Cellular and Molecular Life Sciences

, Volume 75, Issue 8, pp 1349–1362 | Cite as

Cardiomyokines from the heart

  • Ayano Chiba
  • Haruko Watanabe-Takano
  • Takahiro Miyazaki
  • Naoki Mochizuki


The heart is regarded as an endocrine organ as well as a pump for circulation, since atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) were discovered in cardiomyocytes to be secreted as hormones. Both ANP and BNP bind to their receptors expressed on remote organs, such as kidneys and blood vessels; therefore, the heart controls the circulation by pumping blood and by secreting endocrine peptides. Cardiomyocytes secrete other peptides besides natriuretic peptides. Although most of such cardiomyocyte-derived peptides act on the heart in autocrine/paracrine fashions, several peptides target remote organs. In this review, to overview current knowledge of endocrine properties of the heart, we focus on cardiomyocyte-derived peptides (cardiomyokines) that act on the remote organs as well as the heart. Cardiomyokines act on remote organs to regulate cardiovascular homeostasis, systemic metabolism, and inflammation. Therefore, through its endocrine function, the heart can maintain physiological conditions and prevent organ damage under pathological conditions.





This work was partly supported by the Japan Society for the Promotion of Science KAKENHI Grants (22122003 and 16H02618), Japan Agency for Medical Research and Development AMED-CREST Grant (13414779 to N.M.), by Health and Labor Sciences.


  1. 1.
    Ogawa T, de Bold AJ (2014) The heart as an endocrine organ. Endocr Connect 3:R31–R44PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    de Bold AJ (1985) Atrial natriuretic factor: a hormone produced by the heart. Science 230:767–770PubMedCrossRefGoogle Scholar
  3. 3.
    de Bold AJ, Borenstein HB, Veress AT, Sonnenberg H (1981) A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci 28:89–94PubMedCrossRefGoogle Scholar
  4. 4.
    de Bold AJ, Flynn TG (1983) Cardionatrin I—a novel heart peptide with potent diuretic and natriuretic properties. Life Sci 33:297–302PubMedCrossRefGoogle Scholar
  5. 5.
    Flynn TG, de Bold ML, de Bold AJ (1983) The amino acid sequence of an atrial peptide with potent diuretic and natriuretic properties. Biochem Biophys Res Commun 117:859–865PubMedCrossRefGoogle Scholar
  6. 6.
    Kangawa K, Matsuo H (1984) Purification and complete amino acid sequence of alpha-human atrial natriuretic polypeptide (alpha-hANP). Biochem Biophys Res Commun 118:131–139PubMedCrossRefGoogle Scholar
  7. 7.
    Kennedy BP, Marsden JJ, Flynn TG, de Bold AJ, Davies PL (1984) Isolation and nucleotide sequence of a cloned cardionatrin cDNA. Biochem Biophys Res Commun 122:1076–1082PubMedCrossRefGoogle Scholar
  8. 8.
    Sudoh T, Kangawa K, Minamino N, Matsuo H (1988) A new natriuretic peptide in porcine brain. Nature 332:78–81PubMedCrossRefGoogle Scholar
  9. 9.
    Sudoh T, Minamino N, Kangawa K, Matsuo H (1990) C-type natriuretic peptide (CNP): a new member of natriuretic peptide family identified in porcine brain. Biochem Biophys Res Commun 168:863–870PubMedCrossRefGoogle Scholar
  10. 10.
    Doroudgar S, Glembotski CC (2011) The cardiokine story unfolds: ischemic stress-induced protein secretion in the heart. Trends Mol Med 17:207–214PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Chistiakov DA, Orekhov AN, Bobryshev YV (2016) Cardiac extracellular vesicles in normal and infarcted heart. Int J Mol Sci 17:E63PubMedCrossRefGoogle Scholar
  12. 12.
    Shimano M, Ouchi N, Walsh K (2012) Cardiokines: recent progress in elucidating the cardiac secretome. Circulation 126:e327–e332PubMedCrossRefGoogle Scholar
  13. 13.
    Glembotski CC (2011) Functions for the cardiomyokine, MANF, in cardioprotection, hypertrophy and heart failure. J Mol Cell Cardiol 51:512–517PubMedCrossRefGoogle Scholar
  14. 14.
    Schlueter N, de Sterke A, Willmes DM, Spranger J, Jordan J, Birkenfeld AL (2014) Metabolic actions of natriuretic peptides and therapeutic potential in the metabolic syndrome. Pharmacol Ther 144:12–27PubMedCrossRefGoogle Scholar
  15. 15.
    Mukoyama M, Nakao K, Hosoda K, Suga S, Saito Y, Ogawa Y, Shirakami G, Jougasaki M, Obata K, Yasue H (1991) Brain natriuretic peptide as a novel cardiac hormone in humans. Evidence for an exquisite dual natriuretic peptide system, atrial natriuretic peptide and brain natriuretic peptide. J Clin Investig 87:1402–1412PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Suga S, Nakao K, Itoh H, Komatsu Y, Ogawa Y, Hama N, Imura H (1992) Endothelial production of C-type natriuretic peptide and its marked augmentation by transforming growth factor-beta. Possible existence of “vascular natriuretic peptide system”. J Clin Investig 90:1145–1149PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Komatsu Y, Nakao K, Suga S, Ogawa Y, Mukoyama M, Arai H, Shirakami G, Hosoda K, Nakagawa O, Hama N (1991) C-type natriuretic peptide (CNP) in rats and humans. Endocrinology 129:1104–1106PubMedCrossRefGoogle Scholar
  18. 18.
    Stepan H, Leitner E, Bader M, Walther T (2000) Organ-specific mRNA distribution of C-type natriuretic peptide in neonatal and adult mice. Regul Pept 95:81–85PubMedCrossRefGoogle Scholar
  19. 19.
    Kishimoto I, Tokudome T, Nakao K, Kangawa K (2011) Natriuretic peptide system: an overview of studies using genetically engineered animal models. FEBS J 278:1830–1841PubMedCrossRefGoogle Scholar
  20. 20.
    Chang MS, Lowe DG, Lewis M, Hellmiss R, Chen E, Goeddel DV (1989) Differential activation by atrial and brain natriuretic peptides of two different receptor guanylate cyclases. Nature 341:68–72PubMedCrossRefGoogle Scholar
  21. 21.
    Chinkers M, Garbers DL, Chang MS, Lowe DG, Chin HM, Goeddel DV, Schulz S (1989) A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor. Nature 338:78–83PubMedCrossRefGoogle Scholar
  22. 22.
    Fuller F, Porter JG, Arfsten AE, Miller J, Schilling JW, Scarborough RM, Lewicki JA, Schenk DB (1988) Atrial natriuretic peptide clearance receptor. Complete sequence and functional expression of cDNA clones. J Biol Chem 263:9395–9401PubMedGoogle Scholar
  23. 23.
    Schulz S, Singh S, Bellet RA, Singh G, Tubb DJ, Chin H, Garbers DL (1989) The primary structure of a plasma membrane guanylate cyclase demonstrates diversity within this new receptor family. Cell 58:1155–1162PubMedCrossRefGoogle Scholar
  24. 24.
    Anand-Srivastava MB, Sehl PD, Lowe DG (1996) Cytoplasmic domain of natriuretic peptide receptor-C inhibits adenylyl cyclase. Involvement of a pertussis toxin-sensitive G protein. J Biol Chem 271:19324–19329PubMedCrossRefGoogle Scholar
  25. 25.
    Koller KJ, Lowe DG, Bennett GL, Minamino N, Kangawa K, Matsuo H, Goeddel DV (1991) Selective activation of the B natriuretic peptide receptor by C-type natriuretic peptide (CNP). Science 252:120–123PubMedCrossRefGoogle Scholar
  26. 26.
    Suga S, Nakao K, Hosoda K, Mukoyama M, Ogawa Y, Shirakami G, Arai H, Saito Y, Kambayashi Y, Inouye K (1992) Receptor selectivity of natriuretic peptide family, atrial natriuretic peptide, brain natriuretic peptide, and C-type natriuretic peptide. Endocrinology 130:229–239PubMedCrossRefGoogle Scholar
  27. 27.
    Nickel W, Rabouille C (2009) Mechanisms of regulated unconventional protein secretion. Nat Rev Mol Cell Biol 10:148–155PubMedCrossRefGoogle Scholar
  28. 28.
    Bruneau BG, Piazza LA, de Bold AJ (1996) Alpha 1-adrenergic stimulation of isolated rat atria results in discoordinate increases in natriuretic peptide secretion and gene expression and enhances Egr-1 and c-Myc expression. Endocrinology 137:137–143PubMedCrossRefGoogle Scholar
  29. 29.
    Fukuda Y, Hirata Y, Yoshimi H, Kojima T, Kobayashi Y, Yanagisawa M, Masaki T (1988) Endothelin is a potent secretagogue for atrial natriuretic peptide in cultured rat atrial myocytes. Biochem Biophys Res Commun 155:167–172PubMedCrossRefGoogle Scholar
  30. 30.
    Bensimon M, Chang AI, de Bold ML, Ponce A, Carreras D, De Bold AJ (2004) Participation of G proteins in natriuretic peptide hormone secretion from heart atria. Endocrinology 145:5313–5321PubMedCrossRefGoogle Scholar
  31. 31.
    Bruneau BG, Piazza LA, de Bold AJ (1997) BNP gene expression is specifically modulated by stretch and ET-1 in a new model of isolated rat atria. Am J Physiol 273:H2678–H2686PubMedGoogle Scholar
  32. 32.
    Han JH, Bai GY, Park JH, Yuan K, Park WH, Kim SZ, Kim SH (2008) Regulation of stretch-activated ANP secretion by chloride channels. Peptides 29:613–621PubMedCrossRefGoogle Scholar
  33. 33.
    Laine M, Arjamaa O, Vuolteenaho O, Ruskoaho H, Weckstrom M (1994) Block of stretch-activated atrial natriuretic peptide secretion by gadolinium in isolated rat atrium. J Physiol 480(Pt 3):553–561PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Zhang YH, Youm JB, Earm YE (2008) Stretch-activated non-selective cation channel: a causal link between mechanical stretch and atrial natriuretic peptide secretion. Prog Biophys Mol Biol 98:1–9PubMedCrossRefGoogle Scholar
  35. 35.
    Clerico A, Giannoni A, Vittorini S, Passino C (2011) Thirty years of the heart as an endocrine organ: physiological role and clinical utility of cardiac natriuretic hormones. Am J Physiol Heart Circ Physiol 301:H12–H20PubMedCrossRefGoogle Scholar
  36. 36.
    Burnett JC Jr, Kao PC, Hu DC, Heser DW, Heublein D, Granger JP, Opgenorth TJ, Reeder GS (1986) Atrial natriuretic peptide elevation in congestive heart failure in the human. Science 231:1145–1147PubMedCrossRefGoogle Scholar
  37. 37.
    Nagaya N, Nishikimi T, Goto Y, Miyao Y, Kobayashi Y, Morii I, Daikoku S, Matsumoto T, Miyazaki S, Matsuoka H, Takishita S, Kangawa K, Matsuo H, Nonogi H (1998) Plasma brain natriuretic peptide is a biochemical marker for the prediction of progressive ventricular remodeling after acute myocardial infarction. Am Heart J 135:21–28PubMedCrossRefGoogle Scholar
  38. 38.
    Nishikimi T, Yoshihara F, Morimoto A, Ishikawa K, Ishimitsu T, Saito Y, Kangawa K, Matsuo H, Omae T, Matsuoka H (1996) Relationship between left ventricular geometry and natriuretic peptide levels in essential hypertension. Hypertension 28:22–30PubMedCrossRefGoogle Scholar
  39. 39.
    Chun YS, Hyun JY, Kwak YG, Kim IS, Kim CH, Choi E, Kim MS, Park JW (2003) Hypoxic activation of the atrial natriuretic peptide gene promoter through direct and indirect actions of hypoxia-inducible factor-1. Biochem J 370:149–157PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Teshima Y, Akao M, Jones SP, Marban E (2003) Cariporide (HOE642), a selective Na+–H+ exchange inhibitor, inhibits the mitochondrial death pathway. Circulation 108:2275–2281PubMedCrossRefGoogle Scholar
  41. 41.
    Chen YF (2005) Atrial natriuretic peptide in hypoxia. Peptides 26:1068–1077PubMedCrossRefGoogle Scholar
  42. 42.
    Schiebinger RJ, Joseph CM, Li Y, Cragoe EJ Jr (1995) Mechanism of hyperosmolality stimulation of ANP secretion: its dependency on calcium and sodium. Am J Physiol 268:E476–E483PubMedGoogle Scholar
  43. 43.
    Nakamura S, Naruse M, Naruse K, Kawana M, Nishikawa T, Hosoda S, Tanaka I, Yoshimi T, Yoshihara I, Inagami T (1991) Atrial natriuretic peptide and brain natriuretic peptide coexist in the secretory granules of human cardiac myocytes. Am J Hypertens 4:909–912PubMedCrossRefGoogle Scholar
  44. 44.
    Bialik GM, Abassi ZA, Hammel I, Winaver J, Lewinson D (2001) Evaluation of atrial natriuretic peptide and brain natriuretic peptide in atrial granules of rats with experimental congestive heart failure. J Histochem Cytochem 49:1293–1300PubMedCrossRefGoogle Scholar
  45. 45.
    Mukoyama M, Nakao K, Saito Y, Ogawa Y, Hosoda K, Suga S, Shirakami G, Jougasaki M, Imura H (1990) Increased human brain natriuretic peptide in congestive heart failure. N Engl J Med 323:757–758PubMedCrossRefGoogle Scholar
  46. 46.
    Ma KK, Ogawa T, de Bold AJ (2004) Selective upregulation of cardiac brain natriuretic peptide at the transcriptional and translational levels by pro-inflammatory cytokines and by conditioned medium derived from mixed lymphocyte reactions via p38 MAP kinase. J Mol Cell Cardiol 36:505–513PubMedCrossRefGoogle Scholar
  47. 47.
    Belmont PJ, Tadimalla A, Chen WJ, Martindale JJ, Thuerauf DJ, Marcinko M, Gude N, Sussman MA, Glembotski CC (2008) Coordination of growth and endoplasmic reticulum stress signaling by regulator of calcineurin 1 (RCAN1), a novel ATF6-inducible gene. J Biol Chem 283:14012–14021PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529PubMedCrossRefGoogle Scholar
  49. 49.
    Thuerauf DJ, Marcinko M, Gude N, Rubio M, Sussman MA, Glembotski CC (2006) Activation of the unfolded protein response in infarcted mouse heart and hypoxic cultured cardiac myocytes. Circ Res 99:275–282PubMedCrossRefGoogle Scholar
  50. 50.
    Sawada T, Minamino T, Fu HY, Asai M, Okuda K, Isomura T, Yamazaki S, Asano Y, Okada K, Tsukamoto O, Sanada S, Asanuma H, Asakura M, Takashima S, Kitakaze M, Komuro I (2010) X-box binding protein 1 regulates brain natriuretic peptide through a novel AP1/CRE-like element in cardiomyocytes. J Mol Cell Cardiol 48:1280–1289PubMedCrossRefGoogle Scholar
  51. 51.
    Horio T, Nishikimi T, Yoshihara F, Matsuo H, Takishita S, Kangawa K (2000) Inhibitory regulation of hypertrophy by endogenous atrial natriuretic peptide in cultured cardiac myocytes. Hypertension 35:19–24PubMedCrossRefGoogle Scholar
  52. 52.
    Oliver PM, Fox JE, Kim R, Rockman HA, Kim HS, Reddick RL, Pandey KN, Milgram SL, Smithies O, Maeda N (1997) Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A. Proc Natl Acad Sci USA 94:14730–14735PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Holtwick R, van Eickels M, Skryabin BV, Baba HA, Bubikat A, Begrow F, Schneider MD, Garbers DL, Kuhn M (2003) Pressure-independent cardiac hypertrophy in mice with cardiomyocyte-restricted inactivation of the atrial natriuretic peptide receptor guanylyl cyclase-A. J Clin Investig 111:1399–1407PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Vellaichamy E, Das S, Subramanian U, Maeda N, Pandey KN (2014) Genetically altered mutant mouse models of guanylyl cyclase/natriuretic peptide receptor-A exhibit the cardiac expression of proinflammatory mediators in a gene-dose-dependent manner. Endocrinology 155:1045–1056PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    O’Tierney PF, Chattergoon NN, Louey S, Giraud GD, Thornburg KL (2010) Atrial natriuretic peptide inhibits angiotensin II-stimulated proliferation in fetal cardiomyocytes. J Physiol 588:2879–2889PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Becker JR, Chatterjee S, Robinson TY, Bennett JS, Panakova D, Galindo CL, Zhong L, Shin JT, Coy SM, Kelly AE, Roden DM, Lim CC, MacRae CA (2014) Differential activation of natriuretic peptide receptors modulates cardiomyocyte proliferation during development. Development 141:335–345PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Kapoun AM, Liang F, O’Young G, Damm DL, Quon D, White RT, Munson K, Lam A, Schreiner GF, Protter AA (2004) B-type natriuretic peptide exerts broad functional opposition to transforming growth factor-beta in primary human cardiac fibroblasts: fibrosis, myofibroblast conversion, proliferation, and inflammation. Circ Res 94:453–461PubMedCrossRefGoogle Scholar
  58. 58.
    Redondo J, Bishop JE, Wilkins MR (1998) Effect of atrial natriuretic peptide and cyclic GMP phosphodiesterase inhibition on collagen synthesis by adult cardiac fibroblasts. Br J Pharmacol 124:1455–1462PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Maki T, Horio T, Yoshihara F, Suga S, Takeo S, Matsuo H, Kangawa K (2000) Effect of neutral endopeptidase inhibitor on endogenous atrial natriuretic peptide as a paracrine factor in cultured cardiac fibroblasts. Br J Pharmacol 131:1204–1210PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Tamura N, Ogawa Y, Chusho H, Nakamura K, Nakao K, Suda M, Kasahara M, Hashimoto R, Katsuura G, Mukoyama M, Itoh H, Saito Y, Tanaka I, Otani H, Katsuki M (2000) Cardiac fibrosis in mice lacking brain natriuretic peptide. Proc Natl Acad Sci USA 97:4239–4244PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Vellaichamy E, Khurana ML, Fink J, Pandey KN (2005) Involvement of the NF-kappa B/matrix metalloproteinase pathway in cardiac fibrosis of mice lacking guanylyl cyclase/natriuretic peptide receptor A. J Biol Chem 280:19230–19242PubMedCrossRefGoogle Scholar
  62. 62.
    Holtwick R, Gotthardt M, Skryabin B, Steinmetz M, Potthast R, Zetsche B, Hammer RE, Herz J, Kuhn M (2002) Smooth muscle-selective deletion of guanylyl cyclase-A prevents the acute but not chronic effects of ANP on blood pressure. Proc Natl Acad Sci USA 99:7142–7147PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Sabrane K, Kruse MN, Fabritz L, Zetsche B, Mitko D, Skryabin BV, Zwiener M, Baba HA, Yanagisawa M, Kuhn M (2005) Vascular endothelium is critically involved in the hypotensive and hypovolemic actions of atrial natriuretic peptide. J Clin Investig 115:1666–1674PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Burnett JC Jr, Granger JP, Opgenorth TJ (1984) Effects of synthetic atrial natriuretic factor on renal function and renin release. Am J Physiol 247:F863–F866PubMedGoogle Scholar
  65. 65.
    Marin-Grez M, Fleming JT, Steinhausen M (1986) Atrial natriuretic peptide causes pre-glomerular vasodilatation and post-glomerular vasoconstriction in rat kidney. Nature 324:473–476PubMedCrossRefGoogle Scholar
  66. 66.
    Sonnenberg H, Honrath U, Chong CK, Wilson DR (1986) Atrial natriuretic factor inhibits sodium transport in medullary collecting duct. Am J Physiol 250:F963–F966PubMedGoogle Scholar
  67. 67.
    Zeidel ML, Kikeri D, Silva P, Burrowes M, Brenner BM (1988) Atrial natriuretic peptides inhibit conductive sodium uptake by rabbit inner medullary collecting duct cells. J Clin Investig 82:1067–1074PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Sarzani R, Marcucci P, Salvi F, Bordicchia M, Espinosa E, Mucci L, Lorenzetti B, Minardi D, Muzzonigro G, Dessi-Fulgheri P, Rappelli A (2008) Angiotensin II stimulates and atrial natriuretic peptide inhibits human visceral adipocyte growth. Int J Obes (Lond) 32:259–267CrossRefGoogle Scholar
  69. 69.
    Sengenes C, Berlan M, De Glisezinski I, Lafontan M, Galitzky J (2000) Natriuretic peptides: a new lipolytic pathway in human adipocytes. FASEB J 14:1345–1351PubMedCrossRefGoogle Scholar
  70. 70.
    Sengenes C, Bouloumie A, Hauner H, Berlan M, Busse R, Lafontan M, Galitzky J (2003) Involvement of a cGMP-dependent pathway in the natriuretic peptide-mediated hormone-sensitive lipase phosphorylation in human adipocytes. J Biol Chem 278:48617–48626PubMedCrossRefGoogle Scholar
  71. 71.
    Birkenfeld AL, Boschmann M, Moro C, Adams F, Heusser K, Tank J, Diedrich A, Schroeder C, Franke G, Berlan M, Luft FC, Lafontan M, Jordan J (2006) Beta-adrenergic and atrial natriuretic peptide interactions on human cardiovascular and metabolic regulation. J Clin Endocrinol Metab 91:5069–5075PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Moro C, Pasarica M, Elkind-Hirsch K, Redman LM (2009) Aerobic exercise training improves atrial natriuretic peptide and catecholamine-mediated lipolysis in obese women with polycystic ovary syndrome. J Clin Endocrinol Metab 94:2579–2586PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Moro C, Pillard F, De Glisezinski I, Harant I, Riviere D, Stich V, Lafontan M, Crampes F, Berlan M (2005) Training enhances ANP lipid-mobilizing action in adipose tissue of overweight men. Med Sci Sports Exerc 37:1126–1132PubMedCrossRefGoogle Scholar
  74. 74.
    Bordicchia M, Liu D, Amri EZ, Ailhaud G, Dessi-Fulgheri P, Zhang C, Takahashi N, Sarzani R, Collins S (2012) Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Investig 122:1022–1036PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Lionetti V, Stanley WC, Recchia FA (2011) Modulating fatty acid oxidation in heart failure. Cardiovasc Res 90:202–209PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Sarzani R, Salvi F, Dessi-Fulgheri P, Rappelli A (2008) Renin–angiotensin system, natriuretic peptides, obesity, metabolic syndrome, and hypertension: an integrated view in humans. J Hypertens 26:831–843PubMedCrossRefGoogle Scholar
  77. 77.
    Miyashita K, Itoh H, Tsujimoto H, Tamura N, Fukunaga Y, Sone M, Yamahara K, Taura D, Inuzuka M, Sonoyama T, Nakao K (2009) Natriuretic peptides/cGMP/cGMP-dependent protein kinase cascades promote muscle mitochondrial biogenesis and prevent obesity. Diabetes 58:2880–2892PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Engeli S, Birkenfeld AL, Badin PM, Bourlier V, Louche K, Viguerie N, Thalamas C, Montastier E, Larrouy D, Harant I, de Glisezinski I, Lieske S, Reinke J, Beckmann B, Langin D, Jordan J, Moro C (2012) Natriuretic peptides enhance the oxidative capacity of human skeletal muscle. J Clin Investig 122:4675–4679PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Date Y, Kojima M, Hosoda H, Sawaguchi A, Mondal MS, Suganuma T, Matsukura S, Kangawa K, Nakazato M (2000) Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 141:4255–4261PubMedCrossRefGoogle Scholar
  80. 80.
    Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402:656–660PubMedCrossRefGoogle Scholar
  81. 81.
    Tschop M, Smiley DL, Heiman ML (2000) Ghrelin induces adiposity in rodents. Nature 407:908–913PubMedCrossRefGoogle Scholar
  82. 82.
    Shimada M, Date Y, Mondal MS, Toshinai K, Shimbara T, Fukunaga K, Murakami N, Miyazato M, Kangawa K, Yoshimatsu H, Matsuo H, Nakazato M (2003) Somatostatin suppresses ghrelin secretion from the rat stomach. Biochem Biophys Res Commun 302:520–525PubMedCrossRefGoogle Scholar
  83. 83.
    Gower WR Jr, McCuen RW, Arimura A, Coy DA, Dietz JR, Landon CS, Schubert ML (2003) Reciprocal paracrine pathways link atrial natriuretic peptide and somatostatin secretion in the antrum of the stomach. Regul Pept 110:101–106PubMedCrossRefGoogle Scholar
  84. 84.
    Vila G, Grimm G, Resl M, Heinisch B, Einwallner E, Esterbauer H, Dieplinger B, Mueller T, Luger A, Clodi M (2012) B-type natriuretic peptide modulates ghrelin, hunger, and satiety in healthy men. Diabetes 61:2592–2596PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11:723–737PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Kiemer AK, Vollmar AM (1998) Autocrine regulation of inducible nitric-oxide synthase in macrophages by atrial natriuretic peptide. J Biol Chem 273:13444–13451PubMedCrossRefGoogle Scholar
  87. 87.
    Moro C, Klimcakova E, Lolmede K, Berlan M, Lafontan M, Stich V, Bouloumie A, Galitzky J, Arner P, Langin D (2007) Atrial natriuretic peptide inhibits the production of adipokines and cytokines linked to inflammation and insulin resistance in human subcutaneous adipose tissue. Diabetologia 50:1038–1047PubMedCrossRefGoogle Scholar
  88. 88.
    Li N, Jin HX, Song Z, Bai CZ, Cui Y, Gao Y (2014) Protective effect of recombinant human brain natriuretic peptide on acute renal injury induced by endotoxin in canines. Cell Biochem Biophys 70:1317–1324PubMedCrossRefGoogle Scholar
  89. 89.
    Song Z, Cui Y, Ding MZ, Jin HX, Gao Y (2013) Protective effects of recombinant human brain natriuretic peptide against LPS-induced acute lung injury in dogs. Int Immunopharmacol 17:508–512PubMedCrossRefGoogle Scholar
  90. 90.
    Song Z, Zhao X, Liu M, Jin H, Wang L, Hou M, Gao Y (2015) Recombinant human brain natriuretic peptide attenuates trauma-/haemorrhagic shock-induced acute lung injury through inhibiting oxidative stress and the NF-kappaB-dependent inflammatory/MMP-9 pathway. Int J Exp Pathol 96:406–413PubMedCrossRefGoogle Scholar
  91. 91.
    Yang H, Song Z, Jin H, Cui Y, Hou M, Gao Y (2014) Protective effect of rhBNP on intestinal injury in the canine models of sepsis. Int Immunopharmacol 19:262–266PubMedCrossRefGoogle Scholar
  92. 92.
    Lambeau G, Gelb MH (2008) Biochemistry and physiology of mammalian secreted phospholipases A2. Annu Rev Biochem 77:495–520PubMedCrossRefGoogle Scholar
  93. 93.
    Murakami M, Taketomi Y (2015) Secreted phospholipase A2 and mast cells. Allergol Int 64:4–10PubMedCrossRefGoogle Scholar
  94. 94.
    Murakami M, Koduri RS, Enomoto A, Shimbara S, Seki M, Yoshihara K, Singer A, Valentin E, Ghomashchi F, Lambeau G, Gelb MH, Kudo I (2001) Distinct arachidonate-releasing functions of mammalian secreted phospholipase A2 s in human embryonic kidney 293 and rat mastocytoma RBL-2H3 cells through heparan sulfate shuttling and external plasma membrane mechanisms. J Biol Chem 276:10083–10096PubMedCrossRefGoogle Scholar
  95. 95.
    Berry E, Hernandez-Anzaldo S, Ghomashchi F, Lehner R, Murakami M, Gelb MH, Kassiri Z, Wang X, Fernandez-Patron C (2015) Matrix metalloproteinase-2 negatively regulates cardiac secreted phospholipase A2 to modulate inflammation and fever. J Am Heart Assoc 4:e001868PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Hernandez-Anzaldo S, Berry E, Brglez V, Leung D, Yun TJ, Lee JS, Filep JG, Kassiri Z, Cheong C, Lambeau G, Lehner R, Fernandez-Patron C (2015) Identification of a novel heart-liver axis: matrix metalloproteinase-2 negatively regulates cardiac secreted phospholipase A2 to modulate lipid metabolism and inflammation in the liver. J Am Heart Assoc 4:e002553PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Shibanuma M, Mashimo J, Mita A, Kuroki T, Nose K (1993) Cloning from a mouse osteoblastic cell line of a set of transforming-growth-factor-beta 1-regulated genes, one of which seems to encode a follistatin-related polypeptide. Eur J Biochem 217:13–19PubMedCrossRefGoogle Scholar
  98. 98.
    Tanaka M, Murakami K, Ozaki S, Imura Y, Tong XP, Watanabe T, Sawaki T, Kawanami T, Kawabata D, Fujii T, Usui T, Masaki Y, Fukushima T, Jin ZX, Umehara H, Mimori T (2010) DIP2 disco-interacting protein 2 homolog A (Drosophila) is a candidate receptor for follistatin-related protein/follistatin-like 1—analysis of their binding with TGF-beta superfamily proteins. FEBS J 277:4278–4289PubMedCrossRefGoogle Scholar
  99. 99.
    Ouchi N, Asaumi Y, Ohashi K, Higuchi A, Sono-Romanelli S, Oshima Y, Walsh K (2010) DIP2A functions as a FSTL1 receptor. J Biol Chem 285:7127–7134PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Ogura Y, Ouchi N, Ohashi K, Shibata R, Kataoka Y, Kambara T, Kito T, Maruyama S, Yuasa D, Matsuo K, Enomoto T, Uemura Y, Miyabe M, Ishii M, Yamamoto T, Shimizu Y, Walsh K, Murohara T (2012) Therapeutic impact of follistatin-like 1 on myocardial ischemic injury in preclinical models. Circulation 126:1728–1738PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Oshima Y, Ouchi N, Sato K, Izumiya Y, Pimentel DR, Walsh K (2008) Follistatin-like 1 is an Akt-regulated cardioprotective factor that is secreted by the heart. Circulation 117:3099–3108PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Adams D, Larman B, Oxburgh L (2007) Developmental expression of mouse Follistatin-like 1 (Fstl1): dynamic regulation during organogenesis of the kidney and lung. Gene Expr Patterns 7:491–500PubMedCrossRefGoogle Scholar
  103. 103.
    Wei K, Serpooshan V, Hurtado C, Diez-Cunado M, Zhao M, Maruyama S, Zhu W, Fajardo G, Noseda M, Nakamura K, Tian X, Liu Q, Wang A, Matsuura Y, Bushway P, Cai W, Savchenko A, Mahmoudi M, Schneider MD, van den Hoff MJ, Butte MJ, Yang PC, Walsh K, Zhou B, Bernstein D, Mercola M, Ruiz-Lozano P (2015) Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature 525:479–485PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Shimano M, Ouchi N, Nakamura K, van Wijk B, Ohashi K, Asaumi Y, Higuchi A, Pimentel DR, Sam F, Murohara T, van den Hoff MJ, Walsh K (2011) Cardiac myocyte follistatin-like 1 functions to attenuate hypertrophy following pressure overload. Proc Natl Acad Sci USA 108:E899–E906PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    El-Armouche A, Ouchi N, Tanaka K, Doros G, Wittkopper K, Schulze T, Eschenhagen T, Walsh K, Sam F (2011) Follistatin-like 1 in chronic systolic heart failure: a marker of left ventricular remodeling. Circ Heart Fail 4:621–627PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Hayakawa S, Ohashi K, Shibata R, Kataoka Y, Miyabe M, Enomoto T, Joki Y, Shimizu Y, Kambara T, Uemura Y, Yuasa D, Ogawa H, Matsuo K, Hiramatsu-Ito M, van den Hoff MJ, Walsh K, Murohara T, Ouchi N (2015) Cardiac myocyte-derived follistatin-like 1 prevents renal injury in a subtotal nephrectomy model. J Am Soc Nephrol 26:636–646PubMedCrossRefGoogle Scholar
  107. 107.
    Barton M, Yanagisawa M (2008) Endothelin: 20 years from discovery to therapy. Can J Physiol Pharmacol 86:485–498PubMedCrossRefGoogle Scholar
  108. 108.
    Yanagisawa M, Kurihara H, Kimura S, Goto K, Masaki T (1988) A novel peptide vasoconstrictor, endothelin, is produced by vascular endothelium and modulates smooth muscle Ca2+ channels. J Hypertens Suppl 6:S188–S191PubMedCrossRefGoogle Scholar
  109. 109.
    Inoue A, Yanagisawa M, Kimura S, Kasuya Y, Miyauchi T, Goto K, Masaki T (1989) The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc Natl Acad Sci USA 86:2863–2867PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Arai H, Hori S, Aramori I, Ohkubo H, Nakanishi S (1990) Cloning and expression of a cDNA encoding an endothelin receptor. Nature 348:730–732PubMedCrossRefGoogle Scholar
  111. 111.
    Sakurai T, Yanagisawa M, Takuwa Y, Miyazaki H, Kimura S, Goto K, Masaki T (1990) Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor. Nature 348:732–735PubMedCrossRefGoogle Scholar
  112. 112.
    Barst RJ (2007) A review of pulmonary arterial hypertension: role of ambrisentan. Vasc Health Risk Manag 3:11–22PubMedPubMedCentralGoogle Scholar
  113. 113.
    Masaki T (1998) The discovery of endothelins. Cardiovasc Res 39:530–533PubMedCrossRefGoogle Scholar
  114. 114.
    Russell FD, Skepper JN, Davenport AP (1998) Evidence using immunoelectron microscopy for regulated and constitutive pathways in the transport and release of endothelin. J Cardiovasc Pharmacol 31:424–430PubMedCrossRefGoogle Scholar
  115. 115.
    Davenport AP, Hyndman KA, Dhaun N, Southan C, Kohan DE, Pollock JS, Pollock DM, Webb DJ, Maguire JJ (2016) Endothelin. Pharmacol Rev 68:357–418PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Suzuki T, Kumazaki T, Mitsui Y (1993) Endothelin-1 is produced and secreted by neonatal rat cardiac myocytes in vitro. Biochem Biophys Res Commun 191:823–830PubMedCrossRefGoogle Scholar
  117. 117.
    Kagamu H, Suzuki T, Arakawa M, Mitsui Y (1994) Low oxygen enhances endothelin-1 (ET-1) production and responsiveness to ET-1 in cultured cardiac myocytes. Biochem Biophys Res Commun 202:1612–1618PubMedCrossRefGoogle Scholar
  118. 118.
    Yamazaki T, Komuro I, Kudoh S, Zou Y, Shiojima I, Hiroi Y, Mizuno T, Maemura K, Kurihara H, Aikawa R, Takano H, Yazaki Y (1996) Endothelin-1 is involved in mechanical stress-induced cardiomyocyte hypertrophy. J Biol Chem 271:3221–3228PubMedCrossRefGoogle Scholar
  119. 119.
    Serneri GG, Cecioni I, Vanni S, Paniccia R, Bandinelli B, Vetere A, Janming X, Bertolozzi I, Boddi M, Lisi GF, Sani G, Modesti PA (2000) Selective upregulation of cardiac endothelin system in patients with ischemic but not idiopathic dilated cardiomyopathy: endothelin-1 system in the human failing heart. Circ Res 86:377–385PubMedCrossRefGoogle Scholar
  120. 120.
    Shohet RV, Kisanuki YY, Zhao XS, Siddiquee Z, Franco F, Yanagisawa M (2004) Mice with cardiomyocyte-specific disruption of the endothelin-1 gene are resistant to hyperthyroid cardiac hypertrophy. Proc Natl Acad Sci USA 101:2088–2093PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Zhao XS, Pan W, Bekeredjian R, Shohet RV (2006) Endogenous endothelin-1 is required for cardiomyocyte survival in vivo. Circulation 114:830–837PubMedCrossRefGoogle Scholar
  122. 122.
    Paradis A, Zhang L (2013) Role of endothelin in uteroplacental circulation and fetal vascular function. Curr Vasc Pharmacol 11:594–605PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Helle KB, Corti A, Metz-Boutigue MH, Tota B (2007) The endocrine role for chromogranin A: a prohormone for peptides with regulatory properties. Cell Mol Life Sci 64:2863–2886PubMedCrossRefGoogle Scholar
  124. 124.
    Banks P, Helle K (1965) The release of protein from the stimulated adrenal medulla. Biochem J 97:40C–41CPubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Blaschko H, Comline RS, Schneider FH, Silver M, Smith AD (1967) Secretion of a chromaffin granule protein, chromogranin, from the adrenal gland after splanchnic stimulation. Nature 215:58–59PubMedCrossRefGoogle Scholar
  126. 126.
    Pieroni M, Corti A, Tota B, Curnis F, Angelone T, Colombo B, Cerra MC, Bellocci F, Crea F, Maseri A (2007) Myocardial production of chromogranin A in human heart: a new regulatory peptide of cardiac function. Eur Heart J 28:1117–1127PubMedCrossRefGoogle Scholar
  127. 127.
    Tota B, Cerra MC, Gattuso A (2010) Catecholamines, cardiac natriuretic peptides and chromogranin A: evolution and physiopathology of a ‘whip-brake’ system of the endocrine heart. J Exp Biol 213:3081–3103PubMedCrossRefGoogle Scholar
  128. 128.
    Ceconi C, Ferrari R, Bachetti T, Opasich C, Volterrani M, Colombo B, Parrinello G, Corti A (2002) Chromogranin A in heart failure; a novel neurohumoral factor and a predictor for mortality. Eur Heart J 23:967–974PubMedCrossRefGoogle Scholar
  129. 129.
    Takiyyuddin MA, Cervenka JH, Hsiao RJ, Barbosa JA, Parmer RJ, O’Connor DT (1990) Chromogranin A. Storage and release in hypertension. Hypertension 15:237–246PubMedCrossRefGoogle Scholar
  130. 130.
    Glattard E, Angelone T, Strub JM, Corti A, Aunis D, Tota B, Metz-Boutigue MH, Goumon Y (2006) Characterization of natural vasostatin-containing peptides in rat heart. FEBS J 273:3311–3321PubMedCrossRefGoogle Scholar
  131. 131.
    Ramella R, Boero O, Alloatti G, Angelone T, Levi R, Gallo MP (2010) Vasostatin 1 activates eNOS in endothelial cells through a proteoglycan-dependent mechanism. J Cell Biochem 110:70–79PubMedGoogle Scholar
  132. 132.
    Cerra MC, De IL, Angelone T, Corti A, Tota B (2006) Recombinant N-terminal fragments of chromogranin-A modulate cardiac function of the Langendorff-perfused rat heart. Basic Res Cardiol 101:43–52PubMedCrossRefGoogle Scholar
  133. 133.
    Wang D, Shan Y, Huang Y, Tang Y, Chen Y, Li R, Yang J, Huang C (2016) Vasostatin-1 stops structural remodeling and improves calcium handling via the eNOS-NO-PKG pathway in rat hearts subjected to chronic beta-adrenergic receptor activation. Cardiovasc Drugs Ther 30:455–464PubMedCrossRefGoogle Scholar
  134. 134.
    Gallo MP, Levi R, Ramella R, Brero A, Boero O, Tota B, Alloatti G (2007) Endothelium-derived nitric oxide mediates the antiadrenergic effect of human vasostatin-1 in rat ventricular myocardium. Am J Physiol Heart Circ Physiol 292:H2906–H2912PubMedCrossRefGoogle Scholar
  135. 135.
    Aardal S, Helle KB (1992) The vasoinhibitory activity of bovine chromogranin A fragment (vasostatin) and its independence of extracellular calcium in isolated segments of human blood vessels. Regul Pept 41:9–18PubMedCrossRefGoogle Scholar
  136. 136.
    Pike SE, Yao L, Jones KD, Cherney B, Appella E, Sakaguchi K, Nakhasi H, Teruya-Feldstein J, Wirth P, Gupta G, Tosato G (1998) Vasostatin, a calreticulin fragment, inhibits angiogenesis and suppresses tumor growth. J Exp Med 188:2349–2356PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Biswas N, Curello E, O’Connor DT, Mahata SK (2010) Chromogranin/secretogranin proteins in murine heart: myocardial production of chromogranin A fragment catestatin (Chga(364–384)). Cell Tissue Res 342:353–361PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Mahata SK, O’Connor DT, Mahata M, Yoo SH, Taupenot L, Wu H, Gill BM, Parmer RJ (1997) Novel autocrine feedback control of catecholamine release. A discrete chromogranin a fragment is a noncompetitive nicotinic cholinergic antagonist. J Clin Investig 100:1623–1633PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    O’Connor DT, Kailasam MT, Kennedy BP, Ziegler MG, Yanaihara N, Parmer RJ (2002) Early decline in the catecholamine release-inhibitory peptide catestatin in humans at genetic risk of hypertension. J Hypertens 20:1335–1345PubMedCrossRefGoogle Scholar
  140. 140.
    Ottesen AH, Carlson CR, Louch WE, Dahl MB, Sandbu RA, Johansen RF, Jarstadmarken H, Bjoras M, Hoiseth AD, Brynildsen J, Sjaastad I, Stridsberg M, Omland T, Christensen G, Rosjo H (2017) Glycosylated chromogranin A in heart failure: implications for processing and cardiomyocyte calcium homeostasis. Circ Heart Fail 10:e003675PubMedCrossRefGoogle Scholar
  141. 141.
    Angelone T, Quintieri AM, Brar BK, Limchaiyawat PT, Tota B, Mahata SK, Cerra MC (2008) The antihypertensive chromogranin a peptide catestatin acts as a novel endocrine/paracrine modulator of cardiac inotropism and lusitropism. Endocrinology 149:4780–4793PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Kennedy BP, Mahata SK, O’Connor DT, Ziegler MG (1998) Mechanism of cardiovascular actions of the chromogranin A fragment catestatin in vivo. Peptides 19:1241–1248PubMedCrossRefGoogle Scholar
  143. 143.
    Mahapatra NR, O’Connor DT, Vaingankar SM, Hikim AP, Mahata M, Ray S, Staite E, Wu H, Gu Y, Dalton N, Kennedy BP, Ziegler MG, Ross J, Mahata SK (2005) Hypertension from targeted ablation of chromogranin A can be rescued by the human ortholog. J Clin Investig 115:1942–1952PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Gayen JR, Gu Y, O’Connor DT, Mahata SK (2009) Global disturbances in autonomic function yield cardiovascular instability and hypertension in the chromogranin a null mouse. Endocrinology 150:5027–5035PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Itoh N, Ohta H (2013) Pathophysiological roles of FGF signaling in the heart. Front Physiol 4:247PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Zhang X, Ibrahimi OA, Olsen SK, Umemori H, Mohammadi M, Ornitz DM (2006) Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J Biol Chem 281:15694–15700PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Goetz R, Beenken A, Ibrahimi OA, Kalinina J, Olsen SK, Eliseenkova AV, Xu C, Neubert TA, Zhang F, Linhardt RJ, Yu X, White KE, Inagaki T, Kliewer SA, Yamamoto M, Kurosu H, Ogawa Y, Kuro-o M, Lanske B, Razzaque MS, Mohammadi M (2007) Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. Mol Cell Biol 27:3417–3428PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Itoh N, Ohta H, Nakayama Y, Konishi M (2016) Roles of FGF signals in heart development, health, and disease. Front Cell Dev Biol 4:110PubMedPubMedCentralGoogle Scholar
  149. 149.
    Patel V, Adya R, Chen J, Ramanjaneya M, Bari MF, Bhudia SK, Hillhouse EW, Tan BK, Randeva HS (2014) Novel insights into the cardio-protective effects of FGF21 in lean and obese rat hearts. PLoS One 9:e87102PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Zhang C, Huang Z, Gu J, Yan X, Lu X, Zhou S, Wang S, Shao M, Zhang F, Cheng P, Feng W, Tan Y, Li X (2015) Fibroblast growth factor 21 protects the heart from apoptosis in a diabetic mouse model via extracellular signal-regulated kinase 1/2-dependent signalling pathway. Diabetologia 58:1937–1948PubMedCrossRefGoogle Scholar
  151. 151.
    Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E (2007) Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 5:426–437PubMedCrossRefGoogle Scholar
  152. 152.
    Inagaki T, Dutchak P, Zhao G, Ding X, Gautron L, Parameswara V, Li Y, Goetz R, Mohammadi M, Esser V, Elmquist JK, Gerard RD, Burgess SC, Hammer RE, Mangelsdorf DJ, Kliewer SA (2007) Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab 5:415–425PubMedCrossRefGoogle Scholar
  153. 153.
    Ge X, Chen C, Hui X, Wang Y, Lam KS, Xu A (2011) Fibroblast growth factor 21 induces glucose transporter-1 expression through activation of the serum response factor/Ets-like protein-1 in adipocytes. J Biol Chem 286:34533–34541PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, Wu J, Kharitonenkov A, Flier JS, Maratos-Flier E, Spiegelman BM (2012) FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev 26:271–281PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Potthoff MJ, Inagaki T, Satapati S, Ding X, He T, Goetz R, Mohammadi M, Finck BN, Mangelsdorf DJ, Kliewer SA, Burgess SC (2009) FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc Natl Acad Sci USA 106:10853–10858PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Coskun T, Bina HA, Schneider MA, Dunbar JD, Hu CC, Chen Y, Moller DE, Kharitonenkov A (2008) Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149:6018–6027PubMedCrossRefGoogle Scholar
  157. 157.
    Planavila A, Redondo-Angulo I, Villarroya F (2015) FGF21 and cardiac physiopathology. Front Endocrinol (Lausanne) 6:133Google Scholar
  158. 158.
    Brahma MK, Adam RC, Pollak NM, Jaeger D, Zierler KA, Pocher N, Schreiber R, Romauch M, Moustafa T, Eder S, Ruelicke T, Preiss-Landl K, Lass A, Zechner R, Haemmerle G (2014) Fibroblast growth factor 21 is induced upon cardiac stress and alters cardiac lipid homeostasis. J Lipid Res 55:2229–2241PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Dogan SA, Pujol C, Maiti P, Kukat A, Wang S, Hermans S, Senft K, Wibom R, Rugarli EI, Trifunovic A (2014) Tissue-specific loss of DARS2 activates stress responses independently of respiratory chain deficiency in the heart. Cell Metab 19:458–469PubMedCrossRefGoogle Scholar
  160. 160.
    Planavila A, Redondo I, Hondares E, Vinciguerra M, Munts C, Iglesias R, Gabrielli LA, Sitges M, Giralt M, van Bilsen M, Villarroya F (2013) Fibroblast growth factor 21 protects against cardiac hypertrophy in mice. Nat Commun 4:2019PubMedCrossRefGoogle Scholar
  161. 161.
    Planavila A, Redondo-Angulo I, Ribas F, Garrabou G, Casademont J, Giralt M, Villarroya F (2015) Fibroblast growth factor 21 protects the heart from oxidative stress. Cardiovasc Res 106:19–31PubMedCrossRefGoogle Scholar
  162. 162.
    Nishizawa H, Matsuda M, Yamada Y, Kawai K, Suzuki E, Makishima M, Kitamura T, Shimomura I (2004) Musclin, a novel skeletal muscle-derived secretory factor. J Biol Chem 279:19391–19395PubMedCrossRefGoogle Scholar
  163. 163.
    Thomas G, Moffatt P, Salois P, Gaumond MH, Gingras R, Godin E, Miao D, Goltzman D, Lanctot C (2003) Osteocrin, a novel bone-specific secreted protein that modulates the osteoblast phenotype. J Biol Chem 278:50563–50571PubMedCrossRefGoogle Scholar
  164. 164.
    Moffatt P, Thomas G, Sellin K, Bessette MC, Lafreniere F, Akhouayri O, St-Arnaud R, Lanctot C (2007) Osteocrin is a specific ligand of the natriuretic peptide clearance receptor that modulates bone growth. J Biol Chem 282:36454–36462PubMedCrossRefGoogle Scholar
  165. 165.
    Potter LR, Abbey-Hosch S, Dickey DM (2006) Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev 27:47–72PubMedCrossRefGoogle Scholar
  166. 166.
    Chiba A, Watanabe-Takano H, Terai K, Fukui H, Miyazaki T, Uemura M, Hashimoto H, Hibi M, Fukuhara S, Mochizuki N (2017) Osteocrin, a peptide secreted from the heart and other tissues, contributes to cranial osteogenesis and chondrogenesis in zebrafish. Development 144:334–344PubMedCrossRefGoogle Scholar
  167. 167.
    Kempf T, Eden M, Strelau J, Naguib M, Willenbockel C, Tongers J, Heineke J, Kotlarz D, Xu J, Molkentin JD, Niessen HW, Drexler H, Wollert KC (2006) The transforming growth factor-beta superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury. Circ Res 98:351–360PubMedCrossRefGoogle Scholar
  168. 168.
    Oshima Y, Ouchi N, Shimano M, Pimentel DR, Papanicolaou KN, Panse KD, Tsuchida K, Lara-Pezzi E, Lee SJ, Walsh K (2009) Activin A and follistatin-like 3 determine the susceptibility of heart to ischemic injury. Circulation 120:1606–1615PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Tokola H, Rysa J, Pikkarainen S, Hautala N, Leskinen H, Kerkela R, Ilves M, Aro J, Vuolteenaho O, Ritvos O, Ruskoaho H (2015) Bone morphogenetic protein-2—a potential autocrine/paracrine factor in mediating the stretch activated B-type and atrial natriuretic peptide expression in cardiac myocytes. Mol Cell Endocrinol 399:9–21PubMedCrossRefGoogle Scholar
  170. 170.
    Zimmers TA, Davies MV, Koniaris LG, Haynes P, Esquela AF, Tomkinson KN, McPherron AC, Wolfman NM, Lee SJ (2002) Induction of cachexia in mice by systemically administered myostatin. Science 296:1486–1488PubMedCrossRefGoogle Scholar
  171. 171.
    Heineke J, Auger-Messier M, Xu J, Sargent M, York A, Welle S, Molkentin JD (2010) Genetic deletion of myostatin from the heart prevents skeletal muscle atrophy in heart failure. Circulation 121:419–425PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Wang T, Liu J, McDonald C, Lupino K, Zhai X, Wilkins BJ, Hakonarson H, Pei L (2017) GDF15 is a heart-derived hormone that regulates body growth. EMBO Mol Med 9:1150–1164PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Ishida K, Haudenschild DR (2013) Interactions between FGF21 and BMP-2 in osteogenesis. Biochem Biophys Res Commun 432:677–682PubMedCrossRefGoogle Scholar
  174. 174.
    Deftos LJ, Burton DW, Brandt DW (1993) Parathyroid hormone-like protein is a secretory product of atrial myocytes. J Clin Investig 92:727–735PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Zhang X, Wang X, Zhu H, Kranias EG, Tang Y, Peng T, Chang J, Fan GC (2012) Hsp20 functions as a novel cardiokine in promoting angiogenesis via activation of VEGFR2. PLoS One 7:e32765PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Wang X, Huang W, Liu G, Cai W, Millard RW, Wang Y, Chang J, Peng T, Fan GC (2014) Cardiomyocytes mediate anti-angiogenesis in type 2 diabetic rats through the exosomal transfer of miR-320 into endothelial cells. J Mol Cell Cardiol 74:139–150PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Vegter EL, van der Meer P, de Windt LJ, Pinto YM, Voors AA (2016) MicroRNAs in heart failure: from biomarker to target for therapy. Eur J Heart Fail 18:457–468PubMedCrossRefGoogle Scholar
  178. 178.
    Oliveira-Carvalho V, da Silva MM, Guimaraes GV, Bacal F, Bocchi EA (2013) MicroRNAs: new players in heart failure. Mol Biol Rep 40:2663–2670PubMedCrossRefGoogle Scholar
  179. 179.
    Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang ML, Segnalini P, Gu Y, Dalton ND, Elia L, Latronico MV, Hoydal M, Autore C, Russo MA, Dorn GW, Ellingsen O, Ruiz-Lozano P, Peterson KL, Croce CM, Peschle C, Condorelli G (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13:613–618PubMedCrossRefGoogle Scholar
  180. 180.
    Montgomery RL, Hullinger TG, Semus HM, Dickinson BA, Seto AG, Lynch JM, Stack C, Latimer PA, Olson EN, van Rooij E (2011) Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation 124:1537–1547PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Cell BiologyNational Cerebral and Cardiovascular Center Research InstituteSuitaJapan
  2. 2.AMED-CRESTNational Cerebral and Cardiovascular Center Research InstituteSuitaJapan

Personalised recommendations