Advertisement

Cellular and Molecular Life Sciences

, Volume 75, Issue 13, pp 2447–2456 | Cite as

Tight co-twin similarity of monozygotic twins for hTERT protein level of T cell subsets, for telomere length and mitochondrial DNA copy number, but not for telomerase activity

  • Dóra Melicher
  • Anett Illés
  • Éva Pállinger
  • Árpád Ferenc Kovács
  • Levente Littvay
  • Ádám Domonkos Tárnoki
  • Dávid László Tárnoki
  • András Bikov
  • Mária Judit Molnár
  • Edit Irén Buzás
  • András FalusEmail author
Original Article

Abstract

Our study analyzed lymphocyte subpopulations of 32 monozygotic twins and compared the level of the catalytic reverse transcriptase protein subunit (hTERT) in T lymphocytes (Tly), helper- (Th), cytotoxic- (Tc) and regulatory T cell (Treg) subgroups. Four variables related to telomere and mitochondrial biology were simultaneously assessed, applying multi-parametric flow cytometry, TRAP-ELISA assay and qPCR standard curve method on peripheral blood mononuclear cell (PBMC) samples of genetically matched individuals. Twin data of telomerase activity (TA), hTERT protein level, telomere length (TL) and mitochondrial DNA copy number (mtDNAcn) were analyzed for co-twin similarity. The present study has provided novel information by demonstrating very high intraclass correlation (ICC) of hTERT protein level in T lymphocytes (0.891) and in both Th (0.896), Treg (0.885) and Tc (0.798) cell subgroups. When comparing results measured from PBMCs, intraclass correlation was also high for telomere length (0.815) and considerable for mtDNA copy number (0.524), and again exceptionally high for the rate-limiting telomerase subunit, hTERT protein level (0.946). In contrast, telomerase activity showed no co-twin similarity (ICC 0). By comparing relative amounts of hTERT protein levels in different lymphocyte subgroups of twin subjects, in Treg cells significantly higher level could be detected compared to Tly, Th or Tc cell subgroups. This is the first study that simultaneously analyzed co-twin similarity in MZ twins for the above four variables and alongside assessed their relationship, whereby positive association was found between TL and mtDNAcn.

Keywords

hTERT Telomerase activity Telomere length Mitochondrial DNA copy number T Lymphocytes Regulatory T cells Telomere-independent functions of telomerase Twin studies Epigenetics 

Notes

Acknowledgements

The authors are grateful to Ms. Nora Fekete for her assistance throughout the experiments and preparations, to Mrs. Monika Banlaky for her assistance in blood draw and to Viktor Molnar, MD for his assistance in the validation of qPCR results. The authors would also like to thank Marcell Szily for his help in the logistics of sample transports.

Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest to declare.

Funding

The study was supported by the grant of Hungarian Pulmonology Foundation (2015).

Supplementary material

18_2017_2738_MOESM1_ESM.pptx (2.4 mb)
Supplementary material 1 (PPTX 2433 kb)
18_2017_2738_MOESM2_ESM.pptx (448 kb)
Supplementary material 2 (PPTX 447 kb)
18_2017_2738_MOESM3_ESM.pptx (580 kb)
Supplementary material 3 (PPTX 580 kb)
18_2017_2738_MOESM4_ESM.pptx (896 kb)
Supplementary material 4 (PPTX 896 kb)
18_2017_2738_MOESM5_ESM.pptx (174 kb)
Supplementary material 5 (PPTX 173 kb)
18_2017_2738_MOESM6_ESM.pptx (534 kb)
Supplementary material 6 (PPTX 533 kb)
18_2017_2738_MOESM7_ESM.docx (18 kb)
Supplementary material 7 (DOCX 17 kb)
18_2017_2738_MOESM8_ESM.docx (18 kb)
Supplementary material 8 (DOCX 17 kb)
18_2017_2738_MOESM9_ESM.docx (85 kb)
Supplementary material 9 (DOCX 85 kb)
18_2017_2738_MOESM10_ESM.docx (28 kb)
Supplementary material 10 (DOCX 28 kb)

References

  1. 1.
    Alegria-Torres JA, Velazquez-Villafana M, Lopez-Gutierrez JM, Chagoyan-Martinez MM, Rocha-Amador DO, Costilla-Salazar R, Garcia-Torres L (2016) Association of Leukocyte Telomere Length and Mitochondrial DNA Copy Number in Children from Salamanca, Mexico. Genet Test Mol Biomarkers 20:654–659CrossRefPubMedGoogle Scholar
  2. 2.
    Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48CrossRefGoogle Scholar
  3. 3.
    Blackburn EH, Greider CW, Szostak JW (2006) Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat Med 12:1133–1138CrossRefPubMedGoogle Scholar
  4. 4.
    Bratic A, Larsson NG (2013) The role of mitochondria in aging. J Clin Invest 123:951–957CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cairney CJ, Keith WN (2008) Telomerase redefined: integrated regulation of hTR and hTERT for telomere maintenance and telomerase activity. Biochimie 90:13–23CrossRefPubMedGoogle Scholar
  6. 6.
    Chan SW, Blackburn EH (2002) New ways not to make ends meet: telomerase, DNA damage proteins and heterochromatin. Oncogene 21:553–563CrossRefPubMedGoogle Scholar
  7. 7.
    Chou JP, Effros RB (2013) T cell replicative senescence in human aging. Curr Pharm Des 19:1680–1698PubMedPubMedCentralGoogle Scholar
  8. 8.
    Cohen SB, Graham ME, Lovrecz GO, Bache N, Robinson PJ, Reddel RR (2007) Protein composition of catalytically active human telomerase from immortal cells. Science 315:1850–1853CrossRefPubMedGoogle Scholar
  9. 9.
    Collins K, Mitchell JR (2002) Telomerase in the human organism. Oncogene 21:564–579CrossRefPubMedGoogle Scholar
  10. 10.
    Correia-Melo C, Hewitt G, Passos JF (2014) Telomeres, oxidative stress and inflammatory factors: partners in cellular senescence? Longev Healthspan 3:1CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Counter CM, Gupta J, Harley CB, Leber B, Bacchetti S (1995) Telomerase activity in normal leukocytes and in hematologic malignancies. Blood 85:2315–2320PubMedGoogle Scholar
  12. 12.
    D’hautcourt JL (2002) Quantitative flow cytometric analysis of membrane antigen expression. Curr Protoc Cytom, Chapter 6, Unit 6.12Google Scholar
  13. 13.
    Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Suner D, Cigudosa JC, Urioste M, Benitez J, Boix-Chornet M, Sanchez-Aguilera A, Ling C, Carlsson E, Poulsen P, Vaag A, Stephan Z, Spector TD, Wu YZ, Plass C, Esteller M (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102:10604–10609CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hakonen AH, Isohanni P, Paetau A, Herva R, Suomalainen A, Lonnqvist T (2007) Recessive Twinkle mutations in early onset encephalopathy with mtDNA depletion. Brain 130:3032–3040CrossRefPubMedGoogle Scholar
  15. 15.
    Handa H, Matsushima T, Nishimoto N, Inoue M, Saitoh T, Yokohama A, Tsukamoto N, Mitsui T, Nakahashi H, Toyama K, Karasawa M, Ogawara H, Nojima Y, Murakami H (2010) Flow cytometric detection of human telomerase reverse transcriptase (hTERT) expression in a subpopulation of bone marrow cells. Leuk Res 34:177–183CrossRefPubMedGoogle Scholar
  16. 16.
    Hiyama K, Hirai Y, Kyoizumi S, Akiyama M, Hiyama E, Piatyszek MA, Shay JW, Ishioka S, Yamakido M (1995) Activation of telomerase in human lymphocytes and hematopoietic progenitor cells. J Immunol 155:3711–3715PubMedGoogle Scholar
  17. 17.
    Kaszubowska L (2008) Telomere shortening and ageing of the immune system. J Physiol Pharmacol 59(Suppl 9):169–186PubMedGoogle Scholar
  18. 18.
    Kazachkova N, Ramos A, Santos C, Lima M (2013) Mitochondrial DNA damage patterns and aging: revising the evidences for humans and mice. Aging Dis 4:337–350CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kim J-H, Kim HK, Ko J-H, Bang H, Lee D-C (2013) The relationship between leukocyte mitochondrial DNA copy number and telomere length in community-dwelling elderly women. PLoS One 8:e67227CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266:2011–2015CrossRefPubMedGoogle Scholar
  21. 21.
    Lee H, Cho J-H, Park W-J, Jung S-J, Choi I-J, Lee J-H (2017) Loss of the association between telomere length and mitochondrial DNA copy number contribute to colorectal carcinogenesis. Pathol Oncol Res. doi: 10.1007/s12253-017-0245-z
  22. 22.
    Li Z, Hu M, Zong X, He Y, Wang D, Dai L, Dong M, Zhou J, Cao H, Lv L, Chen X, Tang J (2015) Association of telomere length and mitochondrial DNA copy number with risperidone treatment response in first-episode antipsychotic-naïve schizophrenia. Scie Rep 5:18553CrossRefGoogle Scholar
  23. 23.
    Littvay L, Métneki J, Tárnoki ÁD, Tárnoki DL (2012) The Hungarian twin registry. Twin Res Human Genet 16:185–189CrossRefGoogle Scholar
  24. 24.
    Maida Y, Masutomi K (2015) Telomerase reverse transcriptase moonlights: therapeutic targets beyond telomerase. Cancer Sci 106:1486–1492CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Maini MK, Soares MV, Zilch CF, Akbar AN, Beverley PC (1999) Virus-induced CD8 + T cell clonal expansion is associated with telomerase up-regulation and telomere length preservation: a mechanism for rescue from replicative senescence. J Immunol 162:4521–4526PubMedGoogle Scholar
  26. 26.
    Melicher D, Buzas EI, Falus A (2015) Genetic and epigenetic trends in telomere research: a novel way in immunoepigenetics. Cell Mol Life Sci 72:4095–4109CrossRefPubMedGoogle Scholar
  27. 27.
    Morrison SJ, Prowse KR, Ho P, Weissman IL (1996) Telomerase activity in hematopoietic cells is associated with self-renewal potential. Immunity 5:207–216CrossRefPubMedGoogle Scholar
  28. 28.
    O'Callaghan NJ, Dhillon VS, Thomas P, Fenech M (2008) A quantitative real-time PCR method for absolute telomere length. Biotechniques, 44:807–809CrossRefPubMedGoogle Scholar
  29. 29.
    Otsuka I, Izumi T, Boku S, Kimura A, Zhang Y, Mouri K, Okazaki S, Shiroiwa K, Takahashi M, Ueno Y, Shirakawa O, Sora I, Hishimoto A (2017) Aberrant telomere length and mitochondrial DNA copy number in suicide completers. Sci Rep 7:3176CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Passos JF, Saretzki G, von Zglinicki T (2007) DNA damage in telomeres and mitochondria during cellular senescence: is there a connection? Nucleic Acids Res 35:7505–7513CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Petronis A (2006) Epigenetics and twins: three variations on the theme. Trends Genet 22:347–350CrossRefPubMedGoogle Scholar
  32. 32.
    Pinheiro J, Bates D (2009) Mixed-effects models in S and S-plus. Springer, New YorkGoogle Scholar
  33. 33.
    Poulsen P, Esteller M, Vaag A, Fraga MF (2007) The epigenetic basis of twin discordance in age-related diseases. Pediatr Res 61:38r–42rCrossRefPubMedGoogle Scholar
  34. 34.
    Qiu C, Enquobahrie DA, Gelaye B, Hevner K, Williams MA (2015) The association between leukocyte telomere length and mitochondrial DNA copy number in pregnant women: a pilot study. Clin Lab 61:363–369CrossRefPubMedGoogle Scholar
  35. 35.
    R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical ComputingGoogle Scholar
  36. 36.
    Ramlee MK, Wang J, Toh WX, Li S (2016) Transcription regulation of the human telomerase reverse transcriptase (hTERT) gene. Genes 7:50CrossRefPubMedCentralGoogle Scholar
  37. 37.
    Roth A, Yssel H, Pene J, Chavez EA, Schertzer M, Lansdorp PM, Spits H, Luiten RM (2003) Telomerase levels control the lifespan of human T lymphocytes. Blood 102:849–857CrossRefPubMedGoogle Scholar
  38. 38.
    Sahin E, Colla S, Liesa M, Moslehi J, Müller FL, Guo M, Cooper M, Kotton D, Fabian AJ, Walkey C, Maser RS, Tonon G, Foerster F, Xiong R, Wang YA, Shukla SA, Jaskelioff M, Martin ES, Heffernan TP, Protopopov A, Ivanova E, Mahoney JE, Kost-Alimova M, Perry SR, Bronson R, Liao R, Mulligan R, Shirihai OS, Chin L, Depinho RA (2011) Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 470:359–365CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Sahin E, Depinho RA (2012) Axis of ageing: telomeres, p53 and mitochondria. Nat Rev Mol Cell Biol 13:397–404CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Sanderson SL, Simon AK (2017) In aged primary T cells, mitochondrial stress contributes to telomere attrition measured by a novel imaging flow cytometry assay. Aging Cell 16:1234–1243CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Tan Q, Christiansen L, Thomassen M, Kruse TA, Christensen K (2013) Twins for epigenetic studies of human aging and development. Ageing Res Rev 12:182–187CrossRefPubMedGoogle Scholar
  42. 42.
    Tyrka AR, Carpenter LL, Kao H-T, Porton B, Philip NS, Ridout SJ, Ridout KK, Price LH (2015) Association of telomere length and mitochondrial DNA copy number in a community sample of healthy adults. Exp Gerontol 66:17–20CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Tyrka AR, Parade SH, Price LH, Kao H-T, Porton B, Philip NS, Welch ES, Carpenter LL (2016) Alterations of mitochondrial DNA copy number and telomere length with early adversity and psychopathology. Biol Psychiat 79:78–86CrossRefPubMedGoogle Scholar
  44. 44.
    Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3–new capabilities and interfaces. Nucleic Acids Res 40:e115CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Venteicher AS, Abreu EB, Meng Z, McCann KE, Terns RM, Veenstra TD, Terns MP, Artandi SE (2009) A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis. Science 323:644–648CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Wright WE, Piatyszek MA, Rainey WE, Byrd W, Shay JW (1996) Telomerase activity in human germline and embryonic tissues and cells. Dev Genet 18:173–179CrossRefPubMedGoogle Scholar
  47. 47.
    Zhou J, Ding D, Wang M, Cong Y-S (2014) Telomerase reverse transcriptase in the regulation of gene expression. BMB Rep 47:8–14CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Zhu X, Mao Y, Huang T, Yan C, Yu F, Du J, Dai J, Ma H, Jin G (2017) High mitochondrial DNA copy number was associated with an increased gastric cancer risk in a Chinese population. Mol Carcinog 56:2593–2600CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Dóra Melicher
    • 1
    • 2
    • 3
  • Anett Illés
    • 4
  • Éva Pállinger
    • 1
  • Árpád Ferenc Kovács
    • 1
  • Levente Littvay
    • 2
    • 5
  • Ádám Domonkos Tárnoki
    • 2
    • 6
  • Dávid László Tárnoki
    • 2
    • 6
  • András Bikov
    • 7
  • Mária Judit Molnár
    • 4
  • Edit Irén Buzás
    • 1
    • 3
  • András Falus
    • 1
    Email author
  1. 1.Department of Genetics, Cell- and ImmunobiologySemmelweis UniversityBudapestHungary
  2. 2.Hungarian Twin RegistryBudapestHungary
  3. 3.MTA-SE Immunproteogenomics Extracellular Vesicle Research GroupBudapestHungary
  4. 4.Institute of Genomic Medicine and Rare DisordersSemmelweis UniversityBudapestHungary
  5. 5.Central European UniversityBudapestHungary
  6. 6.Department of RadiologySemmelweis UniversityBudapestHungary
  7. 7.Department of PulmonologySemmelweis UniversityBudapestHungary

Personalised recommendations