Cellular and Molecular Life Sciences

, Volume 75, Issue 9, pp 1559–1566 | Cite as

Reprogramming the metabolome rescues retinal degeneration

  • Karen Sophia Park
  • Christine L. Xu
  • Xuan Cui
  • Stephen H. Tsang
Review
  • 319 Downloads

Abstract

Metabolomics studies in the context of ophthalmology have largely focused on identifying metabolite concentrations that characterize specific retinal diseases. Studies involving mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy have shown that individuals suffering from retinal diseases exhibit metabolic profiles that markedly differ from those of control individuals, supporting the notion that metabolites may serve as easily identifiable biomarkers for specific conditions. An emerging branch of metabolomics resulting from biomarker studies, however, involves the study of retinal metabolic dysfunction as causes of degeneration. Recent publications have identified a number of metabolic processes—including but not limited to glucose and oxygen metabolism—that, when perturbed, play a role in the degeneration of photoreceptor cells. As a result, such studies have led to further research elucidating methods for prolonging photoreceptor survival in an effort to halt degeneration in its early stages. This review will explore the ways in which metabolomics has deepened our understanding of the causes of retinal degeneration and discuss how metabolomics can be used to prevent retinal degeneration from progressing to its later disease stages.

Keywords

Metabolomics Retinal degeneration Biomarkers Photoreceptors Age-related macular degeneration Retinitis pigmentosa 

Notes

Acknowledgements

Supported in part by Grants from the National Eye Institute, NIH; P30EY019007, R01EY018213, R01EY024698, R01EY026682, R21AG050437, National Cancer Institute Core (5P30CA013696), the Research to Prevent Blindness (RPB) Physician-Scientist Award, and unrestricted funds from RPB. S.H.T. is a member of the RD-CURE Consortium and is supported by the Tistou and Charlotte Kerstan Foundation, the Schneeweiss Stem Cell Fund, New York State (C029572), the Foundation Fighting Blindness New York Regional Research Center Grant (C-NY05-0705-0312), the Crowley Family Fund, and the Gebroe Family Foundation.

References

  1. 1.
    Young SP, Wallace GR (2009) Metabolomic analysis of human disease and its application to the eye. J Ocular Biol Dis Inform 2(4):235–242.  https://doi.org/10.1007/s12177-009-9038-2 CrossRefGoogle Scholar
  2. 2.
    Gowda GA, Zhang S, Gu H, Asiago V, Shanaiah N, Raftery D (2008) Metabolomics-based methods for early disease diagnostics. Expert Rev Mol Diagn 8(5):617–633.  https://doi.org/10.1586/14737159.8.5.617 CrossRefPubMedGoogle Scholar
  3. 3.
    Kosmides AK, Kamisoglu K, Calvano SE, Corbett SA, Androulakis IP (2013) Metabolomic fingerprinting: challenges and opportunities. Crit Rev Biomed Eng 41(3):205–221CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lim LS, Mitchell P, Seddon JM, Holz FG, Wong TY (2012) Age-related macular degeneration. Lancet 379(9827):1728–1738.  https://doi.org/10.1016/S0140-6736(12)60282-7 CrossRefPubMedGoogle Scholar
  5. 5.
    Wong WL, Su X, Li X, Cheung CM, Klein R, Cheng CY, Wong TY (2014) Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Global Health 2(2):e106–e116.  https://doi.org/10.1016/s2214-109x(13)70145-1 CrossRefPubMedGoogle Scholar
  6. 6.
    Hamel C (2006) Retinitis pigmentosa. Orphanet J Rare Dis 1:40.  https://doi.org/10.1186/1750-1172-1-40 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hartong DT, Dange M, McGee TL, Berson EL, Dryja TP, Colman RF (2008) Insights from retinitis pigmentosa into the roles of isocitrate dehydrogenases in the Krebs cycle. Nat Genet 40(10):1230–1234.  https://doi.org/10.1038/ng.223 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Maurer CM, Schonthaler HB, Mueller KP, Neuhauss SC (2010) Distinct retinal deficits in a zebrafish pyruvate dehydrogenase-deficient mutant. J Neurosci 30(36):11962–11972.  https://doi.org/10.1523/jneurosci.2848-10.2010 CrossRefPubMedGoogle Scholar
  9. 9.
    Aherne A, Kennan A, Kenna PF, McNally N, Lloyd DG, Alberts IL, Kiang AS, Humphries MM, Ayuso C, Engel PC, Gu JJ, Mitchell BS, Farrar GJ, Humphries P (2004) On the molecular pathology of neurodegeneration in IMPDH1-based retinitis pigmentosa. Hum Mol Genet 13(6):641–650.  https://doi.org/10.1093/hmg/ddh061 CrossRefPubMedGoogle Scholar
  10. 10.
    Dettmer K, Aronov PA, Hammock BD (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev 26(1):51–78.  https://doi.org/10.1002/mas.20108 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lei Z, Huhman DV, Sumner LW (2011) Mass spectrometry strategies in metabolomics. J Biol Chem 286(29):25435–25442.  https://doi.org/10.1074/jbc.R111.238691 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Annesley TM (2003) Ion suppression in mass spectrometry. Clin Chem 49(7):1041–1044CrossRefPubMedGoogle Scholar
  13. 13.
    Markley JL, Brüschweiler R, Edison AS, Eghbalnia HR, Powers R, Raftery D, Wishart DS (2017) The future of NMR-based metabolomics. Curr Opin Biotechnol 43:34–40.  https://doi.org/10.1016/j.copbio.2016.08.001 CrossRefPubMedGoogle Scholar
  14. 14.
    Scalbert A, Brennan L, Fiehn O, Hankemeier T, Kristal BS, van Ommen B, Pujos-Guillot E, Verheij E, Wishart D, Wopereis S (2009) Mass-spectrometry-based metabolomics: limitations and recommendations for future progress with particular focus on nutrition research. Metabolomics 5(4):435.  https://doi.org/10.1007/s11306-009-0168-0 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Du J, Linton JD, Hurley JB (2015) Probing metabolism in the intact retina using stable isotope tracers. Methods Enzymol 561:149–170.  https://doi.org/10.1016/bs.mie.2015.04.002 CrossRefPubMedGoogle Scholar
  16. 16.
    Lindsay KJ, Du J, Sloat SR, Contreras L, Linton JD, Turner SJ, Sadilek M, Satrustegui J, Hurley JB (2014) Pyruvate kinase and aspartate–glutamate carrier distributions reveal key metabolic links between neurons and glia in retina. Proc Natl Acad Sci USA 111(43):15579–15584.  https://doi.org/10.1073/pnas.1412441111 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Chao JR, Knight K, Engel AL, Jankowski C, Wang Y, Manson MA, Gu H, Djukovic D, Raftery D, Hurley JB, Du J (2017) Human retinal pigment epithelial cells prefer proline as a nutrient and transport metabolic intermediates to the retinal side. J Biol Chem 292(31):12895–12905.  https://doi.org/10.1074/jbc.M117.788422 CrossRefPubMedGoogle Scholar
  18. 18.
    Du J, Rountree A, Cleghorn WM, Contreras L, Lindsay KJ, Sadilek M, Gu H, Djukovic D, Raftery D, Satrustegui J, Kanow M, Chan L, Tsang SH, Sweet IR, Hurley JB (2016) Phototransduction influences metabolic flux and nucleotide metabolism in mouse retina. J Biol Chem 291(9):4698–4710.  https://doi.org/10.1074/jbc.M115.698985 CrossRefPubMedGoogle Scholar
  19. 19.
    Yang J, Li Y, Chan L, Tsai YT, Wu WH, Nguyen HV, Hsu CW, Li X, Brown LM, Egli D, Sparrow JR, Tsang SH (2014) Validation of genome-wide association study (GWAS)-identified disease risk alleles with patient-specific stem cell lines. Hum Mol Genet 23(13):3445–3455.  https://doi.org/10.1093/hmg/ddu053 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kersten E, Paun CC, Schellevis RL, Hoyng CB, Delcourt C, Lengyel I, Peto T, Ueffing M, Klaver CCW, Dammeier S, den Hollander AI, de Jong EK (2017) Systemic and ocular fluid compounds as potential biomarkers in age-related macular degeneration. Surv Ophthalmol.  https://doi.org/10.1016/j.survophthal.2017.05.003 PubMedGoogle Scholar
  21. 21.
    Ates O, Azizi S, Alp HH, Kiziltunc A, Beydemir S, Cinici E, Kocer I, Baykal O (2009) Decreased serum paraoxonase 1 activity and increased serum homocysteine and malondialdehyde levels in age-related macular degeneration. Tohoku J Exp Med 217(1):17–22CrossRefPubMedGoogle Scholar
  22. 22.
    Evereklioglu C, Er H, Doganay S, Cekmen M, Turkoz Y, Otlu B, Ozerol E (2003) Nitric oxide and lipid peroxidation are increased and associated with decreased antioxidant enzyme activities in patients with age-related macular degeneration. Doc Ophthalmol Adv Ophthalmol 106(2):129–136CrossRefGoogle Scholar
  23. 23.
    Masuda T, Shimazawa M, Hara H (2017) Retinal diseases associated with oxidative stress and the effects of a free radical scavenger (Edaravone). Oxidative Med Cell Longev 2017:14.  https://doi.org/10.1155/2017/9208489 CrossRefGoogle Scholar
  24. 24.
    Tong J-P, Chan W-M, Liu DTL, Lai TYY, Choy K-W, Pang C-P, Lam DSC (2006) Aqueous humor levels of vascular endothelial growth factor and pigment epithelium-derived factor in polypoidal choroidal vasculopathy and choroidal neovascularization. Am J Ophthalmol 141(3):456–462.  https://doi.org/10.1016/j.ajo.2005.10.012 CrossRefPubMedGoogle Scholar
  25. 25.
    Qin L, Mroczkowska SA, Ekart A, Patel SR, Gibson JM, Gherghel D (2014) Patients with early age-related macular degeneration exhibit signs of macro- and micro-vascular disease and abnormal blood glutathione levels. Graefe’s Arch Clin Exp Ophthalmol 252(1):23–30.  https://doi.org/10.1007/s00417-013-2418-0 CrossRefGoogle Scholar
  26. 26.
    Bramall AN, Wright AF, Jacobson SG, McInnes RR (2010) The genomic, biochemical, and cellular responses of the retina in inherited photoreceptor degenerations and prospects for the treatment of these disorders. Annu Rev Neurosci 33:441–472.  https://doi.org/10.1146/annurev-neuro-060909-153227 CrossRefPubMedGoogle Scholar
  27. 27.
    Punzo C, Kornacker K, Cepko CL (2009) Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nat Neurosci 12(1):44–52.  https://doi.org/10.1038/nn.2234 CrossRefPubMedGoogle Scholar
  28. 28.
    Zhang L, Du J, Justus S, Hsu CW, Bonet-Ponce L, Wu WH, Tsai YT, Wu WP, Jia Y, Duong JK, Mahajan VB, Lin CS, Wang S, Hurley JB, Tsang SH (2016) Reprogramming metabolism by targeting sirtuin 6 attenuates retinal degeneration. J Clin Investig 126(12):4659–4673.  https://doi.org/10.1172/jci86905 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science (New York, NY) 324(5930):1029–1033.  https://doi.org/10.1126/science.1160809 CrossRefGoogle Scholar
  30. 30.
    Chinchore Y, Begaj T, Wu D, Drokhlyansky E, Cepko CL (2017) Glycolytic reliance promotes anabolism in photoreceptors. eLife.  https://doi.org/10.7554/elife.25946 PubMedPubMedCentralGoogle Scholar
  31. 31.
    Kanow MA, Giarmarco MM, Jankowski C, Tsantilas K, Engel AL, Du J, Linton JD, Farnsworth CC, Sloat SR, Lindsay KJ, Parker ED, Brockerhoff SE, Sadilek M, Chao JR, Hurley JB (2017) Biochemical adaptations of the retina and retinal pigment epithelium support a metabolic ecosystem in the vertebrate eye. bioRxiv: https://doi.org/10.1101/143347
  32. 32.
    Terluk MR, Kapphahn RJ, Soukup LM, Gong H, Gallardo C, Montezuma SR, Ferrington DA (2015) Investigating mitochondria as a target for treating age-related macular degeneration. J Neurosci 35(18):7304–7311.  https://doi.org/10.1523/jneurosci.0190-15.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Yu DY, Cringle SJ (2005) Retinal degeneration and local oxygen metabolism. Exp Eye Res 80(6):745–751.  https://doi.org/10.1016/j.exer.2005.01.018 CrossRefPubMedGoogle Scholar
  34. 34.
    Kurihara T, Westenskow PD, Gantner ML, Usui Y, Schultz A, Bravo S, Aguilar E, Wittgrove C, Friedlander M, Paris LP, Chew E, Siuzdak G, Friedlander M (2016) Hypoxia-induced metabolic stress in retinal pigment epithelial cells is sufficient to induce photoreceptor degeneration. eLife.  https://doi.org/10.7554/elife.14319 PubMedPubMedCentralGoogle Scholar
  35. 35.
    Feigl B (2009) Age-related maculopathy—linking aetiology and pathophysiological changes to the ischaemia hypothesis. Prog Retinal Eye Res 28(1):63–86.  https://doi.org/10.1016/j.preteyeres.2008.11.004 CrossRefGoogle Scholar
  36. 36.
    Whitehead AJ, Mares JA, Danis RP (2006) Macular pigment: a review of current knowledge. Arch Ophthalmol (Chicago, Ill: 1960) 124(7):1038–1045.  https://doi.org/10.1001/archopht.124.7.1038 CrossRefGoogle Scholar
  37. 37.
    De La Paz MA, Anderson RE (1992) Lipid peroxidation in rod outer segments. Role of hydroxyl radical and lipid hydroperoxides. Invest Ophthalmol Vis Sci 33(7):2091–2096Google Scholar
  38. 38.
    Wise DR, Ward PS, Shay JES, Cross JR, Gruber JJ, Sachdeva UM, Platt JM, DeMatteo RG, Simon MC, Thompson CB (2011) Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci 108(49):19611–19616.  https://doi.org/10.1073/pnas.1117773108 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Du J, Yanagida A, Knight K, Engel AL, Vo AH, Jankowski C, Sadilek M, Tran VTB, Manson MA, Ramakrishnan A, Hurley JB, Chao JR (2016) Reductive carboxylation is a major metabolic pathway in the retinal pigment epithelium. Proc Natl Acad Sci 113(51):14710–14715.  https://doi.org/10.1073/pnas.1604572113 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Iadevaia V, Huo Y, Zhang Z, Foster LJ, Proud CG (2012) Roles of the mammalian target of rapamycin, mTOR, in controlling ribosome biogenesis and protein synthesis. Biochem Soc Trans 40(1):168–172.  https://doi.org/10.1042/bst20110682 CrossRefPubMedGoogle Scholar
  41. 41.
    Zhang L, Justus S, Xu Y, Pluchenik T, Hsu C-W, Yang J, Duong JK, Lin C-S, Jia Y, Bassuk AG, Mahajan VB, Tsang SH (2016) Reprogramming towards anabolism impedes degeneration in a preclinical model of retinitis pigmentosa. Hum Mol Genet 25(19):4244–4255.  https://doi.org/10.1093/hmg/ddw256 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Tsang SH, Chan L, Tsai YT, Wu WH, Hsu CW, Yang J, Tosi J, Wert KJ, Davis RJ, Mahajan VB (2014) Silencing of tuberin enhances photoreceptor survival and function in a preclinical model of retinitis pigmentosa (an american ophthalmological society thesis). Trans Am Ophthalmol Soc 112:103–115PubMedPubMedCentralGoogle Scholar
  43. 43.
    Punzo C, Xiong W, Cepko CL (2012) Loss of daylight vision in retinal degeneration: are oxidative stress and metabolic dysregulation to blame? J Biol Chem 287(3):1642–1648.  https://doi.org/10.1074/jbc.R111.304428 CrossRefPubMedGoogle Scholar
  44. 44.
    Martinez-Pastor B, Mostoslavsky R (2012) Sirtuins, metabolism, and cancer. Front Pharmacol 3:22.  https://doi.org/10.3389/fphar.2012.00022 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Venkatesh A, Ma S, Le YZ, Hall MN, Ruegg MA, Punzo C (2015) Activated mTORC1 promotes long-term cone survival in retinitis pigmentosa mice. J Clin Investig 125(4):1446–1458.  https://doi.org/10.1172/jci79766 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Nagar S, Noveral SM, Trudler D, Lopez KM, McKercher SR, Han X, Yates JR, Piña-Crespo JC, Nakanishi N, Satoh T, S-i Okamoto, Lipton SA (2017) MEF2D haploinsufficiency downregulates the NRF2 pathway and renders photoreceptors susceptible to light-induced oxidative stress. Proc Natl Acad Sci 114(20):E4048–E4056.  https://doi.org/10.1073/pnas.1613067114 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Dong A, Shen J, Krause M, Akiyama H, Hackett SF, Lai H, Campochiaro PA (2006) Superoxide dismutase 1 protects retinal cells from oxidative damage. J Cell Physiol 208(3):516–526.  https://doi.org/10.1002/jcp.20683 CrossRefPubMedGoogle Scholar
  48. 48.
    Shen S, Sujirakul T, Tsang SH (2014) Next-generation sequencing revealed a novel mutation in the gene encoding the beta subunit of rod phosphodiesterase. Ophthalmic Genet 35(3):142–150.  https://doi.org/10.3109/13816810.2014.915328 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Jonas Children’s Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Department of OphthalmologyColumbia UniversityNew YorkUSA
  2. 2.Edward S. Harkness Eye InstituteNew York-Presbyterian HospitalNew YorkUSA
  3. 3.Departments of Ophthalmology, Pathology, and Cell Biology, College of Physicians and SurgeonsColumbia UniversityNew YorkUSA

Personalised recommendations