Cellular and Molecular Life Sciences

, Volume 75, Issue 8, pp 1393–1409 | Cite as

Junctional adhesion molecule-A: functional diversity through molecular promiscuity



Cell adhesion molecules (CAMs) of the immunoglobulin superfamily (IgSF) regulate important processes such as cell proliferation, differentiation and morphogenesis. This activity is primarily due to their ability to initiate intracellular signaling cascades at cell–cell contact sites. Junctional adhesion molecule-A (JAM-A) is an IgSF-CAM with a short cytoplasmic tail that has no catalytic activity. Nevertheless, JAM-A is involved in a variety of biological processes. The functional diversity of JAM-A resides to a large part in a C-terminal PDZ domain binding motif which directly interacts with nine different PDZ domain-containing proteins. The molecular promiscuity of its PDZ domain motif allows JAM-A to recruit protein scaffolds to specific sites of cell–cell adhesion and to assemble signaling complexes at those sites. Here, we review the molecular characteristics of JAM-A, including its dimerization, its interaction with scaffolding proteins, and the phosphorylation of its cytoplasmic domain, and we describe how these characteristics translate into diverse biological activities.


Cell adhesion Dimerization JAM-A Junctional adhesion molecules PDZ domain Scaffolding protein Signaling 



Amino acid


Adherens junctions


Atypical protein kinase C




Coxsackie and adenovirus receptor


Calcium/calmodulin-dependent serine protein kinase


Cell division cycle 42


C-Src kinase


Epithelial-to-mesenchymal transition


4.1 protein and ERM


Guanine nucleotide exchange factor


Immunoglobulin superfamily


Junctional adhesion molecule


Lethal(2) giant larvae protein homolog


Abnormal cell lineage protein


Mitogen-activated protein kinase


Multiple PDZ domain protein 1


Primordial, spot-like adherens junctions


Protein associated with Lin-7


Partitioning defective


Pals1-associated tight junction protein


Protein interacting with C kinase 1


Plasma membrane calcium-transporting ATPase 4


PSD95–Discs large–ZO-1


Ras-related C3 botulinum toxin substrate 1


Rap guanine nucleotide exchange factor


Src homology




Tight junctions


Zonula occludens



We wish to thank Volker Gerke for continuous support. This work is supported by grants from the German Research Foundation to K.E. (EB 160/4-2, EB 160/5-1, EXC-1003 FF-2016-01) and from the Medical Faculty of the University Münster to K.E. (IZKF Eb2/020/14).

Compliance with ethical standards

Conflict of interest

The authors declare to have no conflict of interest.


  1. 1.
    Yeaman C, Grindstaff KK, Nelson WJ (1999) New perspectives on mechanisms involved in generating epithelial cell polarity. Physiol Rev 79(1):73–98PubMedCrossRefGoogle Scholar
  2. 2.
    Cheng CY, Mruk DD (2002) Cell junction dynamics in the testis: sertoli-germ cell interactions and male contraceptive development. Physiol Rev 82(4):825–874.  https://doi.org/10.1152/physrev.00009.2002 PubMedCrossRefGoogle Scholar
  3. 3.
    Vestweber D (2015) How leukocytes cross the vascular endothelium. Nat Rev Immunol 15(11):692–704.  https://doi.org/10.1038/nri3908 PubMedCrossRefGoogle Scholar
  4. 4.
    Pawson T, Nash P (2003) Assembly of cell regulatory systems through protein interaction domains. Science 300(5618):445–452PubMedCrossRefGoogle Scholar
  5. 5.
    Famulski JK, Trivedi N, Howell D, Yang Y, Tong Y, Gilbertson R, Solecki DJ (2010) Siah regulation of Pard3A controls neuronal cell adhesion during germinal zone exit. Science 330(6012):1834–1838PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Takeichi M (2014) Dynamic contacts: rearranging adherens junctions to drive epithelial remodelling. Nat Rev Mol Cell Biol 15(6):397–410.  https://doi.org/10.1038/nrm3802 PubMedCrossRefGoogle Scholar
  7. 7.
    Martin-Padura I, Lostaglio S, Schneemann M, Williams L, Romano M, Fruscella P, Panzeri C, Stoppacciaro A, Ruco L, Villa A, Simmons D, Dejana E (1998) Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol 142(1):117–127PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Kornecki E, Walkowiak B, Naik UP, Ehrlich YH (1990) Activation of human platelets by a stimulatory monoclonal antibody. J Biol Chem 265(17):10042–10048PubMedGoogle Scholar
  9. 9.
    Ebnet K (2017) Junctional adhesion molecules (JAMs): cell adhesion receptors with pleiotropic functions in cell physiology and development. Physiol Rev 97(4):1529–1554.  https://doi.org/10.1152/physrev.00004.2017 PubMedCrossRefGoogle Scholar
  10. 10.
    Laukoetter MG, Nava P, Lee WY, Severson EA, Capaldo CT, Babbin BA, Williams IR, Koval M, Peatman E, Campbell JA, Dermody TS, Nusrat A, Parkos CA (2007) JAM-A regulates permeability and inflammation in the intestine in vivo. J Exp Med 204(13):3067–3076PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Mitchell LA, Ward C, Kwon M, Mitchell PO, Quintero DA, Nusrat A, Parkos CA, Koval M (2015) Junctional adhesion molecule A promotes epithelial tight junction assembly to augment lung barrier function. Am J Pathol 185(2):372–386.  https://doi.org/10.1016/j.ajpath.2014.10.010 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Khounlotham M, Kim W, Peatman E, Nava P, Medina-Contreras O, Addis C, Koch S, Fournier B, Nusrat A, Denning TL, Parkos CA (2012) Compromised intestinal epithelial barrier induces adaptive immune compensation that protects from colitis. Immunity 37(3):563–573.  https://doi.org/10.1016/j.immuni.2012.06.017 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Del Maschio A, De Luigi A, Martin-Padura I, Brockhaus M, Bartfai T, Fruscella P, Adorini L, Martino G, Furlan R, De Simoni MG, Dejana E (1999) Leukocyte recruitment in the cerebrospinal fluid of mice with experimental meningitis is inhibited by an antibody to Junctional Adhesion Molecule (JAM). J Exp Med 190(9):1351–1356PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Cera MR, Del Prete A, Vecchi A, Corada M, Martin-Padura I, Motoike T, Tonetti P, Bazzoni G, Vermi W, Gentili F, Bernasconi S, Sato TN, Mantovani A, Dejana E (2004) Increased DC trafficking to lymph nodes and contact hypersensitivity in junctional adhesion molecule-A-deficient mice. J Clin Investig 114(5):729–738PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Corada M, Chimenti S, Cera MR, Vinci M, Salio M, Fiordaliso F, De Angelis N, Villa A, Bossi M, Staszewsky LI, Vecchi A, Parazzoli D, Motoike T, Latini R, Dejana E (2005) Junctional adhesion molecule-A-deficient polymorphonuclear cells show reduced diapedesis in peritonitis and heart ischemia–reperfusion injury. Proc Natl Acad Sci USA 102(30):10634–10639PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Khandoga A, Kessler JS, Meissner H, Hanschen M, Corada M, Motoike T, Enders G, Dejana E, Krombach F (2005) Junctional adhesion molecule-A deficiency increases hepatic ischemia–reperfusion injury despite reduction of neutrophil transendothelial migration. Blood 106(2):725–733PubMedCrossRefGoogle Scholar
  17. 17.
    Vetrano S, Rescigno M, Rosaria Cera M, Correale C, Rumio C, Doni A, Fantini M, Sturm A, Borroni E, Repici A, Locati M, Malesci A, Dejana E, Danese S (2008) Unique role of junctional adhesion molecule-A in maintaining mucosal homeostasis in inflammatory bowel disease. Gastroenterology 135(1):173–184PubMedCrossRefGoogle Scholar
  18. 18.
    Cera MR, Fabbri M, Molendini C, Corada M, Orsenigo F, Rehberg M, Reichel CA, Krombach F, Pardi R, Dejana E (2009) JAM-A promotes neutrophil chemotaxis by controlling integrin internalization and recycling. J Cell Sci 122(Pt 2):268–277PubMedCrossRefGoogle Scholar
  19. 19.
    Lakshmi SP, Reddy AT, Naik MU, Naik UP, Reddy RC (2012) Effects of JAM-A deficiency or blocking antibodies on neutrophil migration and lung injury in a murine model of ALI. Am J Physiol Lung Cell Mol Physiol 303(9):L758–L766.  https://doi.org/10.1152/ajplung.00107.2012 PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Naik MU, Stalker TJ, Brass LF, Naik UP (2012) JAM-A protects from thrombosis by suppressing integrin alphaIIbbeta3-dependent outside-in signaling in platelets. Blood 119(14):3352–3360PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Naik MU, Caplan JL, Naik UP (2014) Junctional adhesion molecule-A suppresses platelet integrin alphaIIbbeta3 signaling by recruiting Csk to the integrin-c-Src complex. Blood 123(9):1393–1402.  https://doi.org/10.1182/blood-2013-04-496232 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Karshovska E, Zhao Z, Blanchet X, Schmitt MM, Bidzhekov K, Soehnlein O, von Hundelshausen P, Mattheij NJ, Cosemans JM, Megens RT, Koeppel TA, Schober A, Hackeng TM, Weber C, Koenen RR (2015) Hyperreactivity of junctional adhesion molecule a-deficient platelets accelerates atherosclerosis in hyperlipidemic mice. Circ Res 116(4):587–599.  https://doi.org/10.1161/CIRCRESAHA.116.304035 PubMedCrossRefGoogle Scholar
  23. 23.
    Kobayashi I, Kobayashi-Sun J, Kim AD, Pouget C, Fujita N, Suda T, Traver D (2014) Jam1a-Jam2a interactions regulate haematopoietic stem cell fate through Notch signalling. Nature 512(7514):319–323.  https://doi.org/10.1038/nature13623 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Cooke VG, Naik MU, Naik UP (2006) Fibroblast growth factor-2 failed to induce angiogenesis in junctional adhesion molecule-A-deficient mice. Arterioscler Thromb Vasc Biol 26(9):2005–2011PubMedCrossRefGoogle Scholar
  25. 25.
    Fededa JP, Esk C, Mierzwa B, Stanyte R, Yuan S, Zheng H, Ebnet K, Yan W, Knoblich JA, Gerlich DW (2016) MicroRNA-34/449 controls mitotic spindle orientation during mammalian cortex development. EMBO J 35(22):2386–2398.  https://doi.org/10.15252/embj.201694056 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Songyang Z, Fanning AS, Fu C, Xu J, Marfatia SM, Chisti AH, Crompton A, Chan AC, Anderson JM, Cantley LC (1997) Recognition of unique carboxy-terminal motifs by distinct PDZ domains. Science 275:73–77PubMedCrossRefGoogle Scholar
  27. 27.
    Kostrewa D, Brockhaus M, D’Arcy A, Dale GE, Nelboeck P, Schmid G, Mueller F, Bazzoni G, Dejana E, Bartfai T, Winkler FK, Hennig M (2001) X-ray structure of junctional adhesion molecule: structural basis for homophilic adhesion via a novel dimerization motif. EMBO J 20(16):4391–4398PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Prota AE, Campbell JA, Schelling P, Forrest JC, Watson MJ, Peters TR, Aurrand-Lions M, Imhof BA, Dermody TS, Stehle T (2003) Crystal structure of human junctional adhesion molecule 1: implications for reovirus binding. Proc Natl Acad Sci USA 100(9):5366–5371PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Mandell KJ, McCall IC, Parkos CA (2004) Involvement of the junctional adhesion molecule-1 (JAM1) homodimer interface in regulation of epithelial barrier function. J Biol Chem 279(16):16254–16262PubMedCrossRefGoogle Scholar
  30. 30.
    Monteiro AC, Luissint AC, Sumagin R, Lai C, Vielmuth F, Wolf MF, Laur O, Reiss K, Spindler V, Stehle T, Dermody TS, Nusrat A, Parkos CA (2014) Trans-dimerization of JAM-A regulates Rap2 and is mediated by a domain that is distinct from the cis-dimerization interface. Mol Biol Cell 25(10):1574–1585.  https://doi.org/10.1091/mbc.E14-01-0018 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Babinska A, Kedees MH, Athar H, Sobocki T, Sobocka MB, Ahmed T, Ehrlich YH, Hussain MM, Kornecki E (2002) Two regions of the human platelet F11-receptor (F11R) are critical for platelet aggregation, potentiation and adhesion. Thromb Haemost 87(4):712–721PubMedGoogle Scholar
  32. 32.
    Scott DW, Tolbert CE, Graham DM, Wittchen E, Bear JE, Burridge K (2015) N-glycosylation controls the function of junctional adhesion molecule-A. Mol Biol Cell 26(18):3205–3214.  https://doi.org/10.1091/mbc.E14-12-1604 PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Wojcikiewicz EP, Koenen RR, Fraemohs L, Minkiewicz J, Azad H, Weber C, Moy VT (2009) LFA-1 binding destabilizes the JAM-A homophilic interaction during leukocyte transmigration. Biophys J 96(1):285–293PubMedCrossRefGoogle Scholar
  34. 34.
    Pertz O, Bozic D, Koch AW, Fauser C, Brancaccio A, Engel J (1999) A new crystal structure, Ca2+ dependence and mutational analysis reveal molecular details of E-cadherin homoassociation. EMBO J 18(7):1738–1747PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Narita H, Yamamoto Y, Suzuki M, Miyazaki N, Yoshida A, Kawai K, Iwasaki K, Nakagawa A, Takai Y, Sakisaka T (2011) Crystal Structure of the cis-Dimer of Nectin-1: implications for the architecture of cell–cell junctions. J Biol Chem 286(14):12659–12669PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Harrison OJ, Jin X, Hong S, Bahna F, Ahlsen G, Brasch J, Wu Y, Vendome J, Felsovalyi K, Hampton CM, Troyanovsky RB, Ben-Shaul A, Frank J, Troyanovsky SM, Shapiro L, Honig B (2011) The extracellular architecture of adherens junctions revealed by crystal structures of type I cadherins. Structure 19(2):244–256.  https://doi.org/10.1016/j.str.2010.11.016 PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Harrison OJ, Vendome J, Brasch J, Jin X, Hong S, Katsamba PS, Ahlsen G, Troyanovsky RB, Troyanovsky SM, Honig B, Shapiro L (2012) Nectin ectodomain structures reveal a canonical adhesive interface. Nat Struct Mol Biol 19(9):906–915.  https://doi.org/10.1038/nsmb.2366 PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Ebnet K, Schulz CU, Meyer Zu Brickwedde MK, Pendl GG, Vestweber D (2000) Junctional adhesion molecule interacts with the PDZ domain-containing proteins AF-6 and ZO-1. J Biol Chem 275(36):27979–27988.  https://doi.org/10.1074/jbc.m002363200 PubMedGoogle Scholar
  39. 39.
    Monteiro AC, Sumagin R, Rankin CR, Leoni G, Mina MJ, Reiter DM, Stehle T, Dermody TS, Schaefer SA, Hall RA, Nusrat A, Parkos CA (2013) JAM-A associates with ZO-2, afadin, and PDZ-GEF1 to activate Rap2c and regulate epithelial barrier function. Mol Biol Cell 24(18):2849–2860.  https://doi.org/10.1091/mbc.E13-06-0298 PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Bazzoni G, Martinez-Estrada OM, Orsenigo F, Cordenonsi M, Citi S, Dejana E (2000) Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occludin. J Biol Chem 275(27):20520–20526PubMedCrossRefGoogle Scholar
  41. 41.
    Nomme J, Fanning AS, Caffrey M, Lye MF, Anderson JM, Lavie A (2011) The Src homology 3 domain is required for junctional adhesion molecule binding to the third PDZ domain of the scaffolding protein ZO-1. J Biol Chem 286(50):43352–43360PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Martinez-Estrada OM, Villa A, Breviario F, Orsenigo F, Dejana E, Bazzoni G (2001) Association of junctional adhesion molecule with calcium/calmodulin-dependent serine protein kinase (CASK/LIN-2) in human epithelial Caco-2 cells. J Biol Chem 276(12):9291–9296PubMedCrossRefGoogle Scholar
  43. 43.
    Itoh M, Sasaki H, Furuse M, Ozaki H, Kita T, Tsukita S (2001) Junctional adhesion molecule (JAM) binds to PAR-3: a possible mechanism for the recruitment of PAR-3 to tight junctions. J Cell Biol 154(3):491–498PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Hamazaki Y, Itoh M, Sasaki H, Furuse M, Tsukita S (2002) Multi-PDZ domain protein 1 (MUPP1) is concentrated at tight junctions through its possible interaction with claudin-1 and junctional adhesion molecule. J Biol Chem 277(1):455–461PubMedCrossRefGoogle Scholar
  45. 45.
    Reymond N, Garrido-Urbani S, Borg JP, Dubreuil P, Lopez M (2005) PICK-1: a scaffold protein that interacts with Nectins and JAMs at cell junctions. FEBS Lett 579(10):2243–2249PubMedCrossRefGoogle Scholar
  46. 46.
    Severson EA, Lee WY, Capaldo CT, Nusrat A, Parkos CA (2009) Junctional adhesion molecule A interacts with Afadin and PDZ-GEF2 to activate Rap1A, regulate beta1 integrin levels, and enhance cell migration. Mol Biol Cell 20(7):1916–1925PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Peddibhotla SS, Brinkmann BF, Kummer D, Tuncay H, Nakayama M, Adams RH, Gerke V, Ebnet K (2013) Tetraspanin CD9 links junctional adhesion molecule-A to alphavbeta3 integrin to mediate basic fibroblast growth factor-specific angiogenic signaling. Mol Biol Cell 24(7):933–944.  https://doi.org/10.1091/mbc.E12-06-0481 PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Ebnet K (2008) Organization of multiprotein complexes at cell-cell junctions. Histochem Cell Biol 130(1):1–20PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Stricker NL, Christopherson KS, Yi BA, Schatz PJ, Raab RW, Dawes G, Bassett DE Jr, Bredt DS, Li M (1997) PDZ domain of neuronal nitric oxide synthase recognizes novel C-terminal peptide sequences. Nat Biotechnol 15(4):336–342.  https://doi.org/10.1038/nbt0497-336 PubMedCrossRefGoogle Scholar
  50. 50.
    Tonikian R, Zhang Y, Sazinsky SL, Currell B, Yeh JH, Reva B, Held HA, Appleton BA, Evangelista M, Wu Y, Xin X, Chan AC, Seshagiri S, Lasky LA, Sander C, Boone C, Bader GD, Sidhu SS (2008) A specificity map for the PDZ domain family. PLoS Biol 6(9):e239.  https://doi.org/10.1371/journal.pbio.0060239 PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Morales FC, Takahashi Y, Momin S, Adams H, Chen X, Georgescu MM (2007) NHERF1/EBP50 head-to-tail intramolecular interaction masks association with PDZ domain ligands. Mol Cell Biol 27(7):2527–2537.  https://doi.org/10.1128/MCB.01372-06 PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Prasad R, Gu Y, Alder H, Nakamura T, Canaani O, Saito H, Huebner K, Gale RP, Nowell PC, Kuriyama K et al (1993) Cloning of the ALL-1 fusion partner, the AF-6 gene, involved in acute myeloid leukemias with the t(6;11) chromosome translocation. Cancer Res 53(23):5624–5628PubMedGoogle Scholar
  53. 53.
    Mandai K, Nakanishi H, Satoh A, Obaishi H, Wada M, Nishioka H, Itoh M, Mizoguchi A, Aoki T, Fujimoto T, Matsuda Y, Tsukita S, Takai Y (1997) Afadin: a novel actin filament-binding protein with one PDZ domain localized at cadherin-based cell-to-cell adherens junction [published erratum appears in J Cell Biol 1997 Nov 17;139(4):1060]. J Cell Biol 139(2):517–528PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Takahashi K, Nakanishi H, Miyahara M, Mandai K, Satoh K, Satoh A, Nishioka H, Aoki J, Nomoto A, Mizoguchi A, Takai Y (1999) Nectin/PRR: an immunoglobulin-like cell adhesion molecule recruited to cadherin-based adherens junctions through interaction with Afadin, a PDZ domain-containing protein. J Cell Biol 145(3):539–549PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Yamamoto T, Harada N, Kano K, Taya S, Canaani E, Matsuura Y, Mizoguchi A, Ide C, Kaibuchi K (1997) The Ras target AF-6 interacts with ZO-1 and serves as a peripheral component of tight junctions in epithelial cells. J Cell Biol 139(3):785–795PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Asakura T, Nakanishi H, Sakisaka T, Takahashi K, Mandai K, Nishimura M, Sasaki T, Takai Y (1999) Similar and differential behaviour between the nectin-afadin-ponsin and cadherin-catenin systems during the formation and disruption of the polarized junctional alignment in epithelial cells. Genes Cells 4(10):573–581PubMedCrossRefGoogle Scholar
  57. 57.
    Yokoyama S, Tachibana K, Nakanishi H, Yamamoto Y, Irie K, Mandai K, Nagafuchi A, Monden M, Takai Y (2001) alpha-catenin-independent recruitment of ZO-1 to nectin-based cell–cell adhesion sites through afadin. Mol Biol Cell 12(6):1595–1609PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Tachibana K, Nakanishi H, Mandai K, Ozaki K, Ikeda W, Yamamoto Y, Nagafuchi A, Tsukita S, Takai Y (2000) Two cell adhesion molecules, nectin and cadherin, interact through their cytoplasmic domain-associated proteins. J Cell Biol 150(5):1161–1176PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Pokutta S, Drees F, Takai Y, Nelson WJ, Weis WI (2002) Biochemical and structural definition of the l-afadin- and actin-binding sites of alpha-catenin. J Biol Chem 277(21):18868–18874PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Boettner B, Govek EE, Cross J, Van Aelst L (2000) The junctional multidomain protein AF-6 is a binding partner of the Rap1A GTPase and associates with the actin cytoskeletal regulator profilin. Proc Natl Acad Sci USA 97(16):9064–9069PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Kooistra MR, Dube N, Bos JL (2007) Rap1: a key regulator in cell–cell junction formation. J Cell Sci 120(Pt 1):17–22.  https://doi.org/10.1242/jcs.03306 PubMedGoogle Scholar
  62. 62.
    Boettner B, Van Aelst L (2009) Control of cell adhesion dynamics by Rap1 signaling. Curr Opin Cell Biol 21(5):684–693.  https://doi.org/10.1016/j.ceb.2009.06.004 PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Mandell KJ, Babbin BA, Nusrat A, Parkos CA (2005) Junctional adhesion molecule 1 regulates epithelial cell morphology through effects on beta1 integrins and Rap1 activity. J Biol Chem 280(12):11665–11674PubMedCrossRefGoogle Scholar
  64. 64.
    Friedl P, Mayor R (2017) Tuning collective cell migration by cell–cell junction regulation. Cold Spring Harb Perspect Biol.  https://doi.org/10.1101/cshperspect.a029199 PubMedGoogle Scholar
  65. 65.
    Hidalgo-Carcedo C, Hooper S, Chaudhry SI, Williamson P, Harrington K, Leitinger B, Sahai E (2011) Collective cell migration requires suppression of actomyosin at cell–cell contacts mediated by DDR1 and the cell polarity regulators Par3 and Par6. Nat Cell Biol 13(1):49–58.  https://doi.org/10.1038/ncb2133 PubMedCrossRefGoogle Scholar
  66. 66.
    Funke L, Dakoji S, Bredt DS (2005) Membrane-associated guanylate kinases regulate adhesion and plasticity at cell junctions. Annu Rev Biochem 74:219–245PubMedCrossRefGoogle Scholar
  67. 67.
    Umeda K, Ikenouchi J, Katahira-Tayama S, Furuse K, Sasaki H, Nakayama M, Matsui T, Tsukita S, Furuse M (2006) ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell 126(4):741–754PubMedCrossRefGoogle Scholar
  68. 68.
    Yonemura S, Itoh M, Nagafuchi A, Tsukita S (1995) Cell-to-cell adherens junction formation and actin filament organization: similarities and differences between non-polarized fibroblasts and polarized epithelial cells. J Cell Sci 108(Pt 1):127–142PubMedGoogle Scholar
  69. 69.
    Rajasekaran AK, Hojo M, Huima T, Rodriguez-Boulan E (1996) Catenins and zonula occludens-1 form a complex during early stages in the assembly of tight junctions. J Cell Biol 132(3):451–463PubMedCrossRefGoogle Scholar
  70. 70.
    Itoh M, Nagafuchi A, Moroi S, Tsukita S (1997) Involvement of ZO-1 in cadherin-based cell adhesion through its direct binding to alpha catenin and actin filaments. J Cell Biol 138(1):181–192PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Maiers JL, Peng X, Fanning AS, DeMali KA (2013) ZO-1 recruitment to alpha-catenin–a novel mechanism for coupling the assembly of tight junctions to adherens junctions. J Cell Sci 126(Pt 17):3904–3915.  https://doi.org/10.1242/jcs.126565 PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Ando-Akatsuka Y, Yonemura S, Itoh M, Furuse M, Tsukita S (1999) Differential behavior of E-cadherin and occludin in their colocalization with ZO-1 during the establishment of epithelial cell polarity. J Cell Physiol 179(2):115–125PubMedCrossRefGoogle Scholar
  73. 73.
    Ooshio T, Kobayashi R, Ikeda W, Miyata M, Fukumoto Y, Matsuzawa N, Ogita H, Takai Y (2010) Involvement of the interaction of afadin with ZO-1 in the formation of tight junctions in Madin–Darby canine kidney cells. J Biol Chem 285(7):5003–5012.  https://doi.org/10.1074/jbc.M109.043760 PubMedCrossRefGoogle Scholar
  74. 74.
    Umeda K, Matsui T, Nakayama M, Furuse K, Sasaki H, Furuse M, Tsukita S (2004) Establishment and characterization of cultured epithelial cells lacking expression of ZO-1. J Biol Chem 279(43):44785–44794PubMedCrossRefGoogle Scholar
  75. 75.
    Ikenouchi J, Umeda K, Tsukita S, Furuse M (2007) Requirement of ZO-1 for the formation of belt-like adherens junctions during epithelial cell polarization. J Cell Biol 176(6):779–786.  https://doi.org/10.1083/jcb.200612080 PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Fanning AS, Anderson JM (2009) Zonula occludens-1 and -2 are cytosolic scaffolds that regulate the assembly of cellular junctions. Ann N Y Acad Sci 1165:113–120.  https://doi.org/10.1111/j.1749-6632.2009.04440.x PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Ozaki H, Ishii K, Horiuchi H, Arai H, Kawamoto T, Okawa K, Iwamatsu A, Kita T (1999) Cutting edge: combined treatment of TNF-alpha and IFN-gamma causes redistribution of junctional adhesion molecule in human endothelial cells. J Immunol 163(2):553–557PubMedGoogle Scholar
  78. 78.
    McKenzie JA, Ridley AJ (2007) Roles of Rho/ROCK and MLCK in TNF-alpha-induced changes in endothelial morphology and permeability. J Cell Physiol 213(1):221–228.  https://doi.org/10.1002/jcp.21114 PubMedCrossRefGoogle Scholar
  79. 79.
    Stamatovic SM, Sladojevic N, Keep RF, Andjelkovic AV (2012) Relocalization of junctional adhesion molecule A during inflammatory stimulation of brain endothelial cells. Mol Cell Biol 32(17):3414–3427.  https://doi.org/10.1128/MCB.06678-11 PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Ostermann G, Weber KS, Zernecke A, Schroder A, Weber C (2002) JAM-1 is a ligand of the beta(2) integrin LFA-1 involved in transendothelial migration of leukocytes. Nat Immunol 3(2):151–158PubMedCrossRefGoogle Scholar
  81. 81.
    Fraemohs L, Koenen RR, Ostermann G, Heinemann B, Weber C (2004) The functional interaction of the beta2 integrin lymphocyte function-associated antigen-1 with junctional adhesion molecule-A is mediated by the I domain. J Immunol 173(10):6259–6264PubMedCrossRefGoogle Scholar
  82. 82.
    Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. Annu Rev Biochem 78:857–902.  https://doi.org/10.1146/annurev.biochem.78.081307.110540 PubMedCrossRefGoogle Scholar
  83. 83.
    Macara IG (2004) Parsing the polarity code. Nat Rev Mol Cell Biol 5(3):220–231PubMedCrossRefGoogle Scholar
  84. 84.
    Suzuki A, Ohno S (2006) The PAR-aPKC system: lessons in polarity. J Cell Sci 119(Pt 6):979–987PubMedCrossRefGoogle Scholar
  85. 85.
    Campanale JP, Sun TY, Montell DJ (2017) Development and dynamics of cell polarity at a glance. J Cell Sci 130(7):1201–1207.  https://doi.org/10.1242/jcs.188599 PubMedCrossRefGoogle Scholar
  86. 86.
    Suzuki A, Hirata M, Kamimura K, Maniwa R, Yamanaka T, Mizuno K, Kishikawa M, Hirose H, Amano Y, Izumi N, Miwa Y, Ohno S (2004) aPKC acts upstream of PAR-1b in both the establishment and maintenance of mammalian epithelial polarity. Curr Biol 14(16):1425–1435PubMedCrossRefGoogle Scholar
  87. 87.
    Hurov JB, Watkins JL, Piwnica-Worms H (2004) Atypical PKC phosphorylates PAR-1 kinases to regulate localization and activity. Curr Biol 14(8):736–741PubMedCrossRefGoogle Scholar
  88. 88.
    Benton R, St Johnston D (2003) Drosophila PAR-1 and 14-3-3 inhibit Bazooka/PAR-3 to establish complementary cortical domains in polarized cells. Cell 115(6):691–704PubMedCrossRefGoogle Scholar
  89. 89.
    Morais-de-Sa E, Mirouse V, St Johnston D (2010) aPKC phosphorylation of Bazooka defines the apical/lateral border in Drosophila epithelial cells. Cell 141(3):509–523PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Ebnet K, Suzuki A, Horikoshi Y, Hirose T, Meyer Zu Brickwedde MK, Ohno S, Vestweber D (2001) The cell polarity protein ASIP/PAR-3 directly associates with junctional adhesion molecule (JAM). EMBO J 20(14):3738–3748PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Suzuki A, Ishiyama C, Hashiba K, Shimizu M, Ebnet K, Ohno S (2002) aPKC kinase activity is required for the asymmetric differentiation of the premature junctional complex during epithelial cell polarization. J Cell Sci 115(Pt 18):3565–3573PubMedCrossRefGoogle Scholar
  92. 92.
    Iden S, Misselwitz S, Peddibhotla SS, Tuncay H, Rehder D, Gerke V, Robenek H, Suzuki A, Ebnet K (2012) aPKC phosphorylates JAM-A at Ser285 to promote cell contact maturation and tight junction formation. J Cell Biol 196(5):623–639.  https://doi.org/10.1083/jcb.201104143 PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Yamanaka T, Horikoshi Y, Suzuki A, Sugiyama Y, Kitamura K, Maniwa R, Nagai Y, Yamashita A, Hirose T, Ishikawa H, Ohno S (2001) Par-6 regulates aPKC activity in a novel way and mediates cell–cell contact-induced formation of epithelial junctional complex. Genes Cells 6:721–731PubMedCrossRefGoogle Scholar
  94. 94.
    Nagai-Tamai Y, Mizuno K, Hirose T, Suzuki A, Ohno S (2002) Regulated protein–protein interaction between aPKC and PAR-3 plays an essential role in the polarization of epithelial cells. Genes Cells 7(11):1161–1171PubMedCrossRefGoogle Scholar
  95. 95.
    Wang Z, Sandiford S, Wu C, Li SS (2009) Numb regulates cell–cell adhesion and polarity in response to tyrosine kinase signalling. EMBO J 28(16):2360–2373PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Yamanaka T, Horikoshi Y, Sugiyama Y, Ishiyama C, Suzuki A, Hirose T, Iwamatsu A, Shinohara A, Ohno S (2003) Mammalian Lgl forms a protein complex with PAR-6 and aPKC independently of PAR-3 to regulate epithelial cell polarity. Curr Biol 13(9):734–743PubMedCrossRefGoogle Scholar
  97. 97.
    Suzuki A, Yamanaka T, Hirose T, Manabe N, Mizuno K, Shimizu M, Akimoto K, Izumi Y, Ohnishi T, Ohno S (2001) Atypical protein kinase C is involved in the evolutionary conserved PAR protein complex and plays a critical role in establishing epithelia-specific junctional structures. J Cell Biol 152(6):1183–1196PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Joberty G, Petersen C, Gao L, Macara IG (2000) The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nat Cell Biol 2(8):531–539PubMedCrossRefGoogle Scholar
  99. 99.
    Lin D, Edwards AS, Fawcett JP, Mbamalu G, Scott JD, Pawson T (2000) A mammalian PAR-3-PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nat Cell Biol 2(8):540–547PubMedCrossRefGoogle Scholar
  100. 100.
    Tuncay H, Brinkmann BF, Steinbacher T, Schurmann A, Gerke V, Iden S, Ebnet K (2015) JAM-A regulates cortical dynein localization through Cdc42 to control planar spindle orientation during mitosis. Nat Commun 6:8128.  https://doi.org/10.1038/ncomms9128 PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Nakagawa M, Fukata M, Yamaga M, Itoh N, Kaibuchi K (2001) Recruitment and activation of Rac1 by the formation of E-cadherin-mediated cell–cell adhesion sites. J Cell Sci 114(Pt 10):1829–1838PubMedGoogle Scholar
  102. 102.
    Goodwin M, Kovacs EM, Thoreson MA, Reynolds AB, Yap AS (2003) Minimal mutation of the cytoplasmic tail inhibits the ability of E-cadherin to activate Rac but not phosphatidylinositol 3-kinase: direct evidence of a role for cadherin-activated Rac signaling in adhesion and contact formation. J Biol Chem 278(23):20533–20539PubMedCrossRefGoogle Scholar
  103. 103.
    Yamada S, Nelson WJ (2007) Localized zones of Rho and Rac activities drive initiation and expansion of epithelial cell–cell adhesion. J Cell Biol 178(3):517–527PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Fukuhara T, Shimizu K, Kawakatsu T, Fukuyama T, Minami Y, Honda T, Hoshino T, Yamada T, Ogita H, Okada M, Takai Y (2004) Activation of Cdc42 by trans interactions of the cell adhesion molecules nectins through c-Src and Cdc42-GEF FRG. J Cell Biol 166(3):393–405PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Roh MH, Makarova O, Liu CJ, Shin K, Lee S, Laurinec S, Goyal M, Wiggins R, Margolis B (2002) The Maguk protein, Pals1, functions as an adapter, linking mammalian homologues of Crumbs and Discs Lost. J Cell Biol 157(1):161–172PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Bulgakova NA, Knust E (2009) The Crumbs complex: from epithelial-cell polarity to retinal degeneration. J Cell Sci 122(Pt 15):2587–2596.  https://doi.org/10.1242/jcs.023648 PubMedCrossRefGoogle Scholar
  107. 107.
    Margolis B (2017) The Crumbs3 polarity protein. Cold Spring Harb Perspect Biol.  https://doi.org/10.1101/cshperspect.a027961 Google Scholar
  108. 108.
    Adachi M, Hamazaki Y, Kobayashi Y, Itoh M, Tsukita S, Furuse M, Tsukita S (2009) Similar and distinct properties of MUPP1 and Patj, two homologous PDZ domain-containing tight-junction proteins. Mol Cell Biol 29(9):2372–2389PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Coyne CB, Voelker T, Pichla SL, Bergelson JM (2004) The coxsackievirus and adenovirus receptor interacts with the multi-PDZ domain protein-1 (MUPP-1) within the tight junction. J Biol Chem 279(46):48079–48084PubMedCrossRefGoogle Scholar
  110. 110.
    Roh MH, Liu CJ, Laurinec S, Margolis B (2002) The carboxyl terminus of zona occludens-3 binds and recruits a mammalian homologue of discs lost to tight junctions. J Biol Chem 277(30):27501–27509PubMedCrossRefGoogle Scholar
  111. 111.
    Shin K, Straight S, Margolis B (2005) PATJ regulates tight junction formation and polarity in mammalian epithelial cells. J Cell Biol 168(5):705–711PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Michel D, Arsanto JP, Massey-Harroche D, Beclin C, Wijnholds J, Le Bivic A (2005) PATJ connects and stabilizes apical and lateral components of tight junctions in human intestinal cells. J Cell Sci 118(Pt 17):4049–4057PubMedCrossRefGoogle Scholar
  113. 113.
    Hurd TW, Gao L, Roh MH, Macara IG, Margolis B (2003) Direct interaction of two polarity complexes implicated in epithelial tight junction assembly. Nat Cell Biol 5(2):137–142PubMedCrossRefGoogle Scholar
  114. 114.
    Krapivinsky G, Medina I, Krapivinsky L, Gapon S, Clapham DE (2004) SynGAP-MUPP1-CaMKII synaptic complexes regulate p38 MAP kinase activity and NMDA receptor-dependent synaptic AMPA receptor potentiation. Neuron 43(4):563–574.  https://doi.org/10.1016/j.neuron.2004.08.003 PubMedCrossRefGoogle Scholar
  115. 115.
    Baumgart S, Jansen F, Bintig W, Kalbe B, Herrmann C, Klumpers F, Koster SD, Scholz P, Rasche S, Dooley R, Metzler-Nolte N, Spehr M, Hatt H, Neuhaus EM (2014) The scaffold protein MUPP1 regulates odorant-mediated signaling in olfactory sensory neurons. J Cell Sci 127(Pt 11):2518–2527.  https://doi.org/10.1242/jcs.144220 PubMedCrossRefGoogle Scholar
  116. 116.
    Butz S, Okamoto M, Sudhof TC (1998) A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Cell 94(6):773–782PubMedCrossRefGoogle Scholar
  117. 117.
    Nix SL, Chishti AH, Anderson JM, Walther Z (2000) hCASK and hDlg associate in epithelia, and their src homology 3 and guanylate kinase domains participate in both intramolecular and intermolecular interactions. J Biol Chem 275(52):41192–41200.  https://doi.org/10.1074/jbc.M002078200 PubMedCrossRefGoogle Scholar
  118. 118.
    Lozovatsky L, Abayasekara N, Piawah S, Walther Z (2009) CASK deletion in intestinal epithelia causes mislocalization of LIN7C and the DLG1/Scrib polarity complex without affecting cell polarity. Mol Biol Cell 20(21):4489–4499.  https://doi.org/10.1091/mbc.E09-04-0280 PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Liu Y, Nusrat A, Schnell FJ, Reaves TA, Walsh S, Pochet M, Parkos CA (2000) Human junction adhesion molecule regulates tight junction resealing in epithelia. J Cell Sci 113(Pt 13):2363–2374PubMedGoogle Scholar
  120. 120.
    Aravindan RG, Fomin VP, Naik UP, Modelski MJ, Naik MU, Galileo DS, Duncan RL, Martin-Deleon PA (2012) CASK interacts with PMCA4b and JAM-A on the mouse sperm flagellum to regulate Ca(2+) homeostasis and motility. J Cell Physiol 227(8):3138–3150PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Schuh K, Uldrijan S, Gambaryan S, Roethlein N, Neyses L (2003) Interaction of the plasma membrane Ca2+ pump 4b/CI with the Ca2+/calmodulin-dependent membrane-associated kinase CASK. J Biol Chem 278(11):9778–9783.  https://doi.org/10.1074/jbc.M212507200 PubMedCrossRefGoogle Scholar
  122. 122.
    Shao M, Ghosh A, Cooke VG, Naik UP, Martin-DeLeon PA (2008) JAM-A is present in mammalian spermatozoa where it is essential for normal motility. Dev Biol 313(1):246–255PubMedCrossRefGoogle Scholar
  123. 123.
    Erlendsson S, Madsen KL (2015) Membrane binding and modulation of the PDZ domain of PICK1. Membranes (Basel) 5(4):597–615.  https://doi.org/10.3390/membranes5040597 CrossRefGoogle Scholar
  124. 124.
    Hanley JG (2006) Molecular mechanisms for regulation of AMPAR trafficking by PICK1. Biochem Soc Trans 34(Pt 5):931–935.  https://doi.org/10.1042/BST0340931 PubMedCrossRefGoogle Scholar
  125. 125.
    Jaulin-Bastard F, Saito H, Le Bivic A, Ollendorff V, Marchetto S, Birnbaum D, Borg JP (2001) The ERBB2/HER2 receptor differentially interacts with ERBIN and PICK1 PSD-95/DLG/ZO-1 domain proteins. J Biol Chem 276(18):15256–15263.  https://doi.org/10.1074/jbc.M010032200 PubMedCrossRefGoogle Scholar
  126. 126.
    Son J, Park MS, Park I, Lee HK, Lee SH, Kang B, Min BH, Ryoo J, Lee S, Bae JS, Kim SH, Park MJ, Lee HS (2014) Pick1 modulates ephrinB1-induced junctional disassembly through an association with ephrinB1. Biochem Biophys Res Commun 450(1):659–665.  https://doi.org/10.1016/j.bbrc.2014.06.027 PubMedCrossRefGoogle Scholar
  127. 127.
    Charrin S, Jouannet S, Boucheix C, Rubinstein E (2014) Tetraspanins at a glance. J Cell Sci 127(Pt 17):3641–3648.  https://doi.org/10.1242/jcs.154906 PubMedCrossRefGoogle Scholar
  128. 128.
    Hemler ME (2001) Specific tetraspanin functions. J Cell Biol 155(7):1103–1107.  https://doi.org/10.1083/jcb.200108061 PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Levy S, Shoham T (2005) Protein–protein interactions in the tetraspanin web. Physiology (Bethesda, Md) 20:218–224Google Scholar
  130. 130.
    Sobocka MB, Sobocki T, Babinska A, Hartwig JH, Li M, Ehrlich YH, Kornecki E (2004) Signaling pathways of the F11 receptor (F11R; a.k.a. JAM-1, JAM-A) in human platelets: F11R dimerization, phosphorylation and complex formation with the integrin GPIIIa. J Recept Signal Transduct Res 24(1–2):85–105PubMedCrossRefGoogle Scholar
  131. 131.
    Nourry C, Grant SG, Borg JP (2003) PDZ domain proteins: plug and play! Sci STKE 2003(179):RE7.  https://doi.org/10.1126/stke.2003.179.re7
  132. 132.
    Stipp CS, Kolesnikova TV, Hemler ME (2003) Functional domains in tetraspanin proteins. Trends Biochem Sci 28(2):106–112PubMedCrossRefGoogle Scholar
  133. 133.
    Naik MU, Mousa SA, Parkos CA, Naik UP (2003) Signaling through JAM-1 and {alpha}v{beta}3 is required for the angiogenic action of bFGF: dissociation of the JAM-1 and {alpha}v{beta}3 complex. Blood 102(6):2108–2114PubMedCrossRefGoogle Scholar
  134. 134.
    Luissint AC, Lutz PG, Calderwood DA, Couraud PO, Bourdoulous S (2008) JAM-L-mediated leukocyte adhesion to endothelial cells is regulated in cis by alpha4beta1 integrin activation. J Cell Biol 183(6):1159–1173PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H, Nardone J, Lee K, Reeves C, Li Y, Hu Y, Tan Z, Stokes M, Sullivan L, Mitchell J, Wetzel R, Macneill J, Ren JM, Yuan J, Bakalarski CE, Villen J, Kornhauser JM, Smith B, Li D, Zhou X, Gygi SP, Gu TL, Polakiewicz RD, Rush J, Comb MJ (2007) Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131(6):1190–1203PubMedCrossRefGoogle Scholar
  136. 136.
    Guo A, Villen J, Kornhauser J, Lee KA, Stokes MP, Rikova K, Possemato A, Nardone J, Innocenti G, Wetzel R, Wang Y, MacNeill J, Mitchell J, Gygi SP, Rush J, Polakiewicz RD, Comb MJ (2008) Signaling networks assembled by oncogenic EGFR and c-Met. Proc Natl Acad Sci USA 105(2):692–697PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Heibeck TH, Ding SJ, Opresko LK, Zhao R, Schepmoes AA, Yang F, Tolmachev AV, Monroe ME, Camp DG 2nd, Smith RD, Wiley HS, Qian WJ (2009) An extensive survey of tyrosine phosphorylation revealing new sites in human mammary epithelial cells. J Proteome Res 8(8):3852–3861PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Villen J, Beausoleil SA, Gerber SA, Gygi SP (2007) Large-scale phosphorylation analysis of mouse liver. Proc Natl Acad Sci USA 104(5):1488–1493.  https://doi.org/10.1073/pnas.0609836104 PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci USA 105(31):10762–10767PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Zahedi RP, Lewandrowski U, Wiesner J, Wortelkamp S, Moebius J, Schutz C, Walter U, Gambaryan S, Sickmann A (2008) Phosphoproteome of resting human platelets. J Proteome Res 7(2):526–534PubMedCrossRefGoogle Scholar
  141. 141.
    Gauci S, Helbig AO, Slijper M, Krijgsveld J, Heck AJ, Mohammed S (2009) Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem 81(11):4493–4501PubMedCrossRefGoogle Scholar
  142. 142.
    Ozaki H, Ishii K, Arai H, Horiuchi H, Kawamoto T, Suzuki H, Kita T (2000) Junctional adhesion molecule (JAM) is phosphorylated by protein kinase C upon platelet activation. Biochem Biophys Res Commun 276(3):873–878PubMedCrossRefGoogle Scholar
  143. 143.
    Okada M, Nada S, Yamanashi Y, Yamamoto T, Nakagawa H (1991) CSK: a protein-tyrosine kinase involved in regulation of src family kinases. J Biol Chem 266(36):24249–24252PubMedGoogle Scholar
  144. 144.
    Songyang Z, Shoelson SE, McGlade J, Olivier P, Pawson T, Bustelo XR, Barbacid M, Sabe H, Hanafusa H, Yi T et al (1994) Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk, and Vav. Mol Cell Biol 14(4):2777–2785PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Obergfell A, Eto K, Mocsai A, Buensuceso C, Moores SL, Brugge JS, Lowell CA, Shattil SJ (2002) Coordinate interactions of Csk, Src, and Syk kinases with [alpha]IIb[beta]3 initiate integrin signaling to the cytoskeleton. J Cell Biol 157(2):265–275.  https://doi.org/10.1083/jcb.200112113 PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Zhao Z, Vajen T, Karshovska E, Dickhout A, Schmitt MM, Megens RT, von Hundelshausen P, Koeppel TA, Hackeng TM, Weber C, Koenen RR (2017) Deletion of junctional adhesion molecule A from platelets increases early-stage neointima formation after wire injury in hyperlipidemic mice. J Cell Mol Med.  https://doi.org/10.1111/jcmm.13083 Google Scholar
  147. 147.
    Nunbhakdi-Craig V, Machleidt T, Ogris E, Bellotto D, White CL 3rd, Sontag E (2002) Protein phosphatase 2A associates with and regulates atypical PKC and the epithelial tight junction complex. J Cell Biol 158(5):967–978PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Seth A, Sheth P, Elias BC, Rao R (2007) Protein phosphatases 2A and 1 interact with occludin and negatively regulate the assembly of tight junctions in the CACO-2 cell monolayer. J Biol Chem 282(15):11487–11498PubMedCrossRefGoogle Scholar
  149. 149.
    Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y, Wrana JL (2005) Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science 307(5715):1603–1609PubMedCrossRefGoogle Scholar
  150. 150.
    Caraballo JC, Yshii C, Butti ML, Westphal W, Borcherding JA, Allamargot C, Comellas AP (2011) Hypoxia increases transepithelial electrical conductance and reduces occludin at the plasma membrane in alveolar epithelial cells via PKC-zeta and PP2A pathway. Am J Physiol Lung Cell Mol Physiol 300(4):L569–L578.  https://doi.org/10.1152/ajplung.00109.2010 PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Walters RW, Freimuth P, Moninger TO, Ganske I, Zabner J, Welsh MJ (2002) Adenovirus fiber disrupts CAR-mediated intercellular adhesion allowing virus escape. Cell 110(6):789–799PubMedCrossRefGoogle Scholar
  152. 152.
    Coureuil M, Mikaty G, Miller F, Lecuyer H, Bernard C, Bourdoulous S, Dumenil G, Mege RM, Weksler BB, Romero IA, Couraud PO, Nassif X (2009) Meningococcal type IV pili recruit the polarity complex to cross the brain endothelium. Science 325(5936):83–87.  https://doi.org/10.1126/science.1173196 PubMedCrossRefGoogle Scholar
  153. 153.
    Scott DW, Tolbert CE, Burridge K (2016) Tension on JAM-A activates RhoA via GEF-H1 and p115 RhoGEF. Mol Biol Cell 27(9):1420–1430.  https://doi.org/10.1091/mbc.E15-12-0833 PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Baumeister U, Funke R, Ebnet K, Vorschmitt H, Koch S, Vestweber D (2005) Association of Csk to VE-cadherin and inhibition of cell proliferation. EMBO J 24(9):1686–1695PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institute-Associated Research Group: Cell Adhesion and Cell Polarity, Institute of Medical Biochemistry, ZMBEUniversity of MünsterMünsterGermany
  2. 2.Cells-In-Motion Cluster of Excellence (EXC1003-CiM)University of MünsterMünsterGermany
  3. 3.Interdisciplinary Clinical Research Center (IZKF)University of MünsterMünsterGermany

Personalised recommendations