Skip to main content

Advertisement

Log in

HBeAg induces the expression of macrophage miR-155 to accelerate liver injury via promoting production of inflammatory cytokines

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Activation of Kupffer cells (KCs) induced that inflammatory cytokine production plays a central role in the pathogenesis of HBV infection. The previous studies from our and other laboratory demonstrated miRNAs can regulate TLR-inducing inflammatory responses to macrophage. However, the involvement of miRNAs in HBV-associated antigen-induced macrophage activation is still not thoroughly understood. Here, we evaluated the effects and mechanisms of miR-155 in HBV-associated antigen-induced macrophage activation. First, co-culture assay of HepG2 or HepG2.2.15 cells and RAW264.7 macrophages showed that HepG2.2.15 cells could significantly promote macrophages to produce inflammatory cytokines. Furthermore, we, respectively, stimulated RAW264.7 macrophages, mouse primary peritoneal macrophages, or healthy human peripheral blood monocytes with HBV-associated antigens, including HBcAg, HBeAg, and HBsAg, and found that only HBeAg could steadily enhance the production of inflammatory cytokines in these cells. Subsequently, miRNAs sequencing presented the up- or down-regulated expression of multiple miRNAs in HBeAg-stimulated RAW264.7 cells. In addition, we verified the expression of miR-155 and its precursors BIC gene with q-PCR in the system of co-culture or HBeAg-stimulated macrophages. Meanwhile, the increased miR-155 expression was positively correlation with serum ALT, AST, and HBeAg levels in AHB patients. Although MAPK, PI3K, and NF-κB signal pathways were all activated during HBeAg treatment, only PI3K and NF-κB pathways were involved in miR-155 expression induced by HBeAg stimulation. Consistently, miR-155 over-expression inhibited production of inflammatory cytokines, which could be reversed by knocking down miR-155. Moreover, we demonstrated that miR-155 regulated HBeAg-induced cytokine production by targeting BCL-6, SHIP-1, and SOCS-1. In conclusion, our data revealed that HBeAg augments the expression of miR-155 in macrophages via PI3K and NF-κB signal pathway and the increased miR-155 promotes HBeAg-induced inflammatory cytokine production by inhibiting the expression of BCL-6, SHIP-1, and SOCS-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

HBV:

Hepatitis B virus

HAV:

Hepatitis A virus

HCV:

Hepatitis C virus

HDV:

Hepatitis D virus

HEV:

Hepatitis E virus

HIV:

Human immunodeficiency virus

HBcAg:

Hepatitis B core antigen

HBeAg:

Hepatitis B e antigen

HBsAg:

Hepatitis B surface antigen

IL-6:

Interleukin-6

TNF-α:

Tumor necrosis factor-α

miR-155:

MicroRNA-155

q-PCR:

Quantitative real-time polymerase chain reaction

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

AHB:

Acute hepatitis B

CHB:

Chronic hepatitis B

MAPK:

Mitogen-activated protein kinase

BCL-6:

B-cell lymphoma 6

SHIP-1:

Src homology-2 domain-containing inositol 5-phosphatase 1

SOCS-1:

Suppressor of cytokine signaling-1

TLR:

Toll-like receptors

NK:

Natural killer

References

  1. WHO. Hepatitis B. http://www.who.int/mediacentre/factsheets/fs204/en/. Accessed July 2017

  2. GBD 2013 Mortality and Causes of Death Collaborators (2015) Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 385(9963):117–171

    Article  Google Scholar 

  3. Hensel KO, Rendon JC, Navas MC, Rots MG, Postberg J (2017) Virus-host interplay in hepatitis B virus infection and epigenetic treatment strategies. FEBS J 284(21):3550–3572

    PubMed  CAS  Google Scholar 

  4. Zhang Q, Liao Y, Chen J, Cai B, Su Z, Ying B, Lu X, Tao C, Wang L (2015) Epidemiology study of HBV genotypes and antiviral drug resistance in multi-ethnic regions from Western China. Sci Rep 5:17413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Sandhu P, Haque M, Humphries-Bickley T, Ravi S, Song J (2017) Hepatitis B virus immunopathology, model systems, and current therapies. Front Immunol 8:436

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Xu L, Qi J, Zhao P, Liang X, Ju Y, Liu P, Liu B, Guo C, Zhang L, Ma C, Gao L (2010) T cell immunoglobulin- and mucin-domain-containing molecule-4 attenuates concanavalin A-induced hepatitis by regulating macrophage. J Leukoc Biol 88(2):329–336

    Article  PubMed  CAS  Google Scholar 

  7. Tacke F (2017) Targeting hepatic macrophages to treat liver diseases. J Hepatol 66(6):1300–1312

    Article  PubMed  CAS  Google Scholar 

  8. Tan-Garcia A, Wai LE, Zheng D, Ceccarello E, Jo J, Banu N, Khakpoor A, Chia A, Tham CY, Tan AT, Hong M, Keng CT, Rivino L, Tan KC, Hoe Lee K, Lim SG, Newell EW, Pavelka N, Chen J, Ginhoux F, Chen Q, Bertoletti A, Dutertre CA (2017) Intrahepatic CD206+ macrophages contribute to inflammation in advanced viral-related liver disease. J Hepatol 67(3):490–500

    Article  PubMed  CAS  Google Scholar 

  9. Qi J, Qiao Y, Wang P, Li S, Zhao W, Gao C (2012) microRNA-210 negatively regulates LPS-induced production of proinflammatory cytokines by targeting NF-κB1 in murine macrophages. FEBS Lett 586(8):1201–1207

    Article  PubMed  CAS  Google Scholar 

  10. Thounaojam MC, Kundu K, Kaushik DK, Swaroop S, Mahadevan A, Shankar SK, Basu A (2014) MicroRNA 155 regulates Japanese encephalitis virus-induced inflammatory response by targeting Src homology 2-containing inositol phosphatase 1. J Virol 88(9):4798–4810

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Taganov KD, Boldin MP, Chang KJ, Baltimore D (2006) NF-κB dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 103(33):12481–12486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Liu G, Friggeri A, Yang Y, Park YJ, Tsuruta Y, Abraham E (2009) MiR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murine macrophage inflammatory responses. Proc Natl Acad Sci USA 106(37):15819–15824

    Article  PubMed  PubMed Central  Google Scholar 

  13. Su C, Hou Z, Zhang C, Tian Z, Zhang J (2011) Ectopic expression of microRNA-155 enhances innate antiviral immunity against HBV infection in human hepatoma cells. Virol J 8:354

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Zhang GL, Li YX, Zheng SQ, Liu M, Li X, Tang H (2010) Suppression of hepatitis B virus replication by microRNA-199a-3p and microRNA-210. Antiviral Res 88(2):169–175

    Article  PubMed  CAS  Google Scholar 

  15. Zhao W, Wang L, Zhang M, Wang P, Qi J, Zhang L, Gao C (2012) Nuclear to cytoplasmic translocation of heterogeneous nuclear ribonucleoprotein U enhances TLR-induced proinflammatory cytokine production by stabilizing mRNAs in macrophages. J Immunol 188(7):3179–3187

    Article  PubMed  CAS  Google Scholar 

  16. Bian H, Li F, Wang W, Zhao Q, Gao S, Ma J, Li X, Ren W, Qin C, Qi J (2017) MAPK/p38 regulation of cytoskeleton rearrangement accelerates induction of macrophage activation by TLR4, but not TLR3. Int J Mol Med 40(5):1495–1503

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhao W, Qi J, Wang L, Zhang M, Wang P, Gao C (2012) LY294002 inhibits TLR3/4-mediated IFN-β production via inhibition of IRF3 activation with a PI3K-independent mechanism. FEBS Lett 586(6):705–710

    Article  PubMed  CAS  Google Scholar 

  18. Bala S, Marcos M, Kodys K, Csak T, Catalano D, Mandrekar P, Szabo G (2011) Up-regulation of microRNA-155 in macrophages contributes to increased tumor necrosis factor alpha (TNF{alpha}) production via increased mRNA half-life in alcoholic liver disease. J Biol Chem 286(2):1436–1444

    Article  PubMed  CAS  Google Scholar 

  19. O’Connell RM, Chaudhuri AA, Rao DS, Baltimore D (2009) Inositol phosphatase SHIP1 is a primary target of miR-155. Proc Natl Acad Sci USA 106(17):7113–7118

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wei Y, Zhu M, Corbalán-Campos J, Heyll K, Weber C, Schober A (2015) Regulation of Csf1r and Bcl6 in macrophages mediates the stage-specific effects of microRNA-155 on atherosclerosis. Arterioscler Thromb Vasc Biol 35(4):796–803

    Article  PubMed  CAS  Google Scholar 

  21. Yang S, Li F, Jia S, Zhang K, Jiang W, Shang Y, Chang K, Deng S, Chen M (2015) Early secreted antigen ESAT-6 of Mycobacterium Tuberculosis promotes apoptosis of macrophages via targeting the microRNA155–SOCS1 interaction. Cell Physiol Biochem 35(4):1276–1288

    Article  PubMed  CAS  Google Scholar 

  22. Bertoletti A, Ferrari C (1051) Innate and adaptive immune responses in chronic hepatitis B virus infections: towards restoration of immune control of viral infection. Postgrad Med J 2013(89):294–304

    Google Scholar 

  23. Lopez BG, Tsai MS, Baratta JL, Longmuir KJ, Robertson RT (2011) Characterization of Kupffer cells in livers of developing mice. Comp Hepatol 10(1):2

    Article  PubMed  PubMed Central  Google Scholar 

  24. Iyer A, Brown L, Whitehead JP, Prins JB, Fairlie DP (2015) Nutrient and immune sensing are obligate pathways in metabolism, immunity, and disease. FASEB J 29(9):3612–3625

    Article  PubMed  CAS  Google Scholar 

  25. Hosel M, Quasdorff M, Wiegmann K, Webb D, Zedler U, Broxtermann M, Tedjokusumo R, Esser K, Arzberger S, Kirschning CJ, Langenkamp A, Falk C, Büning H, Rose-John S, Protzer U (2009) Not interferon, but interleukin-6 controls early gene expression in hepatitis B virus infection. Hepatology 50(6):1773–1782

    Article  PubMed  CAS  Google Scholar 

  26. Phillips S, Chokshi S, Riva A, Evans A, Williams R, Naoumov NV (2010) CD8(+) T cell control of hepatitis B virus replication: direct comparison between cytolytic and noncytolytic functions. J Immunol 184(1):287–295

    Article  PubMed  CAS  Google Scholar 

  27. Wang S, Chen Z, Hu C, Qian F, Cheng Y, Wu M, Shi B, Chen J, Hu Y, Yuan Z (2013) Hepatitis B virus surface antigen selectively inhibits TLR2 ligand-induced IL-12 production in monocytes/macrophages by interfering with JNK activation. J Immunol 190(10):5142–5151

    Article  PubMed  CAS  Google Scholar 

  28. Bility MT, Cheng L, Zhang Z, Luan Y, Li F, Chi L, Zhang L, Tu Z, Gao Y, Fu Y, Niu J, Wang F, Su L (2014) Hepatitis B virus infection and immunopathogenesis in a humanized mouse model: induction of human-specific liver fibrosis and M2-like macrophages. PLoS Pathog 10(3):e1004032

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yong L, Li M, Gao Y, Deng Y, Liu W, Huang D, Ren C, Liu M, Shen J, Hou X (2017) Identification of pro-inflammatory CD205+ macrophages in livers of hepatitis B virus transgenic mice and patients with chronic hepatitis B. Sci Rep 7:46765

    Article  PubMed  PubMed Central  Google Scholar 

  30. Schickel R, Boyerinas B, Park SM, Peter ME (2008) MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene 27(45):5959–5974

    Article  PubMed  CAS  Google Scholar 

  31. Vaporidi K, Vergadi E, Kaniaris E, Hatziapostolou M, Lagoudaki E, Georgopoulos D, Zapol WM, Bloch KD, Iliopoulos D (2012) Pulmonary microRNA profiling in a mouse model of ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 303(3):L199–L207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Wan G, Xie W, Liu Z, Xu W, Lao Y, Huang N, Cui K, Liao M, He J, Jiang Y, Yang BB, Xu H, Xu N, Zhang Y (2014) Hypoxia-induced MIR155 is a potent autophagy inducer by targeting multiple players in the MTOR pathway. Autophagy 10(1):70–79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR, van Dongen S, Grocock RJ, Das PP, Miska EA, Vetrie D, Okkenhaug K, Enright AJ, Dougan G, Turner M, Bradley A (2007) Requirement of bic/microRNA-155 for normal immune function. Science 316(5824):608–611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Vigorito E, Kohlhaas S, Lu D, Leyland R (2013) miR-155: an ancient regulator of the immune system. Immunol Rev 253(1):146–157

    Article  PubMed  CAS  Google Scholar 

  35. Kurowska-Stolarska M, Alivernini S, Ballantine LE, Asquith DL, Millar NL, Gilchrist DS, Reilly J, Ierna M, Fraser AR, Stolarski B, McSharry C, Hueber AJ, Baxter D, Hunter J, Gay S (2011) LiewFY, McInnes IB. MicroRNA-155 as a proinflammatory regulator in clinical and experimental arthritis. Proc Natl Acad Sci USA 108(27):11193–11198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Elton TS, Selemon H, Elton SM, Parinandi NL (2013) Regulation of the MIR155 host gene in physiological and pathological processes. Gene 532(1):1–12

    Article  PubMed  CAS  Google Scholar 

  37. Faraoni I, Antonetti FR, Cardone J, Bonmassar E (2009) miR-155 gene: a typical multifunctional microRNA. Biochim Biophys Acta 1792(6):497–505

    Article  PubMed  CAS  Google Scholar 

  38. Bala S, Petrasek J, Mundkur S, Catalano D, Levin I, Ward J, Alao H, Kodys K, Szabo G (2012) Circulating microRNAs in exosomes indicate hepatocyte injury and inflammation in alcoholic, drug-induced, and inflammatory liver diseases. Hepatology 56(5):1946–1957

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Bala S, Tilahun Y, Taha O, Alao H, Kodys K, Catalano D, Szabo G (2012) Increased microRNA-155 expression in the serum and peripheral monocytes in chronic HCV infection. J Transl Med 10:151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Tili E, Michaille JJ, Cimino A, Costinean S, Dumitru CD, Adair B, Fabbri M, Alder H, Liu CG, Calin GA, Croce CM (2007) Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 179(8):5082–5089

    Article  PubMed  CAS  Google Scholar 

  41. Subedi A, Park PH (2013) Autocrine and paracrine modulation of microRNA-155 expression by globular adiponectin in RAW 264.7 macrophages: involvement of MAPK/NF-κB pathway. Cytokine 64(3):638–641

    Article  PubMed  CAS  Google Scholar 

  42. Park EJ, Shen L, Sun D, Pezzuto JM (2014) Inhibitory effect of a callophycin A derivative on iNOS expression via inhibition of Akt in lipopolysaccharide-stimulated RAW 264.7 cells. J Nat Prod 77(3):527–535

    Article  PubMed  CAS  Google Scholar 

  43. Du F, Yu F, Wang Y, Hui Y, Carnevale K, Fu M, Lu H, Fan D (2014) MicroRNA-155 deficiency results in decreased macrophage inflammation and attenuated atherogenesis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 34(4):759–767

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Nazari-Jahantigh M, Wei Y, Noels H, Akhtar S, Zhou Z, Koenen RR, Heyll K, Gremse F, Kiessling F, Grommes J, Weber C, Schober A (2012) MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. J Clin Investig 122(11):4190–4202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81600469, 81472685, and 81772626), the Science and Technology Development Projects of Shandong Province (2017GSF218053 and 2016GSF201126), the Clinical Medical Science and Technology Innovation Program (201704114), the Major Special Plan of Science and Technology of Shandong Province (2015ZDXX0802A01), and the Shandong Province medical and health science and technology development project (2017WS194).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianni Qi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

18_2018_2753_MOESM1_ESM.tif

Supplementary material 1 (TIFF 17571 kb) Supplementary Fig. 1 RAW264.7 macrophages were stimulated with HBeAg (2000 µg/ml) for 24 h and collected with Trizol. U6, snoRNA202 (another commonly internal control) and miR-155 were reverse transcribed with TapMan-related kit and these microRNA expressions were measured using TaqMan miRNA assays (A–D). Data are representative of three independent experiments (mean ± S.D. of triplicates in A-D)

18_2018_2753_MOESM2_ESM.tif

Supplementary material 2 (TIFF 25690 kb) Supplementary Fig. 2 RAW264.7 macrophages were stimulated with different concentrations HBeAg (including 0, 25, 50, 100, 300, 500, 1000, and 2000 ng/ml) for 24 h and the expression of IL-6, TNF-α, and miR-155 were detected with q-PCR (A, C, E) and the secretion of IL-6 and TNF-α was measured with ELISA (B, D). HBeAg was diluted to different concentrations (0, 25, 50, 100, 300, 500, 1000, and 2000 ng/ml) and detected with chemiluminescence microparticle immunoassay (CMIA) (F). Data are representative of three independent experiments (mean ± S.D. of triplicates in A–E). Data are representative of one experiment (mean ± S.D. of triplicates in F). *p < 0.05, **p < 0.01, ***p < 0.001

18_2018_2753_MOESM3_ESM.tif

Supplementary material 3 (TIFF 54744 kb) Supplementary Fig. 3 RAW264.7 macrophages were stimulated with HBeAg for 24 h and some more magnification photos were recorded with light microscope (original magnification, ×100 or ×200. White box: the specific zoom position)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Bian, H., Li, F. et al. HBeAg induces the expression of macrophage miR-155 to accelerate liver injury via promoting production of inflammatory cytokines. Cell. Mol. Life Sci. 75, 2627–2641 (2018). https://doi.org/10.1007/s00018-018-2753-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2753-8

Keywords

Navigation