MAP kinase signalling: interplays between plant PAMP- and effector-triggered immunity

Abstract

In plants, mitogen-activated protein kinase (MAPK) cascades are involved in regulating many biological processes including immunity. They relay signals from membrane-residing immune receptors to downstream components for defense activation. Arabidopsis MPK3/6 and MPK4 are activated in two parallel MAPK cascades during PAMP-triggered immunity. MPK3/6 have been implicated in the activation of various immune responses and their inactivation leads to compromised defense against pathogens. On the other hand, the MEKK1-MKK1/2-MPK4 cascade plays critical roles in basal resistance. Disruption of this MAPK cascade results in constitutive defense responses mediated by the NB-LRR protein SUMM2. Interestingly, SUMM2 guards the MEKK1-MKK1/2-MPK4 cascade activity indirectly through monitoring the phosphorylation status of CRCK3, which is a substrate of MPK4. From the pathogens’ side, a number of effectors are shown to target various components of MAPK cascades in plants. Inactivation of MPK4 by the Pseudomonas effector HopAI1 triggers SUMM2-mediated immunity. Together, these findings suggest intricate interplays between PAMP-triggered immunity and effector-triggered immunity via MAPK signaling.

This is a preview of subscription content, access via your institution.

Fig. 1

Abbreviations

FLS2:

FLAGELLIN-SENSITIVE2

EFR:

Elongation factor (EF)-TU receptor

BAK1:

BRI1-associated receptor kinase1

RLCKs:

Receptor-like cytoplasmic kinases

MEKK:

MAPK/ERK kinase kinase

MKK:

MAP kinase kinase

MPK:

MAP kinase

CRCK3:

Calmodulin-binding receptor-like cytoplasmic kinase 3

SUMM2:

Suppressor of mkk1 mkk2 2

MKS1:

MAP kinase substrate 1

WRKY33:

WRKY DNA-binding protein 33

ACS:

1-Amino-cyclopropane-1-carboxylate synthase

References

  1. 1.

    Jones JD, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329

    Article  PubMed  CAS  Google Scholar 

  2. 2.

    Monaghan J, Zipfel C (2012) Plant pattern recognition receptor complexes at the plasma membrane. Curr Opin Plant Biol 15(4):349–357. https://doi.org/10.1016/j.pbi.2012.05.006

    Article  PubMed  CAS  Google Scholar 

  3. 3.

    Bigeard J, Colcombet J, Hirt H (2015) Signaling mechanisms in pattern-triggered immunity (PTI). Mol Plant 8(4):521–539

    Article  PubMed  CAS  Google Scholar 

  4. 4.

    Li X, Kapos P, Zhang Y (2015) NLRs in plants. Curr Opin Immunol 32:114–121. https://doi.org/10.1016/j.coi.2015.01.014

    Article  PubMed  CAS  Google Scholar 

  5. 5.

    Cui H, Tsuda K, Parker JE (2015) Effector-triggered immunity: from pathogen perception to robust defense. Annu Rev Plant Biol 66:487–511. https://doi.org/10.1146/annurev-arplant-050213-040012

    Article  PubMed  CAS  Google Scholar 

  6. 6.

    Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18(3):265–276

    Article  PubMed  CAS  Google Scholar 

  7. 7.

    Gomez-Gomez L, Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5(6):1003–1011

    Article  PubMed  CAS  Google Scholar 

  8. 8.

    Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125(4):749–760

    Article  PubMed  CAS  Google Scholar 

  9. 9.

    Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G (2004) The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16(12):3496–3507. https://doi.org/10.1105/tpc.104.026765

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. 10.

    Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci USA 104(49):19613–19618

    Article  PubMed  Google Scholar 

  11. 11.

    Wan J, Zhang XC, Neece D, Ramonell KM, Clough S, Kim SY, Stacey MG, Stacey G (2008) A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 20(2):471–481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. 12.

    Peng Y, Wersch Rv, Zhang Y (2017) Convergent and divergent signaling in PAMP-triggered immunity and Effector-triggered immunity. Molecular Plant-Microbe Interactions (ja)

  13. 13.

    Meng X, Zhang S (2013) MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol 51:245–266. https://doi.org/10.1146/annurev-phyto-082712-102314

    Article  PubMed  CAS  Google Scholar 

  14. 14.

    Rodriguez MC, Petersen M, Mundy J (2010) Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol 61:621–649. https://doi.org/10.1146/annurev-arplant-042809-112252

    Article  PubMed  CAS  Google Scholar 

  15. 15.

    MAPK-Group (2002) Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci 7(7):301–308

    Article  Google Scholar 

  16. 16.

    Lee J, Eschen-Lippold L, Lassowskat I, Böttcher C, Scheel D (2015) Cellular reprogramming through mitogen-activated protein kinases. Frontiers Plant Sci 6:940

    Google Scholar 

  17. 17.

    Seo S, Okamoto M, Seto H, Ishizuka K, Sano H, Ohashi Y (1995) Tobacco MAP kinase: a possible mediator in wound signal transduction pathways. Science 270(5244):1988–1992

    Article  PubMed  CAS  Google Scholar 

  18. 18.

    Zhang S, Klessig DF (1997) Salicylic acid activates a 48-kD MAP kinase in tobacco. Plant Cell Online 9(5):809–824

    Article  CAS  Google Scholar 

  19. 19.

    Kiegerl S, Cardinale F, Siligan C, Gross A, Baudouin E, Liwosz A, Eklöf S, Till S, Bögre L, Hirt H (2000) SIMKK, a mitogen-activated protein kinase (MAPK) kinase, is a specific activator of the salt stress–induced MAPK, SIMK. Plant Cell 12(11):2247–2258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. 20.

    Jonak C, Nakagami H, Hirt H (2004) Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiol 136(2):3276–3283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. 21.

    Cardinale F, Jonak C, Ligterink W, Niehaus K, Boller T, Hirt H (2000) Differential activation of four specific MAPK pathways by distinct elicitors. J Biol Chem 275(47):36734–36740

    Article  PubMed  CAS  Google Scholar 

  22. 22.

    Nuhse TS, Peck SC, Hirt H, Boller T (2000) Microbial elicitors induce activation and dual phosphorylation of the Arabidopsis thaliana MAPK 6. J Biol Chem 275(11):7521–7526

    Article  PubMed  CAS  Google Scholar 

  23. 23.

    Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415(6875):977–983

    Article  PubMed  CAS  Google Scholar 

  24. 24.

    Kroj T, Rudd JJ, Nürnberger T, Gäbler Y, Lee J, Scheel D (2003) Mitogen-activated protein kinases play an essential role in oxidative burst-independent expression of pathogenesis-related genes in parsley. J Biol Chem 278(4):2256–2264

    Article  PubMed  CAS  Google Scholar 

  25. 25.

    Sun T, Nitta Y, Zhang Q, Wu D, Tian H, Lee JK, Zhang Y (2018) Antagonistic interactions between two MAP Kinase cascades in plant development and immune signaling. EMBO Rep (in press)

  26. 26.

    Gao M, Liu J, Bi D, Zhang Z, Cheng F, Chen S, Zhang Y (2008) MEKK1, MKK1/MKK2 and MPK4 function together in a mitogen-activated protein kinase cascade to regulate innate immunity in plants. Cell Res 18(12):1190–1198

    Article  PubMed  CAS  Google Scholar 

  27. 27.

    Qiu JL, Zhou L, Yun BW, Nielsen HB, Fiil BK, Petersen K, Mackinlay J, Loake GJ, Mundy J, Morris PC (2008) Arabidopsis mitogen-activated protein kinase kinases MKK1 and MKK2 have overlapping functions in defense signaling mediated by MEKK1, MPK4, and MKS1. Plant Physiol 148(1):212–222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. 28.

    Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  PubMed  CAS  Google Scholar 

  29. 29.

    Tsuda K, Sato M, Stoddard T, Glazebrook J, Katagiri F (2009) Network properties of robust immunity in plants. PLoS Genet 5(12):e1000772

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. 30.

    Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Ann Rev Plant Physiol 35(1):155–189

    Article  CAS  Google Scholar 

  31. 31.

    Liu Y, Zhang S (2004) Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16(12):3386–3399. https://doi.org/10.1105/tpc.104.026609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. 32.

    Han L, Li GJ, Yang KY, Mao G, Wang R, Liu Y, Zhang S (2010) Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis. Plant J 64(1):114–127

    PubMed  CAS  Google Scholar 

  33. 33.

    Li G, Meng X, Wang R, Mao G, Han L, Liu Y, Zhang S (2012) Dual-level regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis. PLoS Genet 8(6):e1002767

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. 34.

    Ren D, Liu Y, Yang KY, Han L, Mao G, Glazebrook J, Zhang S (2008) A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis. Proc Natl Acad Sci USA 105(14):5638–5643. https://doi.org/10.1073/pnas.0711301105

    Article  PubMed  Google Scholar 

  35. 35.

    Mao G, Meng X, Liu Y, Zheng Z, Chen Z, Zhang S (2011) Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell 23(4):1639–1653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. 36.

    Radojčić Redovniković I, Glivetić T, Delonga K, Vorkapić-Furač J (2008) Glucosinolates and their potential role in plant. Period Biol 110(4):297–309

    Google Scholar 

  37. 37.

    Clay NK, Adio AM, Denoux C, Jander G, Ausubel FM (2009) Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323(5910):95–101

    Article  PubMed  CAS  Google Scholar 

  38. 38.

    Bednarek P, Piślewska-Bednarek M, Svatoš A, Schneider B, Doubský J, Mansurova M, Humphry M, Consonni C, Panstruga R, Sanchez-Vallet A (2009) A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323(5910):101–106

    Article  PubMed  CAS  Google Scholar 

  39. 39.

    Xu J, Meng J, Meng X, Zhao Y, Liu J, Sun T, Liu Y, Wang Q, Zhang S (2016) Pathogen-responsive MPK3 and MPK6 reprogram the biosynthesis of indole glucosinolates and their derivatives in Arabidopsis immunity. Plant Cell 28(5):1144–1162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. 40.

    Meng X, Xu J, He Y, Yang KY, Mordorski B, Liu Y, Zhang S (2013) Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. Plant Cell 25(3):1126–1142. https://doi.org/10.1105/tpc.112.109074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. 41.

    Gudesblat GE, Iusem ND, Morris PC (2007) Guard cell-specific inhibition of Arabidopsis MPK3 expression causes abnormal stomatal responses to abscisic acid and hydrogen peroxide. New Phytol 173(4):713–721

    Article  PubMed  CAS  Google Scholar 

  42. 42.

    Su J, Zhang M, Zhang L, Sun T, Liu Y, Lukowitz W, Xu J, Zhang S (2017) Regulation of stomatal immunity by interdependent functions of a pathogen-responsive MPK3/MPK6 cascade and abscisic acid. Plant Cell 29(3):526–542. https://doi.org/10.1105/tpc.16.00577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. 43.

    Mizoguchi T, Ichimura K, Irie K, Morris P, Giraudat J, Matsumoto K, Shinozaki K (1998) Identification of a possible MAP kinase cascade in Arabidopsis thaliana based on pairwise yeast two-hybrid analysis and functional complementation tests of yeast mutants. FEBS Lett 437(1–2):56–60

    Article  PubMed  CAS  Google Scholar 

  44. 44.

    Ichimura K, Mizoguchi T, Irie K, Morris P, Giraudat J, Matsumoto K, Shinozaki K (1998) Isolation of ATMEKK1 (a MAP kinase kinase kinase)-interacting proteins and analysis of a MAP kinase cascade in Arabidopsis. Biochem Biophys Res Commun 253(2):532–543

    Article  PubMed  CAS  Google Scholar 

  45. 45.

    Huang Y, Li H, Gupta R, Morris PC, Luan S, Kieber JJ (2000) ATMPK4, an Arabidopsis homolog of mitogen-activated protein kinase, is activated in vitro by AtMEK1 through threonine phosphorylation. Plant Physiol 122(4):1301–1310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. 46.

    Matsuoka D, Nanmori T, Ki Sato, Fukami Y, Kikkawa U, Yasuda T (2002) Activation of AtMEK1, an Arabidopsis mitogen-activated protein kinase kinase, in vitro and in vivo: analysis of active mutants expressed in E. coli and generation of the active form in stress response in seedlings. Plant J 29(5):637–647

    Article  PubMed  CAS  Google Scholar 

  47. 47.

    Teige M, Scheikl E, Eulgem T, Doczi R, Ichimura K, Shinozaki K, Dangl JL, Hirt H (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15(1):141–152

    Article  PubMed  CAS  Google Scholar 

  48. 48.

    Ichimura K, Casais C, Peck SC, Shinozaki K, Shirasu K (2006) MEKK1 is required for MPK4 activation and regulates tissue-specific and temperature-dependent cell death in Arabidopsis. J Biol Chem 281(48):36969–36976

    Article  PubMed  CAS  Google Scholar 

  49. 49.

    Suarez-Rodriguez MC, Adams-Phillips L, Liu Y, Wang H, Su SH, Jester PJ, Zhang S, Bent AF, Krysan PJ (2007) MEKK1 is required for flg22-induced MPK4 activation in Arabidopsis plants. Plant Physiol 143(2):661–669

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. 50.

    Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, Nielsen HB, Lacy M, Austin MJ, Parker JE, Sharma SB, Klessig DF, Martienssen R, Mattsson O, Jensen AB, Mundy J (2000) Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell 103(7):1111–1120

    Article  PubMed  CAS  Google Scholar 

  51. 51.

    Nakagami H, Soukupova H, Schikora A, Zarsky V, Hirt H (2006) A Mitogen-activated protein kinase kinase kinase mediates reactive oxygen species homeostasis in Arabidopsis. J Biol Chem 281(50):38697–38704

    Article  PubMed  CAS  Google Scholar 

  52. 52.

    Shan L, He P, Li J, Heese A, Peck SC, Nurnberger T, Martin GB, Sheen J (2008) Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity. Cell Host Microbe 4(1):17–27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. 53.

    Xiang TT, Zong N, Zou Y, Wu Y, Zhang J, Xing WM, Li Y, Tang XY, Zhu LH, Chai JJ, Zhou JM (2008) Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases. Curr Biol 18(1):74–80. https://doi.org/10.1016/j.cub.2007.12.020

    Article  PubMed  CAS  Google Scholar 

  54. 54.

    Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B (2000) Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J 19(15):4004–4014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. 55.

    Dodds PN, Lawrence GJ, Catanzariti AM, Teh T, Wang CI, Ayliffe MA, Kobe B, Ellis JG (2006) Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proc Natl Acad Sci USA 103(23):8888–8893

    Article  PubMed  CAS  Google Scholar 

  56. 56.

    Deslandes L, Olivier J, Peeters N, Feng DX, Khounlotham M, Boucher C, Somssich I, Genin S, Marco Y (2003) Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acad Sci USA 100(13):8024–8029

    Article  PubMed  CAS  Google Scholar 

  57. 57.

    Van der Biezen EA, Jones JD (1998) Plant disease-resistance proteins and the gene-for-gene concept. Trends Biochem Sci 23(12):454–456

    Article  PubMed  Google Scholar 

  58. 58.

    van der Hoorn RAL, Kamoun S (2008) From Guard to Decoy: a new model for perception of plant pathogen effectors. Plant Cell 20(8):2009–2017. https://doi.org/10.1105/tpc.108.060194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. 59.

    Axtell MJ, Staskawicz BJ (2003) Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell 112(3):369–377

    Article  PubMed  CAS  Google Scholar 

  60. 60.

    Mackey D, Belkhadir Y, Alonso JM, Ecker JR, Dangl JL (2003) Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell 112(3):379–389

    Article  PubMed  CAS  Google Scholar 

  61. 61.

    Mackey D, Holt BF, Wiig A, Dangl JL (2002) RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108(6):743–754

    Article  PubMed  CAS  Google Scholar 

  62. 62.

    Liu J, Elmore JM, Lin ZJ, Coaker G (2011) A receptor-like cytoplasmic kinase phosphorylates the host target RIN4, leading to the activation of a plant innate immune receptor. Cell Host Microbe 9(2):137–146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. 63.

    Chung EH, da Cunha L, Wu AJ, Gao Z, Cherkis K, Afzal AJ, Mackey D, Dangl JL (2011) Specific threonine phosphorylation of a host target by two unrelated type III effectors activates a host innate immune receptor in plants. Cell Host Microbe 9(2):125–136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. 64.

    Zhang Z, Wu Y, Gao M, Zhang J, Kong Q, Liu Y, Ba H, Zhou J, Zhang Y (2012) Disruption of PAMP-induced MAP kinase cascade by a Pseudomonas syringae effector activates plant immunity mediated by the NB-LRR protein SUMM2. Cell Host Microbe 11(3):253–263. https://doi.org/10.1016/j.chom.2012.01.015

    Article  PubMed  CAS  Google Scholar 

  65. 65.

    Zhang Z, Liu Y, Huang H, Gao M, Wu D, Kong Q, Zhang Y (2017) The NLR protein SUMM2 senses the disruption of an immune signaling MAP kinase cascade via CRCK3. EMBO Rep 18(2):292–302. https://doi.org/10.15252/embr.201642704

    Article  PubMed  CAS  Google Scholar 

  66. 66.

    Kong Q, Qu N, Gao M, Zhang Z, Ding X, Yang F, Li Y, Dong OX, Chen S, Li X, Zhang Y (2012) The MEKK1-MKK1/MKK2-MPK4 kinase cascade negatively regulates immunity mediated by a mitogen-activated protein kinase kinase kinase in Arabidopsis. Plant Cell 24(5):2225–2236. https://doi.org/10.1105/tpc.112.097253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. 67.

    Su SH, Bush SM, Zaman N, Stecker K, Sussman MR, Krysan P (2013) Deletion of a tandem gene family in Arabidopsis: increased MEKK2 abundance triggers autoimmunity when the MEKK1-MKK1/2-MPK4 signaling cascade is disrupted. Plant Cell 25(5):1895–1910. https://doi.org/10.1105/tpc.113.112102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. 68.

    Roux ME, Rasmussen MW, Palma K, Lolle S, Regue AM, Bethke G, Glazebrook J, Zhang W, Sieburth L, Larsen MR, Mundy J, Petersen M (2015) The mRNA decay factor PAT1 functions in a pathway including MAP kinase 4 and immune receptor SUMM2. EMBO J 34(5):593–608. https://doi.org/10.15252/embj.201488645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. 69.

    Andreasson E, Jenkins T, Brodersen P, Thorgrimsen S, Petersen NH, Zhu S, Qiu JL, Micheelsen P, Rocher A, Petersen M, Newman MA, Bjorn Nielsen H, Hirt H, Somssich I, Mattsson O, Mundy J (2005) The MAP kinase substrate MKS1 is a regulator of plant defense responses. EMBO J 24(14):2579–2589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. 70.

    Petersen K, Qiu J-L, Lütje J, Fiil BK, Hansen S, Mundy J, Petersen M (2010) Arabidopsis MKS1 is involved in basal immunity and requires an intact N-terminal domain for proper function. PLoS One 5(12):e14364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. 71.

    Frei dit Frey N, Garcia AV, Bigeard J, Zaag R, Bueso E, Garmier M, Pateyron S, de Tauzia-Moreau ML, Brunaud V, Balzergue S, Colcombet J, Aubourg S, Martin-Magniette ML, Hirt H (2014) Functional analysis of Arabidopsis immune-related MAPKs uncovers a role for MPK3 as negative regulator of inducible defences. Genome Biol 15(6):R87. https://doi.org/10.1186/gb-2014-15-6-r87

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. 72.

    Li B, Jiang S, Yu X, Cheng C, Chen S, Cheng Y, Yuan JS, Jiang D, He P, Shan L (2015) Phosphorylation of trihelix transcriptional repressor ASR3 by MAP KINASE4 negatively regulates Arabidopsis immunity. Plant Cell 27(3):839–856. https://doi.org/10.1105/tpc.114.134809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. 73.

    Berriri S, Garcia AV, Frei dit Frey N, Rozhon W, Pateyron S, Leonhardt N, Montillet JL, Leung J, Hirt H, Colcombet J (2012) Constitutively active mitogen-activated protein kinase versions reveal functions of Arabidopsis MPK4 in pathogen defense signaling. Plant Cell 24(10):4281–4293. https://doi.org/10.1105/tpc.112.101253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. 74.

    Wang Y, Li J, Hou S, Wang X, Li Y, Ren D, Chen S, Tang X, Zhou JM (2010) A Pseudomonas syringae ADP-ribosyltransferase inhibits Arabidopsis mitogen-activated protein kinase kinases. Plant Cell 22(6):2033–2044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. 75.

    Zhang J, Shao F, Li Y, Cui H, Chen L, Li H, Zou Y, Long C, Lan L, Chai J, Chen S, Tang X, Zhou JM (2007) A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants. Cell Host Microbe 1(3):175–185

    Article  PubMed  CAS  Google Scholar 

  76. 76.

    Eschen-Lippold L, Jiang X, Elmore JM, Mackey D, Shan L, Coaker G, Scheel D, Lee J (2016) Bacterial AvrRpt2-like cysteine proteases block activation of the arabidopsis mitogen-activated protein kinases, MPK4 and MPK11. Plant Physiol 171(3):2223–2238. https://doi.org/10.1104/pp.16.00336

    Article  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Zhang S, Klessig DF (1998) Resistance gene N-mediated de novo synthesis and activation of a tobacco mitogen-activated protein kinase by tobacco mosaic virus infection. Proc Natl Acad Sci 95(13):7433–7438

    Article  PubMed  CAS  Google Scholar 

  78. 78.

    Romeis T, Piedras P, Zhang S, Klessig DF, Hirt H, Jones JD (1999) Rapid Avr9-and Cf-9–dependent activation of MAP kinases in tobacco cell cultures and leaves: convergence of resistance gene, elicitor, wound, and salicylate responses. Plant Cell 11(2):273–287

    PubMed  PubMed Central  CAS  Google Scholar 

  79. 79.

    Tsuda K, Mine A, Bethke G, Igarashi D, Botanga CJ, Tsuda Y, Glazebrook J, Sato M, Katagiri F (2013) Dual regulation of gene expression mediated by extended MAPK activation and salicylic acid contributes to robust innate immunity in Arabidopsis thaliana. PLoS Genet 9(12):e1004015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. 80.

    Yang K-Y, Liu Y, Zhang S (2001) Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proc Natl Acad Sci 98(2):741–746

    Article  PubMed  CAS  Google Scholar 

  81. 81.

    Ren D, Yang H, Zhang S (2002) Cell death mediated by MAPK is associated with hydrogen peroxide production in Arabidopsis. J Biol Chem 277(1):559–565

    Article  PubMed  CAS  Google Scholar 

  82. 82.

    del Pozo O, Pedley KF, Martin GB (2004) MAPKKKα is a positive regulator of cell death associated with both plant immunity and disease. EMBO J 23(15):3072–3082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. 83.

    Yamada K, Yamaguchi K, Shirakawa T, Nakagami H, Mine A, Ishikawa K, Fujiwara M, Narusaka M, Narusaka Y, Ichimura K (2016) The Arabidopsis CERK1-associated kinase PBL27 connects chitin perception to MAPK activation. EMBO J 35(22):2468–2483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. 84.

    Jin H, Axtell MJ, Dahlbeck D, Ekwenna O, Zhang S, Staskawicz B, Baker B (2002) NPK1, an MEKK1-like mitogen-activated protein kinase kinase kinase, regulates innate immunity and development in plants. Dev Cell 3(2):291–297

    Article  PubMed  CAS  Google Scholar 

  85. 85.

    Liu Y, Schiff M, Dinesh-Kumar S (2004) Involvement of MEK1 MAPKK, NTF6 MAPK, WRKY/MYB transcription factors, COI1 and CTR1 in N-mediated resistance to tobacco mosaic virus. Plant J 38(5):800–809

    Article  PubMed  CAS  Google Scholar 

  86. 86.

    Ekengren SK, Liu Y, Schiff M, Dinesh-Kumar S, Martin GB (2003) Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato. Plant J 36(6):905–917

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank financial supports from CFI and NSERC-Discovery program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yuelin Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thulasi Devendrakumar, K., Li, X. & Zhang, Y. MAP kinase signalling: interplays between plant PAMP- and effector-triggered immunity. Cell. Mol. Life Sci. 75, 2981–2989 (2018). https://doi.org/10.1007/s00018-018-2839-3

Download citation

Keywords

  • Mitogen-activated protein kinases
  • MAPK cascade
  • MPK3
  • MPK6
  • MPK4
  • Effector-triggered immunity
  • PAMP-triggered immunity
  • SUMM2
  • CRCK3