Skip to main content

Advertisement

Log in

Defining the role of post-synaptic α-neurotoxins in paralysis due to snake envenoming in humans

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Snake venom α-neurotoxins potently inhibit rodent nicotinic acetylcholine receptors (nAChRs), but their activity on human receptors and their role in human paralysis from snakebite remain unclear. We demonstrate that two short-chain α-neurotoxins (SαNTx) functionally inhibit human muscle-type nAChR, but are markedly more reversible than against rat receptors. In contrast, two long-chain α-neurotoxins (LαNTx) show no species differences in potency or reversibility. Mutant studies identified two key residues accounting for this. Proteomic and clinical data suggest that paralysis in human snakebites is not associated with SαNTx, but with LαNTx, such as in cobras. Neuromuscular blockade produced by both subclasses of α-neurotoxins was reversed by antivenom in rat nerve–muscle preparations, supporting its effectiveness in human post-synaptic paralysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ranawaka UK, Lalloo DG, de Silva HJ (2013) Neurotoxicity in snakebite—the limits of our knowledge. PLoS Negl Trop Dis 7:e2302. https://doi.org/10.1371/journal.pntd.0002302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Silva A, Maduwage K, Sedgwick M et al (2016) Neuromuscular effects of common krait (Bungarus caeruleus) envenoming in Sri Lanka. PLoS Negl Trop Dis 10:e0004368. https://doi.org/10.1371/journal.pntd.0004368

    Article  PubMed  PubMed Central  Google Scholar 

  3. Harris J (2009) Neuromuscular junction (NMJ): a target for natural and environmental toxins in humans. Encyclopedia of neuroscience. Elsevier Academic Press, Boston, pp 539–549

    Chapter  Google Scholar 

  4. Prasarnpun S, Walsh J, Awad SS, Harris JB (2005) Envenoming bites by kraits: the biological basis of treatment-resistant neuromuscular paralysis. Brain 128:2987–2996. https://doi.org/10.1093/brain/awh642

    Article  CAS  PubMed  Google Scholar 

  5. Nirthanan S, Gwee MCE (2004) Three-finger-neurotoxins and the nicotinic acetylcholine receptor, forty years on. J Pharmacol Sci 94:1–17

    Article  CAS  Google Scholar 

  6. Barber CM, Isbister GK, Hodgson WC (2013) Alpha neurotoxins. Toxicon 66:47–58. https://doi.org/10.1016/j.toxicon.2013.01.019

    Article  CAS  PubMed  Google Scholar 

  7. Hart A, Scott-Davey T, Harris J (2008) Venom of Collett’s snake (Pseudechis colletti) blocks the binding of alpha-bungarotoxin to acetylcholine receptors at chick but not human neuromuscular junctions: a histochemical study. Toxicon 52:647–650. https://doi.org/10.1016/j.toxicon.2008.07.013

    Article  CAS  PubMed  Google Scholar 

  8. World Health Organisation (2010) WHO guidelines for the production control and regulation of snake antivenom immunoglobulins. WHO, Geneva

    Google Scholar 

  9. Barchan D, Kachalsky S, Neumann D et al (1992) How the mongoose can fight the snake: the binding site of the mongoose acetylcholine receptor. Proc Natl Acad Sci USA 89:7717–7721. https://doi.org/10.1073/pnas.89.16.7717

    Article  CAS  PubMed  Google Scholar 

  10. Takacs Z, Wilhelmsen KC, Sorota S (2001) Snake alpha-neurotoxin binding site on the Egyptian cobra (Naja haje) nicotinic acetylcholine receptor Is conserved. Mol Biol Evol 18:1800–1809

    Article  CAS  Google Scholar 

  11. Barchan D, Ovadia M, Kochva E, Fuchs S (1995) The binding site of the nicotinic acetylcholine receptor in animal species resistant to alpha-bungarotoxin. Biochemistry 34:9172–9176

    Article  CAS  Google Scholar 

  12. Barber CM, Isbister GK, Hodgson WC (2012) Solving the “brown snake paradox”: in vitro characterisation of Australasian snake presynaptic neurotoxin activity. Toxicol Lett 210:318–323. https://doi.org/10.1016/j.toxlet.2012.02.001

    Article  CAS  PubMed  Google Scholar 

  13. Harris JB, Scott-Davey T (2013) Secreted phospholipases A2 of snake venoms: effects on the peripheral neuromuscular system with comments on the role of phospholipases A2 in disorders of the CNS and their uses in industry. Toxins (Basel) 1:2533–2571. https://doi.org/10.3390/toxins5122533

    Article  CAS  Google Scholar 

  14. Tan KY, Tan CH, Fung SY, Tan NH (2015) Venomics, lethality and neutralization of Naja kaouthia (monocled cobra) venoms from three different geographical regions of Southeast Asia. J Proteom 120:105–125. https://doi.org/10.1016/j.jprot.2015.02.012

    Article  CAS  Google Scholar 

  15. Petras D, Sanz L, Segura Á et al (2011) Snake venomics of African spitting cobras: toxin composition and assessment of congeneric cross-reactivity of the Pan-African EchiTAb-plus-ICP antivenom by antivenomics and neutralization approaches. J Proteome Res 10:1266–1280. https://doi.org/10.1021/pr101040f

    Article  CAS  PubMed  Google Scholar 

  16. Petras D, Heiss P, Süssmuth RD, Calvete JJ (2015) Venom proteomics of Indonesian king cobra, Ophiophagus hannah: integrating top-down and bottom-up approaches. J Proteome Res. https://doi.org/10.1021/acs.jproteome.5b00305

    Article  PubMed  Google Scholar 

  17. Hart AJ, Isbister GK, O’Donnell P et al (2013) Species differences in the neuromuscular activity of post-synaptic neurotoxins from two Australian black snakes (Pseudechis porphyriacus and Pseudechis colletti). Toxicol Lett 219:262–268. https://doi.org/10.1016/j.toxlet.2013.03.026

    Article  CAS  PubMed  Google Scholar 

  18. King GF, Gentz MC, Escoubas P, Nicholson GM (2008) A rational nomenclature for naming peptide toxins from spiders and other venomous animals. Toxicon 52:264–276. https://doi.org/10.1016/j.toxicon.2008.05.020

    Article  CAS  PubMed  Google Scholar 

  19. Silva A, Hodgson W, Isbister G (2016) Cross-neutralisation of in vitro neurotoxicity of Asian and Australian snake neurotoxins and venoms by different antivenoms. Toxins (Basel) 8:302. https://doi.org/10.3390/toxins8100302

    Article  CAS  Google Scholar 

  20. Witzemann V, Stein E, Barg B et al (1990) Primary structure and functional expression of the alpha-, beta-, gamma-, delta- and epsilon-subunits of the acetylcholine receptor from rat muscle. Eur J Biochem 194:437–448. https://doi.org/10.1111/j.1432-1033.1990.tb15637.x

    Article  CAS  PubMed  Google Scholar 

  21. Silva A, Kuruppu S, Othman I et al (2017) Neurotoxicity in Sri Lankan Russell’s viper (Daboia russelii) envenoming is primarily due to U1-viperitoxin-Dr1a, a pre-synaptic neurotoxin. Neurotox Res 31:11–19. https://doi.org/10.1007/s12640-016-9650-4

    Article  CAS  PubMed  Google Scholar 

  22. Jonsson Fagerlund M, Dabrowski M, Eriksson LI (2009) Pharmacological characteristics of the inhibition of nondepolarizing neuromuscular blocking agents at human adult muscle nicotinic acetylcholine receptor. Anesthesiology 110:1244–1252. https://doi.org/10.1097/ALN.0b013e31819fade3

    Article  CAS  PubMed  Google Scholar 

  23. Ishikawa Y, Kano M, Tamiya N, Shimada Y (1985) Acetylcholine receptors of human skeletal muscle: a species difference detected by snake neurotoxins. Brain Res 346:82–88. https://doi.org/10.1016/0006-8993(85)91097-2

    Article  CAS  PubMed  Google Scholar 

  24. Malih I, Ahmad Rusmili MR, Tee TY et al (2014) Proteomic analysis of moroccan cobra Naja haje legionis venom using tandem mass spectrometry. J Proteom 96:240–252. https://doi.org/10.1016/j.jprot.2013.11.012

    Article  CAS  Google Scholar 

  25. Warrell DA, Barnes HJ, Piburn MF (1976) Neurotoxic effects of bites by the Egyptian cobra (Naja haje) in Nigeria. Trans R Soc Trop Med Hyg 70:78–79. https://doi.org/10.1016/0035-9203(76)90012-2

    Article  CAS  PubMed  Google Scholar 

  26. Tan CH, Tan KY, Fung SY, Tan NH (2015) Venom-gland transcriptome and venom proteome of the Malaysian king cobra (Ophiophagus hannah). BMC Genom 16:687. https://doi.org/10.1186/s12864-015-1828-2

    Article  CAS  Google Scholar 

  27. Veto T, Price R, Silsby JF, Carter JA (2007) Treatment of the first known case of king cobra envenomation in the United Kingdom, complicated by severe anaphylaxis. Anaesthesia 62:75–78. https://doi.org/10.1111/j.1365-2044.2006.04866.x

    Article  CAS  PubMed  Google Scholar 

  28. Rusmili M, Yee T, Mustafa M et al (2014) In-vitro neurotoxicity of two Malaysian krait species (Bungarus candidus and Bungarus fasciatus) venoms: neutralization by monovalent and polyvalent antivenoms from Thailand. Toxins (Basel) 6:1036–1048. https://doi.org/10.3390/toxins6031036

    Article  CAS  Google Scholar 

  29. Ackermann EJ, Taylor P (1997) Nonidentity of the α-neurotoxin binding sites on the nicotinic acetylcholine receptor revealed by modification in α-neurotoxin and receptor structures. Biochemistry 36:12836–12844. https://doi.org/10.1021/bi971513u

    Article  CAS  PubMed  Google Scholar 

  30. Ackermann EJ, Ang ET, Kanter JR et al (1998) Identification of pairwise interactions in the alpha-neurotoxin-nicotinic acetylcholine receptor complex through double mutant cycles. J Biol Chem 273:10958–10964

    Article  CAS  Google Scholar 

  31. Malany S, Osaka H, Sine SM, Taylor P (2000) Orientation of α-neurotoxin at the subunit interfaces of the nicotinic acetylcholine receptor. Biochemistry 39:15388–15398. https://doi.org/10.1021/bi001825o

    Article  CAS  PubMed  Google Scholar 

  32. Antil S, Servent D, Menez A (1999) Variability among the sites by which curaremimetic toxins bind to torpedo acetylcholine receptor, as revealed by identification of the functional residues of α-cobratoxin. J Biol Chem 274:34851–34858

    Article  CAS  Google Scholar 

  33. Dellisanti CD, Yao Y, Stroud JC et al (2007) Crystal structure of the extracellular domain of nAChR alpha1 bound to alpha-bungarotoxin at 1.94 A resolution. Nat Neurosci 10:953–962

    Article  CAS  Google Scholar 

  34. Bourne Y, Talley TT, Hansen SB et al (2005) Crystal structure of a Cbtx–AChBP complex reveals essential interactions between snake alpha-neurotoxins and nicotinic receptors. EMBO J 24:1512–1522. https://doi.org/10.1038/sj.emboj.7600620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tan CH, Tan KY, Lim SE, Tan NH (2015) Venomics of the beaked sea snake, Hydrophis schistosus: a minimalist toxin arsenal and its cross-neutralization by heterologous antivenoms. J Proteom 126:121–130. https://doi.org/10.1016/j.jprot.2015.05.035

    Article  CAS  Google Scholar 

  36. Marsden ATH, Reid HA (1961) Pathology of sea-snake poisoning. Br Med J 1:1208–1220

    Article  Google Scholar 

  37. Wong OF, Lam TSK, Fung HT, Choy CH (2010) Five-year experience with Chinese cobra (Naja atra)-related injuries in two acute hospitals in Hong Kong. Hong Kong Med J 16:36–43

    CAS  PubMed  Google Scholar 

  38. Shan L, Gao J, Zhang Y et al (2016) Proteomic characterization and comparison of venoms from two elapid snakes (Bungarus multicinctus and Naja atra) from China. J Proteom 138:83–94. https://doi.org/10.1016/j.jprot.2016.02.028

    Article  CAS  Google Scholar 

  39. Churchman A, Leary MAO, Buckley NA et al (2010) Clinical effects of red-bellied black snake (Pseudechis porphyriacus) envenoming and correlation with venom concentrations: Australian Snakebite Project (ASP-11). Med J Aust 193:696–700

    PubMed  Google Scholar 

  40. World Health Organisation (2010) Guidelines for the prevention and clinical management of snakebite in Africa. World Health Organisation, Brazzaville

    Google Scholar 

  41. Kasturiratne A, Wickremasinghe AR, De Silva N et al (2008) The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med 5:e218. https://doi.org/10.1371/journal.pmed.0050218

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tasoulis T, Isbister G (2017) A review and database of snake venom proteomes. Toxins (Basel) 9:290. https://doi.org/10.3390/toxins9090290

    Article  Google Scholar 

  43. Boulain J, Ménez A (1982) Neurotoxin-specific immunoglobulins accelerate dissociation of the neurotoxin-acetylcholine receptor complex. Science 80 217:732–733

    Article  CAS  Google Scholar 

  44. Boulain JC, Fromageot P, Menez A (1985) Further evidence showing that neurotoxin-acetylcholine receptor dissociation is accelerated by monoclonal neurotoxin-specific immunoglobulin. Mol Immunol 22:553–556. https://doi.org/10.1016/0161-5890(85)90178-6

    Article  CAS  PubMed  Google Scholar 

  45. Trémeau O, Boulain JC, Couderc J et al (1986) A monoclonal antibody which recognized the functional site of snake neurotoxins and which neutralizes all short-chain variants. FEBS Lett 208:236–240. https://doi.org/10.1016/0014-5793(86)81024-9

    Article  PubMed  Google Scholar 

  46. Maduwage K, Silva A, O’Leary MA et al (2016) Efficacy of Indian polyvalent snake antivenoms against Sri Lankan snake venoms: lethality studies or clinically focussed in vitro studies. Sci Rep 6:26778. https://doi.org/10.1038/srep26778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rusmili MRA, Yee TT, Mustafa MR et al (2014) Proteomic characterization and comparison of Malaysian Bungarus candidus and Bungarus fasciatus venoms. J Proteom 10:122. https://doi.org/10.1016/j.jprot.2014.08.001

    Article  CAS  Google Scholar 

  48. Trinh KX, Le Khac Q, Trinh LX et al (2010) Hyponatraemia, rhabdomyolysis, alterations in blood pressure and persistent mydriasis in patients envenomed by Malayan kraits (Bungarus candidus) in southern Viet Nam. Toxicon 56:1070–1075. https://doi.org/10.1016/j.toxicon.2010.06.026

    Article  CAS  PubMed  Google Scholar 

  49. Kanchanapongkul J (2002) Neurotoxic envenoming following bites by the Malayan krait (Bungarus candidus). J Med Assoc Thail 85:945–947

    Google Scholar 

  50. Ziganshin RH, Kovalchuk SI, Arapidi GP et al (2015) Quantitative proteomic analysis of Vietnamese krait venoms: neurotoxins are the major components in Bungarus multicinctus and phospholipases A2 in Bungarus fasciatus. Toxicon. https://doi.org/10.1016/j.toxicon.2015.08.026

    Article  PubMed  Google Scholar 

  51. Hung HT, Höjer J, Du NT et al (2009) Clinical features of 60 consecutive ICU-treated patients envenomed by Bungarus multicinctus. Southeast Asian J Trop Med Public Health 40:518–524

    PubMed  Google Scholar 

  52. Oh AMF, Tan CH, Ariaranee GC et al (2017) Venomics of Bungarus caeruleus (Indian krait): Comparable venom profiles, variable immunoreactivities among specimens from Sri Lanka, India and Pakistan. J Proteom. https://doi.org/10.1016/j.jprot.2017.04.018

    Article  Google Scholar 

  53. Theakston RD, Phillips RE, Warrell DA et al (1988) Envenoming by the common krait (Bungarus caeruleus) and Sri Lankan cobra (Naja naja naja): efficacy and complications of therapy with Haffkine antivenom. Trans R Soc Trop Med Hyg 84:301–308

    Article  Google Scholar 

  54. Sintiprungrat K, Watcharatanyatip K, Senevirathne WDST et al (2016) A comparative study of venomics of Naja naja from India and Sri Lanka, clinical manifestations and antivenomics of an Indian polyspecific antivenom. J Proteom 132:131–143. https://doi.org/10.1016/j.jprot.2015.10.007

    Article  CAS  Google Scholar 

  55. Kularatne SAM, Budagoda BDSS, Gawarammana IB, Kularatne WKS (2009) Epidemiology, clinical profile and management issues of cobra (Naja naja) bites in Sri Lanka: first authenticated case series. Trans R Soc Trop Med Hyg 103:924–930. https://doi.org/10.1016/j.trstmh.2009.04.002

    Article  CAS  PubMed  Google Scholar 

  56. Wongtongkam N, Wilde H, Sitthi-Amorn C, Ratanabanangkoon K (2005) A study of Thai cobra (Naja kaouthia) bites in Thailand. Mil Med 170:336–341

    Article  Google Scholar 

  57. Huang H-W, Liu B, Chien K-Y et al (2015) Cobra venom proteome and glycome determined from individual snakes of Naja atra reveal medically important dynamic range and systematic geographic variation. J Proteom 128:92–104. https://doi.org/10.1016/j.jprot.2015.07.015

    Article  CAS  Google Scholar 

  58. Tan NH, Wong KY, Tan CH (2017) Venomics of Naja sputatrix, the Javan spitting cobra: a short neurotoxin-driven venom needing improved antivenom neutralization. J Proteom. https://doi.org/10.1016/j.jprot.2017.01.018

    Article  Google Scholar 

  59. Ciszowski K, Hartwich A (2004) Ukaszenie przez kobre malajska (Naja naja sputatrix)—przypadek kliniczny. [Envenoming by Malayan cobra (Naja naja sputatrix)–case report]. Przegl Lek 61:421–426

    PubMed  Google Scholar 

  60. Warrell D, Greenwood B, Davidson N et al (1976) Necrosis, haemorrhage and complement depletion following bites by the spitting cobra (Naja nigricollis). Q J Med 45:1–22

    CAS  PubMed  Google Scholar 

  61. Johnston CI, Ryan NM, O’Leary MA et al (2017) Australian taipan (Oxyuranus spp.) envenoming: clinical effects and potential benefits of early antivenom therapy—Australian Snakebite Project (ASP-25). Clin Toxicol 55:115–122. https://doi.org/10.1080/15563650.2016.1250903

    Article  CAS  Google Scholar 

  62. Herrera M, Fernández J, Vargas M et al (2012) Comparative proteomic analysis of the venom of the taipan snake, Oxyuranus scutellatus, from Papua New Guinea and Australia: role of neurotoxic and procoagulant effects in venom toxicity. J Proteom 75:2128–2140. https://doi.org/10.1016/j.jprot.2012.01.006

    Article  CAS  Google Scholar 

  63. Lalloo DG, Treveti AJ, Korinhona A et al (1995) Snake bites by the Papuan Taipan (Oxyuranus scutellatus canni): paralysis, haemostatic and electrocardiographic abnormalities, and effects of antivenom. Am J Trop Med Hyg 52:525–531

    Article  CAS  Google Scholar 

  64. Isbister GK, O’Leary MA, Elliott M, Brown SGA (2012) Tiger snake (Notechis spp) envenoming: Australian Snakebite Project (ASP-13). Med J Aust 197:173–177. https://doi.org/10.5694/mja11.11300

    Article  PubMed  Google Scholar 

  65. Tan CH, Tan KY, Tan NH (2016) Revisiting Notechis scutatus venom: on shotgun proteomics and neutralization by the “bivalent” sea snake antivenom. J Proteom 144:33–38. https://doi.org/10.1016/j.jprot.2016.06.004

    Article  CAS  Google Scholar 

  66. Faiz MA, Ahsan MF, Ghose A et al (2017) Bites by the monocled cobra, Naja kaouthia, in Chittagong Division, Bangladesh: epidemiology, clinical features of envenoming and management of 70 identified cases. Am J Trop Med Hyg 96:876–884. https://doi.org/10.4269/ajtmh.16-0842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by a National Health and Medical Research Council—Australia (NHMRC) Senior Research Fellowship (ID: 1061041) and a NHMRC Centres for Research Excellence Grant ID: 1110343. A.S. acknowledges the Monash International Postgraduate Research Scholarship and Monash Graduate Scholarship. B.C.-A. is supported by an Australian Postgraduate Award from the Australian Government. We thank Prof. David Beeson for the human nAChR clones (α-, β-, γ-, δ- and ε-subunits), and Prof Veit Witzemann for the rat nAChR clones (α-, β-, γ-, δ- and ε-subunits).

Author information

Authors and Affiliations

Authors

Contributions

GKI, WCH, LDR and AS conceived the paper. AS, LDR, BC-A and WCH conducted experiments and analysed data. AS wrote the paper which was improved by all authors. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Lachlan D. Rash, Wayne C. Hodgson or Geoffrey K. Isbister.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, A., Cristofori-Armstrong, B., Rash, L.D. et al. Defining the role of post-synaptic α-neurotoxins in paralysis due to snake envenoming in humans. Cell. Mol. Life Sci. 75, 4465–4478 (2018). https://doi.org/10.1007/s00018-018-2893-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2893-x

Keywords

Navigation