Skip to main content

Advertisement

Log in

Lysophosphatidylcholine induces cyclooxygenase-2-dependent IL-6 expression in human cardiac fibroblasts

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Lysophosphatidylcholine (LysoPC) has been shown to induce the expression of inflammatory proteins, including cyclooxygenase-2 (COX-2) and interleukin-6 (IL-6), associated with cardiac fibrosis. Here, we demonstrated that LysoPC-induced COX-2 and IL-6 expression was inhibited by silencing NADPH oxidase 1, 2, 4, 5; p65; and FoxO1 in human cardiac fibroblasts (HCFs). LysoPC-induced IL-6 expression was attenuated by a COX-2 inhibitor. LysoPC-induced responses were mediated via the NADPH oxidase-derived reactive oxygen species-dependent JNK1/2 phosphorylation pathway, leading to NF-κB and FoxO1 activation. In addition, we demonstrated that both FoxO1 and p65 regulated COX-2 promoter activity stimulated by LysoPC. Overexpression of wild-type FoxO1 and S256D FoxO1 enhanced COX-2 promoter activity and protein expression in HCFs. These results were confirmed by ex vivo studies, where LysoPC-induced COX-2 and IL-6 expression was attenuated by the inhibitors of NADPH oxidase, NF-κB, and FoxO1. Our findings demonstrate that LysoPC-induced COX-2 expression is mediated via NADPH oxidase-derived reactive oxygen species generation linked to the JNK1/2-dependent pathway leading to FoxO1 and NF-κB activation in HCFs. LysoPC-induced COX-2-dependent IL-6 expression provided novel insights into the therapeutic targets of the cardiac fibrotic responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

COX-2:

Cyclooxygenase-2

DPI:

Diphenyleneiodonium chloride

DUOX:

Dual oxidase

EP:

Prostaglandin E2 receptor

FoxO:

FoxO Forkhead box protein O

HCFs:

Human cardiac fibroblasts

IL:

Interleukin

LysoPC:

Lysophosphatidylcholine

NOX:

NADPH oxidase

PC:

Phosphatidylcholine

PGE2 :

Prostaglandin E2

PLA2 :

Phospholipase A2

ROS:

Reactive oxygen species

TGF-β:

Transforming growth factor-β

TNF:

Tumor necrosis factor

References

  1. Metra M, Teerlink JR (2017) Heart failure. Lancet 390:1981–1995

    Article  Google Scholar 

  2. Fan D, Takawale A, Lee J, Kassiri Z (2012) Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenesis Tissue Repair 5:15

    Article  CAS  Google Scholar 

  3. Sziksz E, Pap D, Lippai R, Beres NJ, Fekete A, Szabo AJ, Vannay A (2015) Fibrosis related inflammatory mediators: role of the IL-10 cytokine family. Mediators Inflamm 2015:764641

    Article  Google Scholar 

  4. Belperio J, Horwich T, Abraham WT, Fonarow GC, Gorcsan J 3rd, Bersohn MM, Singh JP, Sonel A, Lee LY, Halilovic J, Kadish A, Shalaby AA (2016) Inflammatory mediators and clinical outcome in patients with advanced heart failure receiving cardiac resynchronization therapy. Am J Cardiol 117:617–625

    Article  CAS  Google Scholar 

  5. Li X, Fang P, Li Y, Kuo YM, Andrews AJ, Nanayakkara G, Johnson C, Fu H, Shan H, Du F, Hoffman NE, Yu D, Eguchi S, Madesh M, Koch WJ, Sun J, Jiang X, Wang H, Yang X (2016) Mitochondrial reactive oxygen species mediate lysophosphatidylcholine-induced endothelial cell activation. Arterioscler Thromb Vasc Biol 36:1090–1100

    Article  CAS  Google Scholar 

  6. Qin X, Qiu C, Zhao L (2014) Lysophosphatidylcholine perpetuates macrophage polarization toward classically activated phenotype in inflammation. Cell Immunol 289:185–190

    Article  CAS  Google Scholar 

  7. Scholz H, Eder C (2017) Lysophosphatidylcholine activates caspase-1 in microglia via a novel pathway involving two inflammasomes. J Neuroimmunol 310:107–110

    Article  CAS  Google Scholar 

  8. Huang JP, Cheng ML, Wang CH, Shiao MS, Chen JK, Hung LM (2016) High-fructose and high-fat feeding correspondingly lead to the development of lysoPC-associated apoptotic cardiomyopathy and adrenergic signaling-related cardiac hypertrophy. Int J Cardiol 215:65–76

    Article  Google Scholar 

  9. Nam M, Jung Y, Ryu DH, Hwang GS (2017) A metabolomics-driven approach reveals metabolic responses and mechanisms in the rat heart following myocardial infarction. Int J Cardiol 227:239–246

    Article  Google Scholar 

  10. Chen HM, Hsu JH, Liou SF, Chen TJ, Chen LY, Chiu CC, Yeh JL (2014) Baicalein, an active component of Scutellaria baicalensis Georgi, prevents lysophosphatidylcholine-induced cardiac injury by reducing reactive oxygen species production, calcium overload and apoptosis via MAPK pathways. BMC Complement Altern Med 14:233

    Article  Google Scholar 

  11. Goncalves I, Edsfeldt A, Ko NY, Grufman H, Berg K, Bjorkbacka H, Nitulescu M, Persson A, Nilsson M, Prehn C, Adamski J, Nilsson J (2012) Evidence supporting a key role of Lp-PLA2-generated lysophosphatidylcholine in human atherosclerotic plaque inflammation. Arterioscler Thromb Vasc Biol 32:1505–1512

    Article  CAS  Google Scholar 

  12. Ma F, Li Y, Jia L, Han Y, Cheng J, Li H, Qi Y, Du J (2012) Macrophage-stimulated cardiac fibroblast production of IL-6 is essential for TGF beta/Smad activation and cardiac fibrosis induced by angiotensin II. PLoS One 7:e35144

    Article  CAS  Google Scholar 

  13. Melendez GC, McLarty JL, Levick SP, Du Y, Janicki JS, Brower GL (2010) Interleukin 6 mediates myocardial fibrosis, concentric hypertrophy, and diastolic dysfunction in rats. Hypertension 56:225–231

    Article  CAS  Google Scholar 

  14. Wang JH, Zhao L, Pan X, Chen NN, Chen J, Gong QL, Su F, Yan J, Zhang Y, Zhang SH (2016) Hypoxia-stimulated cardiac fibroblast production of IL-6 promotes myocardial fibrosis via the TGF-beta1 signaling pathway. Lab Investig 96:1035

    Article  Google Scholar 

  15. Chaudhuri P, Rosenbaum MA, Birnbaumer L, Graham LM (2017) Integration of TRPC6 and NADPH oxidase activation in lysophosphatidylcholine-induced TRPC5 externalization. Am J Physiol Cell Physiol 313:C541–C555

    Article  Google Scholar 

  16. Kelher MR, McLaughlin NJ, Banerjee A, Elzi DJ, Gamboni F, Khan SY, Meng X, Mitra S, Silliman CC (2017) LysoPCs induce Hck- and PKCdelta-mediated activation of PKCgamma causing p47phox phosphorylation and membrane translocation in neutrophils. J Leukoc Biol 101:261–273

    Article  CAS  Google Scholar 

  17. Teixeira G, Szyndralewiez C, Molango S, Carnesecchi S, Heitz F, Wiesel P, Wood JM (2017) Therapeutic potential of NADPH oxidase 1/4 inhibitors. Br J Pharmacol 174:1647–1669

    Article  CAS  Google Scholar 

  18. Zhao QD, Viswanadhapalli S, Williams P, Shi Q, Tan C, Yi X, Bhandari B, Abboud HE (2015) NADPH oxidase 4 induces cardiac fibrosis and hypertrophy through activating Akt/mTOR and NFkappaB signaling pathways. Circulation 131:643–655

    Article  CAS  Google Scholar 

  19. Parajuli N, Patel VB, Wang W, Basu R, Oudit GY (2014) Loss of NOX2 (gp91phox) prevents oxidative stress and progression to advanced heart failure. Clin Sci (Lond) 127:331–340

    Article  CAS  Google Scholar 

  20. Lin CC, Lee IT, Wu WL, Lin WN, Yang CM (2012) Adenosine triphosphate regulates NADPH oxidase activity leading to hydrogen peroxide production and COX-2/PGE2 expression in A549 cells. Am J Physiol Lung Cell Mol Physiol 303:L401–L412

    Article  CAS  Google Scholar 

  21. Wong SC, Fukuchi M, Melnyk P, Rodger I, Giaid A (1998) Induction of cyclooxygenase-2 and activation of nuclear factor-kappaB in myocardium of patients with congestive heart failure. Circulation 98:100–103

    Article  CAS  Google Scholar 

  22. Scheuren N, Jacobs M, Ertl G, Schorb W (2002) Cyclooxygenase-2 in myocardium stimulation by angiotensin-II in cultured cardiac fibroblasts and role at acute myocardial infarction. J Mol Cell Cardiol 34:29–37

    Article  CAS  Google Scholar 

  23. Brkic L, Riederer M, Graier WF, Malli R, Frank S (2012) Acyl chain-dependent effect of lysophosphatidylcholine on cyclooxygenase (COX)-2 expression in endothelial cells. Atherosclerosis 224:348–354

    Article  CAS  Google Scholar 

  24. Lappas M (2013) Forkhead box O1 (FOXO1) in pregnant human myometrial cells: a role as a pro-inflammatory mediator in human parturition. J Reprod Immunol 99:24–32

    Article  CAS  Google Scholar 

  25. Hsu CK, Lin CC, Hsiao LD, Yang CM (2015) Mevastatin ameliorates sphingosine 1-phosphate-induced COX-2/PGE2-dependent cell migration via FoxO1 and CREB phosphorylation and translocation. Br J Pharmacol 172:5360–5376

    Article  CAS  Google Scholar 

  26. Kappel BA, Stohr R, De Angelis L, Mavilio M, Menghini R, Federici M (2016) Posttranslational modulation of FoxO1 contributes to cardiac remodeling in post-ischemic heart failure. Atherosclerosis 249:148–156

    Article  CAS  Google Scholar 

  27. Wilhelm K, Happel K, Eelen G, Schoors S, Oellerich MF, Lim R, Zimmermann B, Aspalter IM, Franco CA, Boettger T, Braun T, Fruttiger M, Rajewsky K, Keller C, Bruning JC, Gerhardt H, Carmeliet P, Potente M (2016) FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature 529:216–220

    Article  CAS  Google Scholar 

  28. Hariharan N, Ikeda Y, Hong C, Alcendor RR, Usui S, Gao S, Maejima Y, Sadoshima J (2013) Autophagy plays an essential role in mediating regression of hypertrophy during unloading of the heart. PLoS One 8:e51632

    Article  CAS  Google Scholar 

  29. Puthanveetil P, Wan A, Rodrigues B (2013) FoxO1 is crucial for sustaining cardiomyocyte metabolism and cell survival. Cardiovasc Res 97:393–403

    Article  CAS  Google Scholar 

  30. Gopal K, Saleme B, Al Batran R, Aburasayn H, Eshreif A, Ho KL, Ma WK, Almutairi M, Eaton F, Gandhi M, Park EA, Sutendra G, Ussher JR (2017) FoxO1 regulates myocardial glucose oxidation rates via transcriptional control of pyruvate dehydrogenase kinase 4 expression. Am J Physiol Heart Circ Physiol 313:H479–H490

    Article  Google Scholar 

  31. Fan W, Morinaga H, Kim JJ, Bae E, Spann NJ, Heinz S, Glass CK, Olefsky JM (2010) FoxO1 regulates Tlr4 inflammatory pathway signalling in macrophages. EMBO J 29:4223–4236

    Article  CAS  Google Scholar 

  32. Brown J, Wang H, Suttles J, Graves DT, Martin M (2011) Mammalian target of rapamycin complex 2 (mTORC2) negatively regulates Toll-like receptor 4-mediated inflammatory response via FoxO1. J Biol Chem 286:44295–44305

    Article  CAS  Google Scholar 

  33. Lin CC, Yang CC, Wang CY, Tseng HC, Pan CS, Hsiao LD, Yang CM (2015) NADPH oxidase/ROS-dependent VCAM-1 induction on TNF-alpha-challenged human cardiac fibroblasts enhances monocyte adhesion. Front Pharmacol 6:310

    PubMed  Google Scholar 

  34. Rizvi F, Heimann T, O’Brien WJ (2012) Expression of NADPH oxidase (NOX) 5 in rabbit corneal stromal cells. PLoS One 7:e34440

    Article  CAS  Google Scholar 

  35. Hsu CK, Lee IT, Lin CC, Hsiao LD, Yang CM (2015) Sphingosine-1-phosphate mediates COX-2 expression and PGE2/IL-6 secretion via c-Src-dependent AP-1 activation. J Cell Physiol 230:702–715

    Article  CAS  Google Scholar 

  36. Griendling KK (2004) Novel NAD(P)H oxidases in the cardiovascular system. Heart 90:491–493

    Article  CAS  Google Scholar 

  37. Watanabe N, Zmijewski JW, Takabe W, Umezu-Goto M, Le Goffe C, Sekine A, Landar A, Watanabe A, Aoki J, Arai H, Kodama T, Murphy MP, Kalyanaraman R, Darley-Usmar VM, Noguchi N (2006) Activation of mitogen-activated protein kinases by lysophosphatidylcholine-induced mitochondrial reactive oxygen species generation in endothelial cells. Am J Pathol 168:1737–1748

    Article  CAS  Google Scholar 

  38. Bi X, Song J, Gao J, Zhao J, Wang M, Scipione CA, Koschinsky ML, Wang ZV, Xu S, Fu G (2016) Activation of liver X receptor attenuates lysophosphatidylcholine-induced IL-8 expression in endothelial cells via the NF-kappaB pathway and SUMOylation. J Cell Mol Med 20:2249–2258

    Article  CAS  Google Scholar 

  39. Nguyen LK, Cavadas MA, Kholodenko BN, Frank TD, Cheong A (2015) Species differential regulation of COX2 can be described by an NFkappaB-dependent logic AND gate. Cell Mol Life Sci 72:2431–2443

    Article  CAS  Google Scholar 

  40. Langlet F, Haeusler RA, Linden D, Ericson E, Norris T, Johansson A, Cook JR, Aizawa K, Wang L, Buettner C, Accili D (2017) Selective inhibition of FOXO1 activator/repressor balance modulates hepatic glucose handling. Cell 171(824–835):e818

    Google Scholar 

  41. Zhang C, Ponugoti B, Tian C, Xu F, Tarapore R, Batres A, Alsadun S, Lim J, Dong G, Graves DT (2015) FOXO1 differentially regulates both normal and diabetic wound healing. J Cell Biol 209:289–303

    Article  CAS  Google Scholar 

  42. Kawamori D, Kaneto H, Nakatani Y, Matsuoka TA, Matsuhisa M, Hori M, Yamasaki Y (2006) The forkhead transcription factor Foxo1 bridges the JNK pathway and the transcription factor PDX-1 through its intracellular translocation. J Biol Chem 281:1091–1098

    Article  CAS  Google Scholar 

  43. Zhang X, Gan L, Pan H, Guo S, He X, Olson ST, Mesecar A, Adam S, Unterman TG (2002) Phosphorylation of serine 256 suppresses transactivation by FKHR (FOXO1) by multiple mechanisms. Direct and indirect effects on nuclear/cytoplasmic shuttling and DNA binding. J Biol Chem 277:45276–45284

    Article  CAS  Google Scholar 

  44. Gomi K, Zhu FG, Marshall JS (2000) Prostaglandin E2 selectively enhances the IgE-mediated production of IL-6 and granulocyte-macrophage colony-stimulating factor by mast cells through an EP1/EP3-dependent mechanism. J Immunol 165:6545–6552

    Article  CAS  Google Scholar 

  45. Inoue H, Takamori M, Shimoyama Y, Ishibashi H, Yamamoto S, Koshihara Y (2002) Regulation by PGE2 of the production of interleukin-6, macrophage colony stimulating factor, and vascular endothelial growth factor in human synovial fibroblasts. Br J Pharmacol 136:287–295

    Article  CAS  Google Scholar 

  46. Son Y, Kim S, Chung HT, Pae HO (2013) Reactive oxygen species in the activation of MAP kinases. Methods Enzymol 528:27–48

    Article  CAS  Google Scholar 

  47. Tsai KH, Wang WJ, Lin CW, Pai P, Lai TY, Tsai CY, Kuo WW (2012) NADPH oxidase-derived superoxide anion-induced apoptosis is mediated via the JNK-dependent activation of NF-kappaB in cardiomyocytes exposed to high glucose. J Cell Physiol 227:1347–1357

    Article  CAS  Google Scholar 

  48. Akasaki Y, Alvarez-Garcia O, Saito M, Carames B, Iwamoto Y, Lotz MK (2014) FoxO transcription factors support oxidative stress resistance in human chondrocytes. Arthritis Rheumatol 66:3349–3358

    Article  CAS  Google Scholar 

  49. Paik JH, Kollipara R, Chu G, Ji H, Xiao Y, Ding Z, Miao L, Tothova Z, Horner JW, Carrasco DR, Jiang S, Gilliland DG, Chin L, Wong WH, Castrillon DH, DePinho RA (2007) FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128:309–323

    Article  CAS  Google Scholar 

  50. Harant H, Eldershaw SA, Lindley IJ (2001) Human macrophage inflammatory protein-3alpha/CCL20/LARC/Exodus/SCYA20 is transcriptionally upregulated by tumor necrosis factor-alpha via a non-standard NF-kappaB site. FEBS Lett 509:439–445

    Article  CAS  Google Scholar 

  51. Miao H, Zhang Y, Lu Z, Yu L, Gan L (2012) FOXO1 increases CCL20 to promote NF-kappaB-dependent lymphocyte chemotaxis. Mol Endocrinol 26:423–437

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ms. Yu-Wen Chen for her technical assistance. This work was supported by the Ministry of Education, Taiwan, Grant numbers: EMRPD1H032 and EMRPD1H055; the Ministry of Science and Technology, Taiwan, Grant numbers: MOST104-2320-B-182A-003-MY3, MOST105-2320-B-182-005-MY3 MOST107-2320-B-182A-011, and MOST107-2320-B-182-020-MY2; Chang Gung Medical Research Foundation, Taiwan, Grant numbers: CMRPD1F0022, CMRPD1F0023, CMRPD1F0551, CMRPD1F0552, CMRPG3E2232, CMRPG3F1532 CMRPG3F1533, CMRPG3H0061, and CMRPG5F0202.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuen-Mao Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig.

 1 The expression of NOXs isoforms in HCFs (A) Total RNA was extracted from growth-arrested HCFs. The levels of NOX1-5 mRNA were determined by RT/PCR analysis. β-actin was used as an internal control. The star symbol indicates each replicon. (B-E) HCFs were transfected with Scramble, NOX1, NOX2, NOX4 or NOX5 siRNA for 36 h, and then incubated with LysoPC for 6 h. The levels of NOXs mRNA expression were determined by RT/qPCR analysis (n = 4). Data are expressed as the mean ± SEM, and analyzed by a one-way ANOVA with Tukey’s post hoc tests. *, p < 0.05. #, p < 0.01. (TIFF 799 kb)

Supplementary Fig.

 2 (A) HCFs were pretreated with SP600125 (0.3, 1, 3 μM) for 1 h and then incubated with LysoPC for 6 h. The levels of COX-2 and GAPDH protein were determined by western blot analysis (n = 5). (B-C) Representative data of western blotting are presented in Fig. 2E (DPI: n = 5; SP600125: n = 5). Data are expressed as the mean ± SEM, and analyzed by a one-way ANOVA with Tukey’s post hoc tests. *, p < 0.05. #, p < 0.01. (TIFF 436 kb)

Supplementary Fig.

 3 (A-D) Representative data of western blotting are presented in Fig. 3C (n = 6) and 3D (DPI: n = 7; SP600125: n = 5; Helenalin: n = 7). Data are expressed as the mean ± SEM, and analyzed by a one-way ANOVA with Tukey’s post hoc tests. *, p < 0.05. #, p < 0.01. (TIFF 407 kb)

Supplementary Fig.

 4 (A) Schematic diagram of positions of NF-κB binding elements and ChIP primer pairs on COX-2 promoter. (B-C) HCFs were treated with LysoPC for the indicated time intervals. The DNA binding activity of NF-κB was determined by ChIP assays using an anti-p65 or anti-phosph-p65 antibody. The immunoprecipitated DNA and inputs were analyzed by an SYBR system for qPCR using a pair of primers flanking the NF-κB binding site within the human COX-2 promoter (proximal NF-κB: -320 ~ -171; distal NF-κB: -499 ~ -335). Representative gel (upper panels) and quantification of data are shown as the fold change normalized to input control (n = 5; bottom panels). Data are expressed as the mean ± SEM, and analyzed by a one-way ANOVA with Tukey’s post hoc tests. *, p < 0.05. #, p < 0.01 (TIFF 498 kb)

Supplementary Fig.

 5 (A-D) Representative data of western blotting are presented in Fig. 5C (n = 7) and 5D (DPI: n = 7; SP600125: n = 5; AS1842856: n = 7). Data are expressed as the mean ± SEM, and analyzed by a one-way ANOVA with Tukey’s post hoc tests. *, p < 0.05. #, p < 0.01 (TIFF 410 kb)

Supplementary material 6 (TIFF 588 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tseng, HC., Lin, CC., Wang, CY. et al. Lysophosphatidylcholine induces cyclooxygenase-2-dependent IL-6 expression in human cardiac fibroblasts. Cell. Mol. Life Sci. 75, 4599–4617 (2018). https://doi.org/10.1007/s00018-018-2916-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2916-7

Keywords

Navigation