Skip to main content

Advertisement

Log in

Mechanisms of autophagy and relevant small-molecule compounds for targeted cancer therapy

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Autophagy is an evolutionarily conserved, multi-step lysosomal degradation process for the clearance of damaged or superfluous proteins and organelles. Accumulating studies have recently revealed that autophagy is closely related to a variety of types of cancer; however, elucidation of its Janus role of either tumor-suppressive or tumor-promoting still remains to be discovered. In this review, we focus on summarizing the context-dependent role of autophagy and its complicated molecular mechanisms in different types of cancer. Moreover, we discuss a series of small-molecule compounds targeting autophagy-related proteins or the autophagic process for potential cancer therapy. Taken together, these findings would shed new light on exploiting the intricate mechanisms of autophagy and relevant small-molecule compounds as potential anti-cancer drugs to improve targeted cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Green DR, Galluzzi L, Kroemer G (2011) Mitochondria and the autophagy–inflammation–cell death axis in organismal aging. Science 333:1109–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Galluzzi L, Bravo-San Pedro JM, Levine B et al (2017) Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat Rev Drug Discov 16(7):487–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ke B, Tian M, Li J et al (2016) Targeting programmed cell death using small-molecule compounds to improve potential cancer therapy. Med Res Rev 36(6):983–1035

    Article  PubMed  Google Scholar 

  4. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Egan DF, Shackelford DB, Mihaylova MM et al (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331:456–461

    Article  CAS  PubMed  Google Scholar 

  6. Mizushima N (2007) Autophagy: process and function. Genes Dev 21:2861–2873

    Article  CAS  PubMed  Google Scholar 

  7. Huynh KK, Eskelinen EL, Scott CC et al (2007) LAMP proteins are required for fusion of lysosomes with phagosomes. EMBO J 26:313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469:323–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Heath RJ, Xavier RJ (2009) Autophagy, immunity and human disease. Curr Opin Gastroenterol 25:512–520

    Article  PubMed  PubMed Central  Google Scholar 

  10. Qu X, Yu J, Bhagat G et al (2003) Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Investig 112:1809–1820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cianfanelli V, Fuoco C, Lorente M et al (2014) AMBRA1 links autophagy to cell proliferation and tumorigenesis by promoting c-MYC dephosphorylation and degradation. Nat Cell Biol 17:20–30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Kang MR, Kim MS, Oh JE et al (2009) Frameshift mutations of autophagy-related genes ATG2B, ATG5, ATG9B and ATG12 in gastric and colorectal cancers with microsatellite instability. J Pathol 217:702–706

    Article  CAS  PubMed  Google Scholar 

  13. Yang A, Rajeshkumar NV, Wang X et al (2014) Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. Cancer Discov 4:905–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Galluzzi L, Pietrocola F, Bravo-San Pedro JM et al (2015) Autophagy in malignant transformation and cancer progression. EMBO J 34:856–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Amaravadi R, Kimmelman AC, White E (2016) Recent insights into the function of autophagy in cancer. Genes Dev 30:1913–1930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang SF, Wang XY, Fu ZQ et al (2015) TXNDC17 promotes paclitaxel resistance via inducing autophagy in ovarian cancer. Autophagy 11:225–238

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hardie DG (2007) AMP-activated protein kinase as a drug target. Annu Rev Pharmacol Toxicol 47:185–210

    Article  CAS  PubMed  Google Scholar 

  18. Chan EY, Tooze SA (2009) Evolution of Atg1 function and regulation. Autophagy 5:758–765

    Article  CAS  PubMed  Google Scholar 

  19. Kim J, Kim YC, Fang C et al (2013) Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell 152:290–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brooks DL, Schwab LP, Krutilina R et al (2016) ITGA6 is directly regulated by hypoxia-inducible factors and enriches for cancer stem cell activity and invasion in metastatic breast cancer models. Mol Cancer 15:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Semenza GL (2010) Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29:625–634

    Article  CAS  PubMed  Google Scholar 

  22. Ke Q, Costa M (2005) Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 33:423–425

    Google Scholar 

  23. Liu J, Hao H, Huang H et al (2015) Hypoxia regulates the therapeutic potential of mesenchymal stem cells through enhanced autophagy. Int J Low Extremity Wounds 14:63–72

    Article  CAS  Google Scholar 

  24. Wu H, Huang S, Chen Z et al (2015) Hypoxia-induced autophagy contributes to the invasion of salivary adenoid cystic carcinoma through the HIF-1α/BNIP3 signaling pathway. Mol Med Rep 12:6467–6474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xue H, Yuan G, Guo X et al (2016) A novel tumor-promoting mechanism of IL6 and the therapeutic efficacy of tocilizumab: hypoxia-induced IL6 is a potent autophagy initiator in glioblastoma via the p-STAT3–MIR155-3p–CREBRF pathway. Autophagy 12:1129–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Peng WX, Xiong EM, Ge L et al (2016) Egr-1 promotes hypoxia-induced autophagy to enhance chemo-resistance of hepatocellular carcinoma cells. Exp Cell Res 340:62–70

    Article  CAS  PubMed  Google Scholar 

  27. Jaakkola PM, Pursiheimo JP (2009) p62 degradation by autophagy: another way for cancer cells to survive under hypoxia. Autophagy 5:410–412

    Article  CAS  PubMed  Google Scholar 

  28. Wan G, Xie W, Liu Z et al (2013) Hypoxia-induced MIR155 is a potent autophagy inducer by targeting multiple players in the MTOR pathway. Autophagy 10:70–79

    Article  PubMed  CAS  Google Scholar 

  29. Guo YJ, Liu JX, Guan YW (2016) Hypoxia induced upregulation of miR-301a/b contributes to increased cell autophagy and viability of prostate cancer cells by targeting NDRG2. Eur Rev Med Pharmacol Sci 20:101–108

    PubMed  Google Scholar 

  30. Sun Y, Xing X, Liu Q et al (2015) Hypoxia-induced autophagy reduces radiosensitivity by the HIF-1α/miR-210/Bcl-2 pathway in colon cancer cells. Int J Oncol 46:750–756

    Article  CAS  PubMed  Google Scholar 

  31. Wu J, Niu J, Li X et al (2014) Hypoxia induces autophagy of bone marrow-derived mesenchymal stem cells via activation of ERK1/2. Cell Physiol Biochem 33:1467–1474

    Article  CAS  PubMed  Google Scholar 

  32. Fang Y, Tan J, Zhang Q (2015) Signaling pathways and mechanisms of hypoxia-induced autophagy in the animal cells. Cell Biol Int 39:891–898

    Article  CAS  PubMed  Google Scholar 

  33. Blagosklonny MV (2013) Hypoxia, MTOR and autophagy: converging on senescence or quiescence. Autophagy 9:260–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Notte A, Rebucci M, Fransolet M et al (2015) Taxol-induced unfolded protein response activation in breast cancer cells exposed to hypoxia: ATF4 activation regulates autophagy and inhibits apoptosis. Int J Biochem Cell Biol 62:1–14

    Article  CAS  PubMed  Google Scholar 

  35. Kim I, Rodriguezenriquez S, Lemasters JJ (2007) Minireview: selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462:245–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sandoval H, Thiagarajan P, Dasgupta SK et al (2008) Essential role for Nix in autophagic maturation of red cells. Nature 454:232–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kawajiri S, Saiki S, Sato S et al (2008) PINK1 is recruited to mitochondria with parkin and associates with LC3 in mitophagy. FEBS Lett 584:1073–1079

    Article  CAS  Google Scholar 

  38. Pickrell AM, Youle RJ (2015) The roles of PINK1, Parkin and mitochondrial fidelity in Parkinson’s disease. Neuron 85:257–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wei Y, Chiang WC, Sumpter R Jr et al (2017) Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor. Cell 168:224–238

    Article  CAS  PubMed  Google Scholar 

  40. Lazarou M, Sliter DA, Kane LA et al (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524:309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Michiorri S, Gelmetti V, Giarda E et al (2010) The Parkinson-associated protein PINK1 interacts with Beclin1 and promotes autophagy. Cell Death Differ 17:962–974

    Article  CAS  PubMed  Google Scholar 

  42. Kaufmann A, Beier V, Franquelim HG et al (2014) Molecular mechanism of autophagic membrane-scaffold assembly and disassembly. Cell 156:469–481

    Article  CAS  PubMed  Google Scholar 

  43. Geisler S, Holmström KM, Skujat D et al (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12:119–131

    Article  CAS  PubMed  Google Scholar 

  44. Zhong Z, Umemura A, Sanchez-Lopez E et al (2016) NF-κB restricts inflammasome activation via elimination of damaged mitochondria. Cell 164:896–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vyas S, Zaganjor E, Haigis MC (2016) Mitochondria and cancer. Cell 166:555–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hu YL, DeLay M, Jahangiri A et al (2012) Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma. Cancer Res 72:1773–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Guo JY, Karsli-Uzunbas G, Mathew R et al (2013) Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev 27:1447–1461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Proskuryakov SY, Gabai VL (2010) Mechanisms of tumor cell necrosis. Curr Pharm Des 16:56–68

    Article  CAS  PubMed  Google Scholar 

  49. Baek MW, Cho HS, Kim SH et al (2016) Ascorbic acid induces necrosis in human laryngeal squamous cell carcinoma via ROS, PKC, and calcium signaling. J Cell Physiol 232:417–425

    Article  PubMed  CAS  Google Scholar 

  50. He S, Wang L, Miao L et al (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell 137:1100–1111

    Article  CAS  PubMed  Google Scholar 

  51. Kaczmarek A, Vandenabeele P, Krysko DV (2013) Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38:209–223

    Article  CAS  PubMed  Google Scholar 

  52. Jouan-Lanhouet S, Arshad MI, Piquet-Pellorce C et al (2012) TRAIL induces necroptosis involving RIPK1/RIPK3-dependent PARP-1 activation. Cell Death Differ 19:2003–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Galluzzi L, Vitale I, Abrams JM et al (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19:107–120

    Article  CAS  PubMed  Google Scholar 

  54. Konstantakou EG, Voutsinas GE, Velentzas AD et al (2015) 3-BrPA eliminates human bladder cancer cells with highly oncogenic signatures via engagement of specific death programs and perturbation of multiple signaling and metabolic determinants. Mol Cancer 14:1–26

    Article  CAS  Google Scholar 

  55. Lim SC, Jeon HJ, Kee KH et al (2016) Involvement of DR4/JNK pathway-mediated autophagy in acquired TRAIL resistance in HepG2 cells. Int J Oncol 49:1983–1990

    Article  CAS  PubMed  Google Scholar 

  56. Ahn MY, Kim TH, Kwon SM et al (2015) 5-Nitro-5′-hydroxy-indirubin-3′-oxime (AGM130), an indirubin-3′-oxime derivative, inhibits tumor growth by inducing apoptosis against non-small cell lung cancer in vitro and in vivo. Eur J Pharm Sci 79:122–131

    Article  CAS  PubMed  Google Scholar 

  57. Goldberg AA, Draz H, Montes-Grajales D et al (2016) 3,3′-Diindolylmethane (DIM) and its ring-substituted halogenated analogs (ring-DIMs) induce differential mechanisms of survival and death in androgen-dependent and-independent prostate cancer cells. Genes Cancer 7:59

    PubMed  PubMed Central  Google Scholar 

  58. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    Article  CAS  PubMed  Google Scholar 

  59. Wei MF, Chen MW, Chen KC et al (2014) Autophagy promotes resistance to photodynamic therapy-induced apoptosis selectively in colorectal cancer stem-like cells. Autophagy 10:1179–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sun WL, Chen J, Wang YP et al (2011) Autophagy protects breast cancer cells from epirubicin-induced apoptosis and facilitates epirubicin-resistance development. Autophagy 7:1035–1044

    Article  CAS  PubMed  Google Scholar 

  61. He H, Yu JJ, Xu Q (2015) Downregulation of ATG14 by EGR1-MIR152 sensitizes ovarian cancer cells to cisplatin-induced apoptosis by inhibiting cyto-protective autophagy. Autophagy 11:373–384

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hou W, Han J, Lu C et al (2010) Autophagic degradation of active caspase-8: a crosstalk mechanism between autophagy and apoptosis. Autophagy 6:891–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kaminskyy VO, Piskunova T, Zborovskaya IB et al (2012) Suppression of basal autophagy reduces lung cancer cell proliferation and enhances caspase-dependent and -independent apoptosis by stimulating ROS formation. Autophagy 8:1032–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kang R, Zeh HJ, Lotze MT et al (2011) The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 18:571–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhan Z, Li Q, Wu P (2012) Autophagy-mediated HMGB1 release antagonizes apoptosis of gastric cancer cells induced by vincristine via transcriptional regulation of Mcl-1. Autophagy 8:109–121

    Article  CAS  PubMed  Google Scholar 

  66. Yao Dahong, Wang Peiqi, Zhang Jin et al (2016) Deconvoluting the relationships between autophagy and metastasis for potential cancer therapy. Apoptosis 21:683–698

    Article  CAS  PubMed  Google Scholar 

  67. Gewirtz DA (2014) The four faces of autophagy: implications for cancer therapy. Cancer Res 274(3):647–651

    Article  CAS  Google Scholar 

  68. Galluzzi L, Bravo-San Pedro JM, Vitale I et al (2015) Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 22:58–73

    Article  CAS  PubMed  Google Scholar 

  69. Yu X, Li R, Shi W et al (2016) Silencing of MicroRNA-21 confers the sensitivity to tamoxifen and fulvestrant by enhancing autophagic cell death through inhibition of the PI3K-AKT-mTOR pathway in breast cancer cells. Biomed Pharmacother 77:37–44

    Article  CAS  PubMed  Google Scholar 

  70. Gao Q, Liu H, Yao Y et al (2014) Carnosic acid induces autophagic cell death through inhibition of the Akt/mTOR pathway in human hepatoma cells. J Appl Toxicol 35:485–492

    Article  PubMed  CAS  Google Scholar 

  71. Law BY, Chan WK, Xu SW et al (2014) Natural small-molecule enhancers of autophagy induce autophagic cell death in apoptosis-defective cells. Sci Rep 4:5510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Park KJ, Lee SH, Lee CH et al (2009) Upregulation of Beclin-1 expression and phosphorylation of Bcl-2 and p53 are involved in the JNK-mediated autophagic cell death. Biochem Biophys Res Commun 382:726–729

    Article  CAS  PubMed  Google Scholar 

  73. Sun PH, Zhu LM, Qiao MM et al (2011) The XAF1 tumor suppressor induces autophagic cell death via upregulation of Beclin-1 and inhibition of Akt pathway. Cancer Lett 310:170–180

    Article  CAS  PubMed  Google Scholar 

  74. Ornelas A, McCullough CR, Lu Z et al (2011) Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival. Mol Cell 42:23–35

    Article  CAS  Google Scholar 

  75. Tai WT, Shiau CW, Chen HL et al (2013) Mcl-1-dependent activation of Beclin 1 mediates autophagic cell death induced by sorafenib and SC-59 in hepatocellular carcinoma cells. Cell Death Dis 4:e485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cui L, Song Z, Liang B et al (2016) Radiation induces autophagic cell death via the p53/DRAM signaling pathway in breast cancer cells. Oncol Rep 35:1639–3647

    Google Scholar 

  77. Liu Y, Yang Y, Ye YC et al (2012) Activation of ERK-p53 and ERK-mediated phosphorylation of Bcl-2 are involved in autophagic cell death induced by the c-Met inhibitor SU11274 in human lung cancer A549 cells. J Pharmacol Sci 118:423–432

    Article  CAS  PubMed  Google Scholar 

  78. Wang N, Pan W, Zhu M et al (2011) Fangchinoline induces autophagic cell death via p53/sestrin2/AMPK signalling in human hepatocellular carcinoma cells. Br J Pharmacol 164:731–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Klionsky DJ, Abdelmohsen K, Abe A et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rdedition). Autophagy 12:1–222

    Article  PubMed  PubMed Central  Google Scholar 

  80. Yan C, Yang JM (2013) Autophagy and apoptosis: rivals or mates? Chin J Cancer 32:103–105

    Google Scholar 

  81. Yousefi S, Perozzo R, Schmid I et al (2006) Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol 8:1124–1132

    Article  CAS  PubMed  Google Scholar 

  82. Rubinstein AD, Eisenstein M, Ber Y et al (2011) The autophagy protein Atg12 associates with antiapoptotic Bcl-2 family members to promote mitochondrial apoptosis. Mol Cell 44:698–709

    Article  CAS  PubMed  Google Scholar 

  83. Sandilands E, Serrels B, McEwan DG et al (2011) Autophagic targeting of Src promotes cancer cell survival following reduced FAK signalling. Nat Cell Biol 14:51–60

    Article  PubMed  CAS  Google Scholar 

  84. Mariño G, Niso-Santano M, Baehrecke EH et al (2014) Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 15:81–94

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Li Y, Wang Y, Wang S et al (2015) Oridonin phosphate-induced autophagy effectively enhances cell apoptosis of human breast cancer cells. Med Oncol 32:365

    Article  PubMed  CAS  Google Scholar 

  86. Hsin IL, Ou CC, Wu MF et al (2015) GMI, an immunomodulatory protein from Ganoderma microsporum, potentiates cisplatin-induced apoptosis via autophagy in lung cancer cells. Mol Pharm 12:1534–1543

    Article  CAS  PubMed  Google Scholar 

  87. Jin SM, Jang HW, Sohn SY et al (2014) Role of autophagy in the resistance to tumour necrosis factor-related apoptosis-inducing ligand-induced apoptosis in papillary and anaplastic thyroid cancer cells. Endocrine 45:256–262

    Article  CAS  PubMed  Google Scholar 

  88. Medzhitov R, Horng T (2009) Transcriptional control of the inflammatory response. Nat Rev Immunol 9:692–703

    Article  CAS  PubMed  Google Scholar 

  89. Shigdar S, Li Y, Bhattacharya S et al (2014) Inflammation and cancer stem cells. Cancer Lett 345:271–278

    Article  CAS  PubMed  Google Scholar 

  90. Maderna P, Godson C (2003) Phagocytosis of apoptotic cells and the resolution of inflammation. Biochim Biophys Acta 1639:141–151

    Article  CAS  PubMed  Google Scholar 

  91. Qu X, Zou Z, Sun Q et al (2007) Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128:931–946

    Article  CAS  PubMed  Google Scholar 

  92. Netea-Maier RT, Plantinga TS, van de Veerdonk FL et al (2016) Modulation of inflammation by autophagy: consequences for human disease. Autophagy 12:245–260

    Article  CAS  PubMed  Google Scholar 

  93. Harris J, Hartman M, Roche C et al (2011) Autophagy controls IL-1{beta} secretion by targeting pro-IL-1{beta} for degradation. J Biol Chem 286:9587–9597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Saitoh T, Fujita N, Jang MH et al (2008) Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456:264–268

    Article  CAS  PubMed  Google Scholar 

  95. Zhou R, Yazdi AS, Menu P et al (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469:221–225

    Article  CAS  PubMed  Google Scholar 

  96. Krysko O, Løve Aaes T, Bachert C et al (2013) Many faces of DAMPs in cancer therapy. Cell Death Dis 4:e631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sharma P, Allison JP (2015) Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161:205–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ma Y, Galluzzi L, Zitvogel L et al (2013) Autophagy and cellular immune responses. Immunity 39:211–227

    Article  CAS  PubMed  Google Scholar 

  99. Guzik K, Zak KM, Grudnik P et al (2017) Small-molecule inhibitors of the Programmed Cell Death-1/Programmed Death-ligand 1 (PD-1/PD-L1) interaction via transiently-induced protein states and dimerization of PD-L1. J Med Chem 60:5857–5867

    Article  CAS  PubMed  Google Scholar 

  100. Bezu L, Gomes-de-Silva LC, Dewitte H et al (2015) Combinatorial strategies for the induction of immunogenic cell death. Front Immunol 6:187

    PubMed  PubMed Central  Google Scholar 

  101. Martins I, Wang Y, Michaud M et al (2014) Molecular mechanisms of ATP secretion during immunogenic cell death. Cell Death Differ 21:79–91

    Article  CAS  PubMed  Google Scholar 

  102. Martins I, Michaud M, Sukkurwala AQ et al (2012) Premortem autophagy determines the immunogenicity of chemotherapy-induced cancer cell death. Autophagy 8:413–415

    Article  CAS  PubMed  Google Scholar 

  103. Hu L, Jiang K, Ding C et al (2017) Targeting autophagy for oncolytic immunotherapy. Biomedicines 5:5

    Article  PubMed Central  CAS  Google Scholar 

  104. Zhang X, Fan J, Wang S et al (2017) Targeting CD47 and autophagy elicited enhanced antitumor effects in non-small cell lung cancer. Cancer Immunol Res 5:363–375

    Article  CAS  PubMed  Google Scholar 

  105. Keller CW, Loi M, Ewert S et al (2017) The autophagy machinery restrains iNKT cell activation through CD1D1 internalization. Autophagy 15:1–12

    Google Scholar 

  106. Robainas M, Otano R, Bueno S et al (2017) Understanding the role of PD-L1/PD1 pathway blockade and autophagy in cancer therapy. Onco Targets Ther 10:1803–1807

    Article  PubMed  PubMed Central  Google Scholar 

  107. Mizushima N, Levine B, Cuervo AM et al (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Benjamin D, Colombi M, Moroni C et al (2011) Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov 10:868–880

    Article  CAS  PubMed  Google Scholar 

  109. Fazio N, Dettori M, Lorizzo K (2007) Temsirolimus for advanced renal-cell carcinoma. N Engl J Med 357(10):1050

    Article  CAS  PubMed  Google Scholar 

  110. Neshat MS, Mellinghoff IK, Tran C et al (2001) Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci USA 98:10314–10319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Beck JT, Ismail A, Tolomeo C (2014) Targeting the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway: an emerging treatment strategy for squamous cell lung carcinoma. Cancer Treat Rev 40:980–989

    Article  CAS  PubMed  Google Scholar 

  112. Khan DMA, Afzal H (2011) Targeting the mTOR kinase domain: the second generation of mTOR inhibitors. Drug Discov Today 16:325–331

    Article  CAS  Google Scholar 

  113. Lu X, Horner JW, Paul E et al (2017) Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature 543(7647):728–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hsieh AC, Costa M, Zollo O et al (2010) Genetic dissection of the oncogenic mTOR pathway reveals druggable addiction to translational control via 4EBP-eIF4E. Cancer Cell 17:249–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Janes MR, Limon JJ, So L et al (2010) Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor. Nat Med 16:205–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hsieh AC, Ruggero D (2010) Targeting eukaryotic translation initiation factor 4E (eIF4E) in cancer. Clin Cancer Res 16:4914–4920

    Article  CAS  PubMed  Google Scholar 

  117. Marshall G, Howard Z, Dry J et al (2011) Benefits of mTOR kinase targeting in oncology: pre-clinical evidence with AZD8055. Biochem Soc Trans 39:456–459

    Article  CAS  PubMed  Google Scholar 

  118. Carayol N, Vakana E, Sassano A et al (2010) Critical roles for mTORC2- and rapamycin-insensitive mTORC1-complexes in growth and survival of BCR-ABL-expressing leukemic cells. Proc Natl Acad Sci USA 107:12469–12474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Gravina GL, Marampon F, Petini F et al (2011) The TORC1/TORC2 inhibitor, Palomid 529, reduces tumor growth and sensitizes to docetaxel and cisplatin in aggressive and hormone-refractory prostate cancer cells. Endocr Relat Cancer 18:385–400

    Article  CAS  PubMed  Google Scholar 

  120. Baselga J, Campone M, Piccart M et al (2012) Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med 366(6):520–529

    Article  CAS  PubMed  Google Scholar 

  121. Wagle N, Grabiner BC, Van Allen EM et al (2014) Response and acquired resistance to everolimus in anaplastic thyroid cancer. N Engl J Med 371(15):1426–1433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Rodrik-Outmezguine VS, Okaniwa M, Yao Z et al (2016) Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor. Nature 534(7606):272–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ouyang L, Zhang L, Fu L et al (2017) A small-molecule activator induces ULK1-modulating autophagy-associated cell death in triple negative breast cancer. Autophagy 13(4):777–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhang L, Fu L, Zhang S et al (2017) Discovery of a small molecule targeting ULK1-modulated cell death of triple negative breast cancer in vitro and in vivo. Chem Sci 8:2687–2701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Egan DF, Chun MG, Vamos M et al (2015) Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates. Mol Cell 59:285–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lazarus MB, Novotny CJ, Shokat KM (2014) Structure of the human autophagy initiating kinase ULK1 in complex with potent inhibitors. ACS Chem Biol 10:257–261

    Article  PubMed Central  CAS  Google Scholar 

  127. Petherick KJ, Conway OJ, Mpamhanga C et al (2015) Pharmacological inhibition of ULK1 kinase blocks mammalian target of rapamycin (mTOR)-dependent autophagy. J Biol Chem 290:11376–11383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhou X, Takatoh J, Wang F (2011) The mammalian class 3 PI3K (PIK3C3) is required for early embryogenesis and cell proliferation. PLoS One 6:e16358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Parekh VV, Wu L, Boyd KL et al (2013) Impaired autophagy, defective T cell homeostasis, and a wasting syndrome in mice with a T cell-specific deletion of Vps34. J Immunol 190:5086–5101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Pasquier B (2015) SAR405, a PIK3C3/Vps34 inhibitor that prevents autophagy and synergizes with MTOR inhibition in tumor cells. Autophagy 11:725–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Bilanges B, Vanhaesebroeck B (2014) Cinderella finds her shoe: the first Vps34 inhibitor uncovers a new PI3K-AGC protein kinase connection. Biochem J 464:e7–e10

    Article  CAS  PubMed  Google Scholar 

  132. Dowdle WE, Nyfeler B, Nagel J et al (2014) Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat Cell Biol 16:1069–1079

    Article  CAS  PubMed  Google Scholar 

  133. Liang XH, Jackson S, Seaman M et al (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402(6762):672–676

    Article  CAS  PubMed  Google Scholar 

  134. Pasquier B (2015) SAR405, a PIK3C3/Vps34 inhibitor that prevents autophagy and synergizes with mTOR inhibition in tumor cells. Autophagy 11(4):725–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhang L, Li J, Ouyang L et al (2016) Unraveling the roles of Atg4 proteases from autophagy modulation to targeted cancer therapy. Cancer Lett 373(1):19–26

    Article  CAS  PubMed  Google Scholar 

  136. Zhang L, Guo M, Li J et al (2015) Systems biology-based discovery of a potential Atg4B agonist (Flubendazole) that induces autophagy in breast cancer. Mol BioSyst 11:2860–2866

    Article  CAS  PubMed  Google Scholar 

  137. Akin D, Wang SK, Habibzadegah-Tari P et al (2014) A novel ATG4B antagonist inhibits autophagy and has a negative impact on osteosarcoma tumors. Autophagy 10:2021–2035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Qiu Z, Kuhn B, Aebi J et al (2016) Discovery of fluoromethylketone-based peptidomimetics as covalent ATG4B (autophagin-1) inhibitors. ACS Med Chem Lett 7:802–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ch’nq JH, Lee YQ, Gun SY et al (2014) Validation of a chloroquine-induced cell death mechanism for clinical use against malaria. Cell Death Dis 5:e1305

    Article  CAS  Google Scholar 

  140. Chen PJ, Luo XY, Nie PP et al (2017) CQ synergistically sensitizes human colorectal cancer cells to SN-38/CPT-11 through lysosomal and mitochondrial apoptotic pathway via p53-ROS cross-talk. Free Radic Biol Med 104:280–297

    Article  CAS  PubMed  Google Scholar 

  141. Liang DH, Choi DS, Ensor JE et al (2016) The autophagy inhibitor chloroquine targets cancer stem cells in triple negative breast cancer by inducing mitochondrial damage and impairing DNA break repair. Cancer Lett 376:249–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lin YC, Lin JF, Wen SI et al (2017) Chloroquine and hydroxychloroquine inhibit bladder cancer cell growth by targeting basal autophagy and enhancing apoptosis. Kaohsiung J Med Sci 33:215–223

    Article  PubMed  Google Scholar 

  143. Shi TT, Yu XX, Yan LJ et al (2017) Research progress of hydroxychloroquine and autophagy inhibitors on cancer. Cancer Chemother Pharmacol 79:287–294

    Article  CAS  PubMed  Google Scholar 

  144. Lin YX, Gao YJ, Wang Y et al (2015) pH-sensitive polymeric nanoparticles with gold(I) compound payloads synergistically induce cancer cell death through modulation of autophagy. Mol Pharm 12:2869–2878

    Article  CAS  PubMed  Google Scholar 

  145. Goodall ML, Wang T, Martin KR et al (2014) Development of potent autophagy inhibitors that sensitize oncogenic BRAF V600E mutant melanoma tumor cells to vemurafenib. Autophagy 10:1120–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. McAfee Q, Zhang Z, Samanta A et al (2012) Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency. Proc Natl Acad Sci USA 109:8253–8258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Wang Z, Zhang J, Wang Y et al (2012) Matrine, a novel autophagy inhibitor, blocks trafficking and the proteolytic activation of lysosomal proteases. Carcinogenesis 34:128–138

    Article  CAS  PubMed  Google Scholar 

  148. Wang J, Wu GS (2014) Role of autophagy in cisplatin resistance in ovarian cancer cells. J Biol Chem 289:7163–17173

    Google Scholar 

  149. Ouyang L, Zhang L, Liu J et al (2017) Discovery of a small-molecule bromodomain-containing protein 4 (BRD4) inhibitor that induces AMP-activated protein kinase-modulated autophagy-associated cell death in breast cancer. J Med Chem 60(24):9990–10012

    Article  CAS  PubMed  Google Scholar 

  150. Deng Y, Zhu L, Cai H, et al (2017) Autophagic compound database: a resource connecting autophagy-modulating compounds, their potential targets and relevant diseases. Cell Prolif (Epub ahead of print)

  151. Xie T, Zhang L, Zhang S et al (2016) ACTP: a webserver for predicting potential targets and relevant pathways of autophagy-modulating compounds. Oncotarget 7(9):10015–10022

    PubMed  PubMed Central  Google Scholar 

  152. Lock R, Roy S, Kenific CM et al (2010) Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol Biol Cell 22:165–178

    Article  PubMed  Google Scholar 

  153. Giovannini M, Bonne NX, Vitte J et al (2014) mTORC1 inhibition delays growth of neurofibromatosis type 2 schwannoma. Neuro Oncol 16:493–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Yu K, Toral-Barza L, Discafani C et al (2001) mTOR, a novel target in breast cancer: the effect of CCI-779, an mTOR inhibitor, in preclinical models of breast cancer. Endocr Relat Cancer 8:249–258

    Article  PubMed  Google Scholar 

  155. Guo H, Zhong Y, Jackson AL et al (2016) Everolimus exhibits anti-tumorigenic activity in obesity-induced ovarian cancer. Oncotarget 7:20338–20356

    PubMed  PubMed Central  Google Scholar 

  156. Becker MA, Hou X, Tienchaianada P et al (2016) Ridaforolimus (MK-8669) synergizes with Dalotuzumab (MK-0646) in hormone-sensitive breast cancer. BMC Cancer 16:814

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Chang L, Graham PH, Hao J et al (2014) PI3K|[sol]|Akt|[sol]|mTOR pathway inhibitors enhance radiosensitivity in radioresistant prostate cancer cells through inducing apoptosis, reducing autophagy, suppressing NHEJ and HR repair pathways. Cell Death Dis 5:e1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Zhu Y, Tian T, Zou J et al (2015) Dual PI3K/mTOR inhibitor BEZ235 exerts extensive antitumor activity in HER2-positive gastric cancer. BMC Cancer 15:1–10

    Article  CAS  Google Scholar 

  159. Chen X, Zhao M, Hao M et al (2013) Dual inhibition of PI3K and mTOR mitigates compensatory AKT activation and improves tamoxifen response in breast cancer. Mol Cancer Res 11:1269–1278

    Article  CAS  PubMed  Google Scholar 

  160. Liu T, Sun Q, Li Q et al (2014) Dual PI3K/mTOR inhibitors, GSK2126458 and PKI-587, suppress tumor progression and increase radiosensitivity in nasopharyngeal carcinoma. Mol Cancer Ther 14:429–439

    Article  PubMed  CAS  Google Scholar 

  161. Simioni C, Cani A, Martelli AM et al (2015) The novel dual PI3K/mTOR inhibitor NVP-BGT226 displays cytotoxic activity in both normoxic and hypoxic hepatocarcinoma cells. Oncotarget 6:17147–17160

    Article  PubMed  PubMed Central  Google Scholar 

  162. Thijssen R, Ter Burg J, van Bochove GG et al (2015) The pan phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor SAR245409 (voxtalisib/XL765) blocks survival, adhesion and proliferation of primary chronic lymphocytic leukemia cells. Leukemia 30:337–345

    Article  PubMed  CAS  Google Scholar 

  163. Qi W, Morales C, Cooke LS et al (2015) Reciprocal feedback inhibition of the androgen receptor and PI3K as a novel therapy for castrate-sensitive and -resistant prostate cancer. Oncotarget 6:41976–41987

    PubMed  PubMed Central  Google Scholar 

  164. Singh AR, Joshi S, Burgoyne AM et al (2016) Single agent and synergistic activity of the “first in class” dual PI3K/BRD4 inhibitor SF1126 with Sorafenib in hepatocellular carcinoma. Mol Cancer Ther 15:2553–2562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Musa F, Alard A, David-West G et al (2016) Dual mTORC1/2 inhibition as a novel strategy for the re-sensitization and treatment of platinum-resistant ovarian cancer. Mol Cancer Ther 15:1555–1567

    Article  CAS  Google Scholar 

  166. Zeng JY, Sharma S, Zhou YQ et al (2014) Synergistic activities of MET/RON inhibitor BMS-777607 and mTOR inhibitor AZD8055 to polyploid cells derived from pancreatic cancer and cancer stem cells. Mol Cancer Ther 13(37):756–765

    Google Scholar 

  167. Willems L, Chapuis N, Puissant A et al (2011) The dual mTORC1 and mTORC2 inhibitor AZD8055 has anti-tumor activity in acute myeloid leukemia. Leukemia 26:1195–1202

    Article  PubMed  CAS  Google Scholar 

  168. Guichard SM, Curwen J, Bihani T et al (2015) AZD2014, an inhibitor of mTORC1 and mTORC2, is highly effective in ER + breast cancer when administered using intermittent or continuous schedules. Mol Cancer Ther 14:37–44

    Article  CAS  Google Scholar 

  169. Yu CC, Huang HB, Hung SK et al (2016) AZD2014 radiosensitizes oral squamous cell carcinoma by inhibiting AKT/mTOR axis and inducing G1/G2/M cell cycle arrest. PLoS One 11:e0151942

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Liao H, Huang Y, Guo B et al (2015) Dramatic antitumor effects of the dual mTORC1 and mTORC2 inhibitor AZD2014 in hepatocellular carcinoma. Am J Cancer Res 5:125–139

    CAS  PubMed  Google Scholar 

  171. Zhi X, Chen W, Xue F et al (2015) OSI-027 inhibits pancreatic ductal adenocarcinoma cell proliferation and enhances the therapeutic effect of gemcitabine both in vitro and in vivo. Oncotarget 6:26230–26241

    PubMed  PubMed Central  Google Scholar 

  172. Zhang H, Dou J, Yu Y et al (2015) mTOR ATP-competitive inhibitor INK128 inhibits neuroblastoma growth via blocking mTORC signaling. Apoptosis 20:50–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Hayman TJ, Wahba A, Rath BH et al (2014) The ATP-competitive mTOR inhibitor INK128 enhances in vitro and in vivo radiosensitivity of pancreatic carcinoma cells. Clin Cancer Res 20:110–119

    Article  CAS  PubMed  Google Scholar 

  174. Pan H, Xu LH, Ouyang DY et al (2014) The second-generation mTOR kinase inhibitor INK128 exhibits anti-inflammatory activity in lipopolysaccharide-activated RAW 264.7 cells. Inflammation 37:756–765

    Article  CAS  PubMed  Google Scholar 

  175. Liu ZG, Tang J, Chen Z et al (2016) The novel mTORC1/2 dual inhibitor INK128 enhances radiosensitivity of breast cancer cell line MCF-7. Int J Oncol 49:1039–1045

    Article  CAS  PubMed  Google Scholar 

  176. Janes MR, Vu C, Mallya S et al (2013) Efficacy of the investigational mTOR kinase inhibitor MLN0128/INK128 in models of B-cell acute lymphoblastic leukemia. Leukemia 27:586–594

    Article  CAS  PubMed  Google Scholar 

  177. Kannan A, Lin Z, Shao Q et al (2015) Dual mTOR inhibitor MLN0128 suppresses Merkel cell carcinoma (MCC) xenograft tumor growth. Oncotarget 7:6576–6592

    PubMed Central  Google Scholar 

Download references

Funding

We are grateful to Prof. Canhua Huang (Sichuan University) for his good suggestions on this manuscript. This work was supported by grants from National Key R&D Program of China (Grant No. 2017YFC0909301 and Grant No. 2017YFC0909302) and National Natural Science Foundation of China (Grant No. 81673455, Grant No. 81602130, Grant No. 81473091 and Grant No. 81673290).

Author information

Authors and Affiliations

Contributions

All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yi Chen or Bo Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Jin Zhang, Guan Wang, and Yuxin Zhou contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Wang, G., Zhou, Y. et al. Mechanisms of autophagy and relevant small-molecule compounds for targeted cancer therapy. Cell. Mol. Life Sci. 75, 1803–1826 (2018). https://doi.org/10.1007/s00018-018-2759-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2759-2

Keywords