroposterior transformation in the developing central nervous system. Nature 340(6229):140–144

    CAS  Article  Google Scholar 

  15. 15.

    Majumdar A, Vainio S, Kispert A, McMahon J, McMahon AP (2003) Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development. Dev Camb Engl 130(14):3175–3185

    CAS  Google Scholar 

  16. 16.

    Sainio K, Suvanto P, Davies J, Wartiovaara J, Wartiovaara K, Saarma M et al (1997) Glial-cell-line-derived neurotrophic factor is required for bud initiation from ureteric epithelium. Development 124(20):4077–4087

    CAS  PubMed  Google Scholar 

  17. 17.

    Xu P-X, Zheng W, Huang L, Maire P, Laclef C, Silvius D (2003) Six1 is required for the early organogenesis of mammalian kidney. Dev Camb Engl 130(14):3085–3094

    CAS  Google Scholar 

  18. 18.

    Kanda S, Tanigawa S, Ohmori T, Taguchi A, Kudo K, Suzuki Y, Sato Y, Hino S, Sander M, Perantoni AO, Sugano S, Nakao M, Nishinakamura R (2014) Sall1 maintains nephron progenitors and nascent nephrons by acting as both an activator and a repressor. J Am Soc Nephrol 25(11):2584–2595

    CAS  Article  Google Scholar 

  19. 19.

    Brown AC, Muthukrishnan SD, Guay JA, Adams DC, Schafer DA, Fetting JL et al (2013) Role for compartmentalization in nephron progenitor differentiation. Proc Natl Acad Sci 110(12):4640–4645

    CAS  Article  Google Scholar 

  20. 20.

    Georgas K, Rumballe B, Valerius MT, Chiu HS, Thiagarajan RD, Lesieur E et al (2009) Analysis of early nephron patterning reveals a role for distal RV proliferation in fusion to the ureteric tip via a cap mesenchyme-derived connecting segment. Dev Biol 332(2):273–286

    CAS  Article  Google Scholar 

  21. 21.

    Niksic M, Slight J, Sanford JR, Caceres JF, Hastie ND (2004) The Wilms’ tumour protein (WT1) shuttles between nucleus and cytoplasm and is present in functional polysomes. Hum Mol Genet 13(4):463–471

    CAS  Article  Google Scholar 

  22. 22.

    Rossbach B, Hildebrand L, El-Ahmad L, Stachelscheid H, Reinke P, Kurtz A (2016) Generation of a human induced pluripotent stem cell line from urinary cells of a healthy donor using integration free Sendai technology. Stem Cell Res 16(1):133–136

    CAS  Article  Google Scholar 

  23. 23.

    Rossbach B, Hildebrand L, El-Ahmad L, Stachelscheid H, Reinke P, Kurtz A (2016) Generation of a human induced pluripotent stem cell line from urinary cells of a healthy donor using an integration free vector. Stem Cell Res 16(2):314–317

    CAS  Article  Google Scholar 

  24. 24.

    Karavanov AA, Karavanova I, Perantoni A, Dawid IB (1998) Expression pattern of the rat Lim-1 homeobox gene suggests a dual role during kidney development. Int J Dev Biol 42(1):61–66

    CAS  PubMed  Google Scholar 

  25. 25.

    Shen SS, Krishna B, Chirala R, Amato RJ, Truong LD (2005) Kidney-specific cadherin, a specific marker for the distal portion of the nephron and related renal neoplasms. Mod Pathol 18(7):933–940

    CAS  Article  Google Scholar 

  26. 26.

    Pode-Shakked N, Pleniceanu O, Gershon R et al (2016) Dissecting stages of human kidney development and tumorigenesis with surface markers affords simple prospective purification of nephron stem cells. Sci Rep 6:23562

    CAS  Article  Google Scholar 

  27. 27.

    Lindahl P, Hellstrom M, Kalen M, Karlsson L, Pekny M, Pekna M et al (1998) Paracrine PDGF-B/PDGF-Rbeta signaling controls mesangial cell development in kidney glomeruli. Development 125(17):3313–3322

    CAS  PubMed  Google Scholar 

  28. 28.

    Humphreys BD, Lin S-L, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV et al (2010) Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 176(1):85–97

    CAS  Article  Google Scholar 

  29. 29.

    Kandasamy K, Chuah JKC, Su R, Huang P, Eng KG, Xiong S, Li Y, Chia CS, Loo LH, Zink D (2015) Prediction of drug-induced nephrotoxicity and injury mechanisms with human induced pluripotent stem cell-derived cells and machine learning methods. Sci Rep 5:12337.

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Song B, Smink AM, Jones CV, Callaghan JM, Firth SD, Bernard CA et al (2012) The directed differentiation of human iPS cells into kidney podocytes. PLoS One 7(9):e46453

    CAS  Article  Google Scholar 

  31. 31.

    Brown AC, Muthukrishnan SD, Oxburgh L (2015) A synthetic niche for nephron progenitor cells. Dev Cell 34(2):229–241

    CAS  Article  Google Scholar 

  32. 32.

    Tanigawa S, Taguchi A, Sharma N, Perantoni AO, Nishinakamura R (2016) selective in vitro propagation of nephron progenitors derived from embryos and pluripotent stem cells. Cell Rep 15(4):801–813

    CAS  Article  Google Scholar 

  33. 33.

    Pode-Shakked N, Gershon R, Tam G, Omer D, Gnatek Y, Kanter I, Oriel S, Katz G, Harari-Steinberg O, Kalisky T, Dekel B (2017) Evidence of in vitro preservation of human nephrogenesis at the single-cell level. Stem Cell Reports 9(1):279–291

    CAS  Article  Google Scholar 

  34. 34.

    Yamanaka S, Yokoo T, Yamanaka S, Yokoo T (2015) Current bioengineering methods for whole kidney regeneration, current bioengineering methods for whole kidney regeneration. Stem Cells Int Stem Cells Int. 2015:e724047

    Google Scholar 

  35. 35.

    Rinkevich Y, Montoro DT, Contreras-Trujillo H, Harari-Steinberg O, Newman AM, Tsai JM et al (2014) In vivo clonal analysis reveals lineage-restricted progenitor characteristics in mammalian kidney development, maintenance, and regeneration. Cell Rep. 7(4):1270–1283

    CAS  Article  Google Scholar 

  36. 36.

    Bussolati B, Bruno S, Grange C, Buttiglieri S, Deregibus MC, Cantino D et al (2005) Isolation of renal progenitor cells from adult human kidney. Am J Pathol 166(2):545–555

    CAS  Article  Google Scholar 

  37. 37.

    Imberti B, Tomasoni S, Ciampi O, Pezzotta A, Derosas M, Xinaris C et al (2015) Renal progenitors derived from human iPSCs engraft and restore function in a mouse model of acute kidney injury. Sci Rep 6(5):8826

    Article  Google Scholar 

  38. 38.

    Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinforma Oxf Engl 25(9):1105–1111

    CAS  Article  Google Scholar 

  39. 39.

    Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ et al (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(5):511–515

    CAS  Article  Google Scholar 

  40. 40.

    R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  41. 41.

    Draghici S, Khatri P, Tarca AL, Amin K, Done A, Voichita C, Georgescu C, Romero R (2007) A systems biology approach for pathway level analysis. Genome Res 17(10):1537–1545

    CAS  Article  Google Scholar 

Download references


This work was supported by Berlin-Brandenburg School for Regenerative Therapies and the German Federal Ministry of Education and Research (VIP, FKZ 03V0396) and (FKZ 031A303B).

Author information



Corresponding author

Correspondence to Andreas Kurtz.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3006 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hariharan, K., Stachelscheid, H., Rossbach, B. et al. Parallel generation of easily selectable multiple nephronal cell types from human pluripotent stem cells. Cell. Mol. Life Sci. 76, 179–192 (2019).

Download citation


  • Renal progenitors
  • Differentiation
  • Tubules
  • Renal vesicle
  • Nephron