Skip to main content
Log in

Evidence of G-protein-coupled receptor and substrate transporter heteromerization at a single molecule level

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

G-protein-coupled receptors (GPCRs) can constitute complexes with non-GPCR integral membrane proteins, while such interaction has not been demonstrated at a single molecule level so far. We here investigated the potential interaction between the thyrotropin receptor (TSHR) and the monocarboxylate transporter 8 (MCT8), a member of the major facilitator superfamily (MFS), using fluorescence cross-correlation spectroscopy (FCCS). Both the proteins are expressed endogenously on the basolateral plasma membrane of the thyrocytes and are involved in stimulation of thyroid hormone production and release. Indeed, we demonstrate strong interaction between both the proteins which causes a suppressed activation of Gq/11 by TSH-stimulated TSHR. Thus, we provide not only evidence for a novel interaction between the TSHR and MCT8, but could also prove this interaction on a single molecule level. Moreover, this interaction forces biased signaling at the TSHR. These results are of general interest for both the GPCR and the MFS research fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BiFc:

Bimolecular fluorescence complementation

FCCS:

Fluorescence cross-correlation spectroscopy

MCT8:

Mono-carboxylate transporter 8

TSHR:

Thyrotropin receptor

GPCR:

G-protein-coupled receptor

MFS:

Major facilitator superfamily

smTIRF:

Single molecule total internal reflection microscopy

AT1R:

Angiotensin-1-receptor (AT1R)

TRPC3:

Transient receptor potential cation channel subfamily C3

rM3R:

Muscarinic acetylcholine receptor 3 (rat)

MC4R:

Melanocortin receptor 4

ELISA:

Enzyme linked immunosorbent assay

cAMP:

Cyclic adenosine mono phosphate

IP3 :

Inositol triphosphate

T3:

3,3,5-triiodo-l-thyronine

TH:

Thyroid hormone

TSH:

Thyroid stimulating hormone

YFP:

Yellow fluorescent protein

GD:

Graves disease

FA:

Follicular adenoma

FTC:

Follicular thyroid carcinoma

PTC:

Papillary thyroid carcinoma

References

  1. George SR, O’Dowd BF, Lee SP (2002) G-protein-coupled receptor oligomerization and its potential for drug discovery. Nat Rev Drug Discov 1:808–820

    Article  CAS  PubMed  Google Scholar 

  2. Calebiro D et al (2013) Single-molecule analysis of fluorescently labeled G-protein-coupled receptors reveals complexes with distinct dynamics and organization. Proc Natl Acad Sci USA 110:743–748

    Article  CAS  PubMed  Google Scholar 

  3. Lambert NA (2010) GPCR dimers fall apart. Sci Signal 3:pe12

    Article  PubMed  PubMed Central  Google Scholar 

  4. Teichmann A et al (2014) The specific monomer/dimer equilibrium of the corticotropin-releasing factor receptor type 1 is established in the endoplasmic reticulum. J Biol Chem 289:24250–24262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Doupnik CA (2008) GPCR-Kir channel signaling complexes: defining rules of engagement. J Recept Signal Transduct Res 28:83–91

    Article  CAS  PubMed  Google Scholar 

  6. Benleulmi-Chaachoua A et al (2016) Protein interactome mining defines melatonin MT1 receptors as integral component of presynaptic protein complexes of neurons. J Pineal Res 60:95–108

    Article  CAS  PubMed  Google Scholar 

  7. Dehvari N et al (2012) beta(2)-Adrenoceptors increase translocation of GLUT4 via GPCR kinase sites in the receptor C-terminal tail. Br J Pharmacol 165:1442–1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xie Z, Westmoreland SV, Miller GM (2008) Modulation of monoamine transporters by common biogenic amines via trace amine-associated receptor 1 and monoamine autoreceptors in human embryonic kidney 293 cells and brain synaptosomes. J Pharmacol Exp Ther 325:629–640

    Article  CAS  PubMed  Google Scholar 

  9. Law CJ, Maloney PC, Wang DN (2008) Ins and outs of major facilitator superfamily antiporters. Annu Rev Microbiol 62:289–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vassart G, Dumont JE (1992) The thyrotropin receptor and the regulation of thyrocyte function and growth. Endocr Rev 13:596–611

    CAS  PubMed  Google Scholar 

  11. Biebermann H, Winkler F, Kleinau G (2010) Genetic defects, thyroid growth and malfunctions of the TSHR in pediatric patients. Front Biosci 15:913–933

    Article  CAS  Google Scholar 

  12. Latif R, Graves P, Davies TF (2001) Oligomerization of the human thyrotropin receptor: fluorescent protein-tagged hTSHR reveals post-translational complexes. J Biol Chem 276:45217–45224

    Article  CAS  PubMed  Google Scholar 

  13. Davies T, Marians R, Latif R (2002) The TSH receptor reveals itself. J Clin Invest 110:161–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Friesema EC, Ganguly S, Abdalla A, Manning Fox JE, Halestrap AP, Visser TJ (2003) Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J Biol Chem 278:40128–40135

    Article  CAS  PubMed  Google Scholar 

  15. Kinne A, Kleinau G, Hoefig CS, Gruters A, Kohrle J, Krause G, Schweizer U (2010) Essential molecular determinants for thyroid hormone transport and first structural implications for monocarboxylate transporter 8. J Biol Chem 285:28054–28063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Di Cosmo C, Liao XH, Dumitrescu AM, Philp NJ, Weiss RE, Refetoff S (2010) Mice deficient in MCT8 reveal a mechanism regulating thyroid hormone secretion. J Clin Invest 120:3377–3388

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sequeira M, Jasani B, Fuhrer D, Wheeler M, Ludgate M (2002) Demonstration of reduced in vivo surface expression of activating mutant thyrotrophin receptors in thyroid sections. Eur J Endocrinol 146:163–171

    Article  CAS  PubMed  Google Scholar 

  18. Bartholomaus I et al (2008) Glycine transporter dimers: evidence for occurrence in the plasma membrane. J Biol Chem 283:10978–10991

    Article  PubMed  PubMed Central  Google Scholar 

  19. Keller T et al (2011) The large extracellular loop of organic cation transporter 1 influences substrate affinity and is pivotal for oligomerization. J Biol Chem 286:37874–37886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yin Y, He X, Szewczyk P, Nguyen T, Chang G (2006) Structure of the multidrug transporter EmrD from Escherichia coli. Science 312:741–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Seidel S et al (2005) Amphetamines take two to tango: an oligomer-based counter-transport model of neurotransmitter transport explores the amphetamine action. Mol Pharmacol 67:140–151

    CAS  PubMed  Google Scholar 

  22. Kasai RS, Suzuki KG, Prossnitz ER, Koyama-Honda I, Nakada C, Fujiwara TK, Kusumi A (2011) Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging. J Cell Biol 192:463–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nyfeler B, Michnick SW, Hauri HP (2005) Capturing protein interactions in the secretory pathway of living cells. Proc Natl Acad Sci USA 102:6350–6355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Elson EL (2001) Fluorescence correlation spectroscopy measures molecular transport in cells. Traffic 2:789–796

    Article  CAS  PubMed  Google Scholar 

  25. Schwille P, Korlach J, Webb WW (1999) Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. Cytometry 36:176–182

    Article  CAS  PubMed  Google Scholar 

  26. Haustein E, Schwille P (2003) Ultrasensitive investigations of biological systems by fluorescence correlation spectroscopy. Methods 29:153–166

    Article  CAS  PubMed  Google Scholar 

  27. Teichmann A, Rutz C, Kreuchwig A, Krause G, Wiesner B, Schulein R (2012) The Pseudo signal peptide of the corticotropin-releasing factor receptor type 2A prevents receptor oligomerization. J Biol Chem 287:27265–27274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fischer J et al (2015) Modulation of monocarboxylate transporter 8 oligomerization by specific pathogenic mutations. J Mol Endocrinol 54:39–50

    Article  CAS  PubMed  Google Scholar 

  29. Muller A et al (2013) G-protein coupled receptor 83 (GPR83) signaling determined by constitutive and zinc(II)-induced activity. PLoS One 8:e53347

    Article  PubMed  PubMed Central  Google Scholar 

  30. Winkler F et al (2010) A new phenotype of nongoitrous and nonautoimmune hyperthyroidism caused by a heterozygous thyrotropin receptor mutation in transmembrane helix 6. J Clin Endocrinol Metab 95:3605–3610

    Article  CAS  PubMed  Google Scholar 

  31. Biebermann H, Krude H, Elsner A, Chubanov V, Gudermann T, Gruters A (2003) Autosomal-dominant mode of inheritance of a melanocortin-4 receptor mutation in a patient with severe early-onset obesity is due to a dominant-negative effect caused by receptor dimerization. Diabetes 52:2984–2988

    Article  CAS  PubMed  Google Scholar 

  32. Zwanziger D, Rakov H, Engels K, Moeller LC, Fuhrer D (2015) Sex-dependent claudin-1 expression in the liver of euthyroid and hypothyroid mice. Eur Thyroid J 4:67–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515

    Article  CAS  PubMed  Google Scholar 

  35. Kleinau G, Neumann S, Gruters A, Krude H, Biebermann H (2013) Novel insights on thyroid-stimulating hormone receptor signal transduction. Endocr Rev 34:691–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kero J, Ahmed K, Wettschureck N, Tunaru S, Wintermantel T, Greiner E, Schutz G, Offermanns S (2007) Thyrocyte-specific Gq/G11 deficiency impairs thyroid function and prevents goiter development. J Clin Invest 117:2399–2407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Badziong J et al (2017) Differential regulation of monocarboxylate transporter 8 expression in thyroid cancer and hyperthyroidism. Eur J Endocrinol 177:243–250

    Article  CAS  PubMed  Google Scholar 

  38. Allen MD, Neumann S, Gershengorn MC (2011) Occupancy of both sites on the thyrotropin (TSH) receptor dimer is necessary for phosphoinositide signaling. FASEB J 25:3687–3694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG), projects BI 893/6-3, KL 2334/2-2, in the framework of the SPP 1629 “Thyroid Trans Act” BI893/5-2, BR 1308/11-2, KR1710/5-1, ZW 221/2-1, FU356/3-3 and FU356/7-2. We would like to acknowledge the assistance of the BCRT Flow Cytometry Lab (Charité-Universitätsmedizin Berlin). We would also like to thank Sabine Jyrch, Cigdem Cetindag and Jenny Eichhorst for excellent technical assistance, Vahid Asimi for independent reproduction of the FCCS data and Martin Lehmann for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ralf Schülein or Heike Biebermann.

Additional information

Jana Fischer, Gunnar Kleinau denotes equal contributions.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 628 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischer, J., Kleinau, G., Rutz, C. et al. Evidence of G-protein-coupled receptor and substrate transporter heteromerization at a single molecule level. Cell. Mol. Life Sci. 75, 2227–2239 (2018). https://doi.org/10.1007/s00018-017-2728-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2728-1

Keywords

Navigation