Advertisement

Caveolar targeting links Kv1.3 with the insulin-dependent adipocyte physiology

  • Mireia Pérez-Verdaguer
  • Jesusa Capera
  • María Ortego-Domínguez
  • Joanna Bielanska
  • Núria Comes
  • Rafael J. Montoro
  • Marta Camps
  • Antonio Felipe
Original Article

Abstract

The voltage-dependent potassium channel Kv1.3 participates in peripheral insulin sensitivity. Genetic ablation of Kv1.3 triggers resistance to diet-induced weight gain, thereby pointing to this protein as a pharmacological target for obesity and associated type II diabetes. However, this role is under intense debate because Kv1.3 expression in adipose tissue raises controversy. We demonstrated that Kv1.3 is expressed in white adipose tissue from humans and rodents. Moreover, other channels, such as Kv1.1, Kv1.2, Kv1.4 and especially Kv1.5, from the same Shaker family are also present. Although elevated insulin levels and adipogenesis remodel the Kv phenotype, which could lead to multiple heteromeric complexes, Kv1.3 markedly participates in the insulin-dependent regulation of glucose uptake in mature adipocytes. Adipocyte differentiation increased the expression of Kv1.3, which is targeted to caveolae by molecular interactions with caveolin 1. Using a caveolin 1-deficient 3T3-L1 adipocyte cell line, we demonstrated that the localization of Kv1.3 in caveolar raft structures is important for proper insulin signaling. Insulin-dependent phosphorylation of the channel occurs at the onset of insulin-mediated signaling. However, when Kv1.3 was spatially outside of these lipid microdomains, impaired phosphorylation was exhibited. Our data shed light on the putative role of Kv1.3 in weight gain and insulin-dependent responses contributing to knowledge about adipocyte physiology.

Keywords

Adipose tissue Potassium channels Caveolae Differentiation Insulin 

Notes

Acknowledgements

Supported by the Ministerio de Economia y Competitividad (MINECO, Spain) Grants (BFU2014-54928-R and BFU2017-87104-R) and Fondo Europeo de Desarrollo Regional (FEDER). MPV and JC contributed equally and hold fellowships from the MINECO and the Fundación Tatiana Pérez de Guzmán el Bueno, respectively. Authors thank Dr. C. López-Iglesias (CCiTUB, Universitat de Barcelona) for her help in electronic Microscopy and to Dr. J. Peinado-Onsurbe for the access to human samples. The English editorial assistance of the American Journal Experts is also acknowledged.

Supplementary material

18_2018_2851_MOESM1_ESM.pdf (124 kb)
Supplementary Fig. 1. Kv1.5 did not target to lipid rafts. Lipid rafts were isolated from 3T3-L1 Wt and 3T3-L1 Cav 1 adipocytes. A sucrose gradient, from low (1)- to high (12)-density fractions was applied, and the expression of Kv1.5, clathrin (non-raft marker) and caveolin (lipid raft marker) was analyzed. (A) Expression of Kv1.5 in sucrose fractions from (A) 3T3-L1 wild type (WT) and (B) 3T3-L1 Cav 1 adipocytes. Kv1.5 distribution, out rafts, was independent of the expression of Cav 1. Note the limited augmentation of Cav 1 due to adipocyte differentiation in this cell line (PDF 124 kb)
18_2018_2851_MOESM2_ESM.docx (18 kb)
Supplementary material 2 (DOCX 18 kb)

References

  1. 1.
    Kershaw EE, Flier JS (2004) Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89:2548–2556.  https://doi.org/10.1210/jc.2004-0395 CrossRefPubMedGoogle Scholar
  2. 2.
    Cheng K, Groarke J, Osotimehin B, Haspel HC, Sonenberg M (1981) Effects of insulin, catecholamines, and cyclic nucleotides on rat adipocyte membrane potential. J Biol Chem 256:649–655PubMedGoogle Scholar
  3. 3.
    Ramirez-Ponce MP, Mateos JC, Bellido JA (2003) Human adipose cells have voltage-dependent potassium currents. J Membr Biol 196(2):129–134.  https://doi.org/10.1007/s00232-003-0631-1 CrossRefPubMedGoogle Scholar
  4. 4.
    Ramírez-Ponce MP, Mateos JC, Carrión N, Bellido JA (1996) Voltage-dependent potassium channels in white adipocytes. Biochem Biophys Res Commun 223(2):250–256.  https://doi.org/10.1006/bbrc.1996.0880 CrossRefPubMedGoogle Scholar
  5. 5.
    Wilson SM, Lee SC, Shook S, Pappone PA (2000) ATP and beta-adrenergic stimulation enhance voltage-gated K current inactivation in brown adipocytes. Am J Physiol Cell Physiol 279:C1847–C1858CrossRefPubMedGoogle Scholar
  6. 6.
    Xu J, Koni PA, Wang P, Li G, Kaczmarek L, Wu Y, Li Y, Flavell RA, Desir GV (2003) The voltage-gated potassium channel Kv1.3 regulates energy homeostasis and body weight. Hum Mol Genet 12:551–559CrossRefPubMedGoogle Scholar
  7. 7.
    Tucker K, Overton JM, Fadool DA (2008) Kv1.3 gene-targeted deletion alters longevity and reduces adiposity by increasing locomotion and metabolism in melanocortin-4 receptor-null mice. Int J Obes (Lond) 32:1222–1232.  https://doi.org/10.1038/ijo.2008.77 CrossRefGoogle Scholar
  8. 8.
    Upadhyay SK, Eckel-Mahan KL, Mirbolooki MR, Tjong I, Griffey SM, Schmunk G, Koehne A, Halbout B, Iadonato S, Pedersen B, Borrelli E, Wang PH, Mukherjee J, Sassone-Corsi P, Chandy KG (2013) Selective Kv1.3 channel blocker as therapeutic for obesity and insulin resistance. Proc Natl Acad Sci USA 110:E2239–E2248.  https://doi.org/10.1073/pnas.1221206110 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Xu J, Wang P, Li Y, Li G, Kaczmarek LK, Wu Y, Koni PA, Flavell RA, Desir GV (2004) The voltage-gated potassium channel Kv1.3 regulates peripheral insulin sensitivity. Proc Natl Acad Sci USA 101:3112–3117.  https://doi.org/10.1073/pnas.0308450100 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Li Y, Wang P, Xu J, Desir GV (2006) Voltage-gated potassium channel Kv1.3 regulates GLUT4 trafficking to the plasma membrane via a Ca2+-dependent mechanism. Am J Physiol Cell Physiol 290:C345–C351.  https://doi.org/10.1152/ajpcell.00091.2005 CrossRefPubMedGoogle Scholar
  11. 11.
    Straub SV, Perez SM, Tan B, Coughlan KA, Trebino CE, Cosgrove P, Buxton JM, Kreeger JM, Jackson VM (2011) Pharmacological inhibition of Kv1.3 fails to modulate insulin sensitivity in diabetic mice or human insulin-sensitive tissues. Am J Physiol Endocrinol Metab 301:E380–E390.  https://doi.org/10.1152/ajpendo.00076.2011 CrossRefPubMedGoogle Scholar
  12. 12.
    Ngala RA, Zaibi MS, Langlands K, Stocker CJ, Arch JR, Cawthorne MA (2014) Stimulation of glucose uptake in murine soleus muscle and adipocytes by 5-(4-phenoxybutoxy)psoralen (PAP-1) may be mediated by Kv1.5 rather than Kv1.3. PeerJ 2:e614.  https://doi.org/10.7717/peerj.614 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fadool DA, Tucker K, Pedarzani P (2011) Mitral cells of the olfactory bulb perform metabolic sensing and are disrupted by obesity at the level of the Kv1.3 ion channel. PLoS One 6:e24921.  https://doi.org/10.1371/journal.pone.0024921 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Tucker K, Overton JM, Fadool DA (2012) Diet-induced obesity resistance of Kv1.3−/− mice is olfactory bulb dependent. J Neuroendocrinol 24:1087–1095.  https://doi.org/10.1111/j.1365-2826.2012.02314.x CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Martinez-Marmol R, Villalonga N, Sole L, Vicente R, Tamkun MM, Soler C, Felipe A (2008) Multiple Kv1.5 targeting to membrane surface microdomains. J Cell Physiol 217:667–673.  https://doi.org/10.1002/jcp.21538 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Vicente R, Villalonga N, Calvo M, Escalada A, Solsona C, Soler C, Tamkun MM, Felipe A (2008) Kv1.5 association modifies Kv1.3 traffic and membrane localization. J Biol Chem 283:8756–8764.  https://doi.org/10.1074/jbc.M708223200 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Bock J, Szabo I, Gamper N, Adams C, Gulbins E (2003) Ceramide inhibits the potassium channel Kv1.3 by the formation of membrane platforms. Biochem Biophys Res Commun 305:890–897CrossRefPubMedGoogle Scholar
  18. 18.
    Martens JR, O’Connell K, Tamkun M (2004) Targeting of ion channels to membrane microdomains: localization of Kv channels to lipid rafts. Trends Pharmacol Sci 25:16–21.  https://doi.org/10.1016/j.tips.2003.11.007 CrossRefPubMedGoogle Scholar
  19. 19.
    Pilch PF, Souto RP, Liu L, Jedrychowski MP, Berg EA, Costello CE, Gygi SP (2007) Cellular spelunking: exploring adipocyte caveolae. J Lipid Res 48:2103–2111.  https://doi.org/10.1194/jlr.R700009-JLR200 CrossRefPubMedGoogle Scholar
  20. 20.
    Sinha B, Koster D, Ruez R, Gonnord P, Bastiani M, Abankwa D, Stan RV, Butler-Browne G, Vedie B, Johannes L, Morone N, Parton RG, Raposo G, Sens P, Lamaze C, Nassoy P (2011) Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 144:402–413.  https://doi.org/10.1016/j.cell.2010.12.031 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hnasko R, Lisanti MP (2003) The biology of caveolae: lessons from caveolin knockout mice and implications for human disease. Mol Interv 3:445–464.  https://doi.org/10.1124/mi.3.8.445 CrossRefPubMedGoogle Scholar
  22. 22.
    Couet J, Li S, Okamoto T, Ikezu T, Lisanti MP (1997) Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J Biol Chem 272:6525–6533CrossRefPubMedGoogle Scholar
  23. 23.
    Perez-Verdaguer M, Capera J, Martinez-Marmol R, Camps M, Comes N, Tamkun MM, Felipe A (2016) Caveolin interaction governs Kv1.3 lipid raft targeting. Sci Rep 6:22453.  https://doi.org/10.1038/srep22453 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Panyi G, Vamosi G, Bacso Z, Bagdany M, Bodnar A, Varga Z, Gaspar R, Matyus L, Damjanovich S (2004) Kv1.3 potassium channels are localized in the immunological synapse formed between cytotoxic and target cells. Proc Natl Acad Sci USA 101:1285–1290.  https://doi.org/10.1073/pnas.0307421100 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Bielanska J, Hernandez-Losa J, Perez-Verdaguer M, Moline T, Somoza R, Ramon YCS, Condom E, Ferreres JC, Felipe A (2009) Voltage-dependent potassium channels Kv1.3 and Kv1.5 in human cancer. Curr Cancer Drug Targets 9:904–914CrossRefPubMedGoogle Scholar
  26. 26.
    Moreno C, Oliveras A, de la Cruz A, Bartolucci C, Munoz C, Salar E, Gimeno JR, Severi S, Comes N, Felipe A, Gonzalez T, Lambiase P, Valenzuela C (2015) A new KCNQ1 mutation at the S5 segment that impairs its association with KCNE1 is responsible for short QT syndrome. Cardiovasc Res 107:613–623.  https://doi.org/10.1093/cvr/cvv196 CrossRefPubMedGoogle Scholar
  27. 27.
    König P, Krasteva G, Tag C, König IR, Arens C, Kummer W (2006) FRET–CLSM and double-labeling indirect immunofluorescence to detect close association of proteins in tissue sections. Lab Investig 86:853–864.  https://doi.org/10.1038/labinvest.3700443 CrossRefPubMedGoogle Scholar
  28. 28.
    Safronov BV, Vogel W (1995) Modulation of delayed rectifier K+ channel activity by external K+ ions in Xenopus axon. Pflug Arch 430:879–886CrossRefGoogle Scholar
  29. 29.
    Vicente R, Escalada A, Villalonga N, Texido L, Roura-Ferrer M, Martin-Satue M, Lopez-Iglesias C, Soler C, Solsona C, Tamkun MM, Felipe A (2006) Association of Kv1.5 and Kv1.3 contributes to the major voltage-dependent K+ channel in macrophages. J Biol Chem 281:37675–37685.  https://doi.org/10.1074/jbc.M605617200 CrossRefPubMedGoogle Scholar
  30. 30.
    Kotecha SA, Schlichter LC (1999) A Kv1.5 to Kv1.3 switch in endogenous hippocampal microglia and a role in proliferation. J Neurosci 19:10680–10693CrossRefPubMedGoogle Scholar
  31. 31.
    Cidad P, Miguel-Velado E, Ruiz-McDavitt C, Alonso E, Jimenez-Perez L, Asuaje A, Carmona Y, Garcia-Arribas D, Lopez J, Marroquin Y, Fernandez M, Roque M, Perez-Garcia MT, Lopez-Lopez JR (2015) Kv1.3 channels modulate human vascular smooth muscle cells proliferation independently of mTOR signaling pathway. Pflug Arch 467:1711–1722.  https://doi.org/10.1007/s00424-014-1607-y CrossRefGoogle Scholar
  32. 32.
    Baronas VA, Yang RY, Kurata HT (2017) Extracellular redox sensitivity of Kv1.2 potassium channels. Sci Rep 7:9142.  https://doi.org/10.1038/s41598-017-08718-z CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Takimoto K, Levitan ES (1996) Altered K+ channel subunit composition following hormone induction of Kv1.5 gene expression. Biochemistry 35:14149–14156.  https://doi.org/10.1021/bi961290s CrossRefPubMedGoogle Scholar
  34. 34.
    Coleman SK, Newcombe J, Pryke J, Dolly JO (1999) Subunit composition of Kv1 channels in human CNS. J Neurochem 73:849–858CrossRefPubMedGoogle Scholar
  35. 35.
    Lee MJ, Wu Y, Fried SK (2013) Adipose tissue heterogeneity: implication of depot differences in adipose tissue for obesity complications. Mol Asp Med 34:1–11.  https://doi.org/10.1016/j.mam.2012.10.001 CrossRefGoogle Scholar
  36. 36.
    You MH, Song MS, Lee SK, Ryu PD, Lee SY, Kim DY (2013) Voltage-gated K+ channels in adipogenic differentiation of bone marrow-derived human mesenchymal stem cells. Acta Pharmacol Sin 34:129–136.  https://doi.org/10.1038/aps.2012.142 CrossRefPubMedGoogle Scholar
  37. 37.
    Nishizuka M, Horinouchi W, Yamada E, Ochiai N, Osada S, Imagawa M (2016) KCNMA1, a pore-forming α-subunit of BK channels, regulates insulin signalling in mature adipocytes. FEBS Lett 590:4372–4380.  https://doi.org/10.1002/1873-3468.12465 CrossRefPubMedGoogle Scholar
  38. 38.
    Alexander SP, Striessnig J, Kelly E, Marrion NV, Peters JA, Faccenda E, Harding SD, Pawson AJ, Sharman JL, Southan C, Davies JA (2017) The concise guide to pharmacology 2017/18: voltage-gated ion channels. Br J Pharmacol 174(Suppl 1):S160–S194.  https://doi.org/10.1111/bph.13884 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ramirez-Ponce MP, Mateos JC, Bellido JA (2002) Insulin increases the density of potassium channels in white adipocytes: possible role in adipogenesis. J Endocrinol 174:299–307.  https://doi.org/10.1677/joe.0.1740299 CrossRefPubMedGoogle Scholar
  40. 40.
    Jaimes-Hoy L, Gurrola GB, Cisneros M, Joseph-Bravo P, Possani LD, Charli JL (2017) The Kv1.3 channel blocker Vm24 enhances muscle glucose transporter 4 mobilization but does not reduce body-weight gain in diet-induced obese male rats. Life Sci 181:23–30.  https://doi.org/10.1016/j.lfs.2017.05.027 CrossRefPubMedGoogle Scholar
  41. 41.
    Nicolaou SA, Szigligeti P, Neumeier L, Lee SM, Duncan HJ, Kant SK, Mongey AB, Filipovich AH, Conforti L (2007) Altered dynamics of Kv1.3 channel compartmentalization in the immunological synapse in systemic lupus erythematosus. J Immunol 179:346–356CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Nicolaou SA, Neumeier L, Steckly A, Kucher V, Takimoto K, Conforti L (2009) Localization of Kv1.3 channels in the immunological synapse modulates the calcium response to antigen stimulation in T lymphocytes. J Immunol 183:6296–6302CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Gonzalez-Munoz E, Lopez-Iglesias C, Calvo M, Palacin M, Zorzano A, Camps M (2009) Caveolin-1 loss of function accelerates glucose transporter 4 and insulin receptor degradation in 3T3-L1 adipocytes. Endocrinology 150:3493–3502.  https://doi.org/10.1210/en.2008-1520 CrossRefPubMedGoogle Scholar
  44. 44.
    Martinez-Marmol R, Comes N, Styrczewska K, Perez-Verdaguer M, Vicente R, Pujadas L, Soriano E, Sorkin A, Felipe A (2016) Unconventional EGF-induced ERK1/2-mediated Kv1.3 endocytosis. Cell Mol Life Sci 73:1515–1528.  https://doi.org/10.1007/s00018-015-2082-0 CrossRefPubMedGoogle Scholar
  45. 45.
    Martinez-Marmol R, Styrczewska K, Perez-Verdaguer M, Vallejo-Gracia A, Comes N, Sorkin A, Felipe A (2017) Ubiquitination mediates Kv1.3 endocytosis as a mechanism for protein kinase C-dependent modulation. Sci Rep 7:42395.  https://doi.org/10.1038/srep42395 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Ros-Baro A, Lopez-Iglesias C, Peiro S, Bellido D, Palacin M, Zorzano A, Camps M (2001) Lipid rafts are required for GLUT4 internalization in adipose cells. Proc Natl Acad Sci USA 98:12050–12055.  https://doi.org/10.1073/pnas.211341698 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Bowlby MR, Fadool DA, Holmes TC, Levitan IB (1997) Modulation of the Kv1.3 potassium channel by receptor tyrosine kinases. J Gen Physiol 110:601–610.  https://doi.org/10.1085/jgp.110.5.601 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Fadool DA, Levitan IB (1998) Modulation of olfactory bulb neuron potassium current by tyrosine phosphorylation. J Neurosci 18:6126–6137.  https://doi.org/10.1523/JNEUROSCI.18-16-06126 CrossRefPubMedGoogle Scholar
  49. 49.
    Sun W, Uchida K, Suzuki Y, Zhou Y, Kim M, Takayama Y, Takahashi N, Goto T, Wakabayashi S, Kawada T, Iwata Y, Tominaga M (2016) Lack of TRPV2 impairs thermogenesis in mouse brown adipose tissue. EMBO Rep 17:383–399.  https://doi.org/10.15252/embr.201540819 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Chen Y, Zeng X, Huang X, Serag S, Woolf CJ, Spiegelman BM (2017) Crosstalk between KCNK3-mediated ion current and adrenergic signaling regulates adipose thermogenesis and obesity. Cell 171(836–848):e813.  https://doi.org/10.1016/j.cell.2017.09.015 Google Scholar
  51. 51.
    Kovach CP, Al Koborssy D, Huang Z, Chelette BM, Fadool JM, Fadool DA (2016) Mitochondrial ultrastructure and glucose signaling pathways attributed to the Kv1.3 ion channel. Front Physiol 7:178.  https://doi.org/10.3389/fphys.2016.00178 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Giralt M, Villarroya F (2013) White, brown, beige/brite: different adipose cells for different functions? Endocrinology 154:2992–3000.  https://doi.org/10.1210/en.2013-1403 CrossRefPubMedGoogle Scholar
  53. 53.
    Tschritter O, Machicao F, Stefan N, Schafer S, Weigert C, Staiger H, Spieth C, Haring HU, Fritsche A (2006) A new variant in the human Kv1.3 gene is associated with low insulin sensitivity and impaired glucose tolerance. J Clin Endocrinol Metab 91:654–658.  https://doi.org/10.1210/jc.2005-0725 CrossRefPubMedGoogle Scholar
  54. 54.
    Fadool DA, Tucker K, Phillips JJ, Simmen JA (2000) Brain insulin receptor causes activity-dependent current suppression in the olfactory bulb through multiple phosphorylation of Kv1.3. J Neurophysiol 83:2332–2348.  https://doi.org/10.1152/jn.2000.83.4.2332 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Villalonga N, David M, Bielanska J, Vicente R, Comes N, Valenzuela C, Felipe A (2010) Immunomodulation of voltage-dependent K+ channels in macrophages: molecular and biophysical consequences. J Gen Physiol 135:135–147.  https://doi.org/10.1085/jgp.200910334 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Molecular Physiology Laboratory, Dpt. de Bioquímica i Biomedicina MolecularUniversitat de BarcelonaBarcelonaSpain
  2. 2.Institut de Biomedicina (IBUB)Universitat de BarcelonaBarcelonaSpain
  3. 3.Dpto. de Fisiología Médica y BiofísicaUniversidad de SevillaSevilleSpain
  4. 4.Max-Planck-Institute of Experimental Medicine, Molecular Biology of Neuronal Signals, AG OncophysiologyGöttingenGermany

Personalised recommendations