Advertisement

Cellular and Molecular Life Sciences

, Volume 75, Issue 8, pp 1339–1348 | Cite as

The TET enzymes

  • Peppi Koivunen
  • Tuomas Laukka
Review

Abstract

During the past decade, we have learnt that the most common DNA modification, 5-methylcytosine (5mC), playing crucial roles in development and disease, is not stable but can be actively reversed to its unmodified form via enzymatic catalysis involving the TET enzymes. These ground-breaking discoveries have been achieved thanks to technological advances in the detection of the oxidized forms of 5mC and to the boldness of individual scientists. The TET enzymes require molecular oxygen for their catalysis, making them important targets for hypoxia research. They also require special cofactors which enable additional levels of regulation. Moreover, mutations and other genetic alterations in TETs are found, especially in myeloid malignances. This review focuses on the kinetic and inhibitory properties of the TET enzymes and the role of TETs in cellular differentiation and transformation and in cancer.

Keywords

Cancer DNA methylation EMT Gene regulation 5hmC Hypoxia 

Notes

Acknowledgements

This work was supported to P.K. by the Academy of Finland Grant 218129, the S. Jusélius Foundation, the Emil Aaltonen Foundation, Finnish Cancer Organizations and the Jane and Aatos Erkko Foundation and to T.L. by the Emil Aaltonen Foundation and the Finnish Medical Foundation.

References

  1. 1.
    Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ono R, Taki T, Taketani T, Taniwaki M, Kobayashi H, Hayashi Y (2002) LCX, leukemia-associated protein with a CXXC domain, is fused to MLL in acute myeloid leukemia with trilineage dysplasia having t(10;11)(q22;q23). Cancer Res 62:4075–4080PubMedGoogle Scholar
  3. 3.
    Lorsbach RB, Moore J, Mathew S, Raimondi SC, Mukatira ST, Downing JR (2003) TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). Leukemia 17:637–641CrossRefPubMedGoogle Scholar
  4. 4.
    Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324:929–930CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466:1129–1133CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Rose NR, McDonough MA, King ON, Kawamura A, Schofield CJ (2011) Inhibition of 2-oxoglutarate dependent oxygenases. Chem Soc Rev 40:4364–4397CrossRefPubMedGoogle Scholar
  7. 7.
    Myllyharju J (2008) Prolyl 4-hydroxylases, key enzymes in the synthesis of collagens and regulation of the response to hypoxia, and their roles as treatment targets. Ann Med 40:402–417CrossRefPubMedGoogle Scholar
  8. 8.
    He Y, Li B, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L, Sun Y, Li X, Dai Q, Song C, Zhang K, He C, Xu G (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333:1303–1307CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Zhang W, Xia W, Wang Q, Towers AJ, Chen J, Gao R, Zhang Y, Yen CA, Lee AY, Li Y, Zhou C, Liu K, Zhang J, Gu TP, Chen X, Chang Z, Leung D, Gao S, Jiang YH, Xie W (2016) Isoform switch of TET1 regulates DNA demethylation and mouse development. Mol Cell 64:1062–1073CrossRefPubMedGoogle Scholar
  10. 10.
    Liu N, Wang M, Deng W, Schmidt CS, Qin W, Leonhardt H, Spada F (2013) Intrinsic and extrinsic connections of Tet3 dioxygenase with CXXC zinc finger modules. PLoS One 8:e62755CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Jin SG, Zhang ZM, Dunwell TL, Harter MR, Wu X, Johnson J, Li Z, Liu J, Szabo PE, Lu Q, Xu GL, Song J, Pfeifer GP (2016) Tet3 reads 5-carboxylcytosine through its CXXC domain and is a potential guardian against neurodegeneration. Cell Rep 14:493–505CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ko M, An J, Bandukwala HS, Chavez L, Aijo T, Pastor WA, Segal MF, Li H, Koh KP, Lahdesmaki H, Hogan PG, Aravind L, Rao A (2013) Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX. Nature 497:122–126CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Brill LM, Xiong W, Lee KB, Ficarro SB, Crain A, Xu Y, Terskikh A, Snyder EY, Ding S (2009) Phosphoproteomic analysis of human embryonic stem cells. Cell Stem Cell 5:204–213CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bauer C, Gobel K, Nagaraj N, Colantuoni C, Wang M, Muller U, Kremmer E, Rottach A, Leonhardt H (2015) Phosphorylation of TET proteins is regulated via O-GlcNAcylation by the O-linked N-acetylglucosamine transferase (OGT). J Biol Chem 290:4801–4812CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Laukka T, Mariani CJ, Ihantola T, Cao JZ, Hokkanen J, Kaelin WG Jr, Godley LA, Koivunen P (2016) Fumarate and succinate regulate expression of hypoxia-inducible genes via TET enzymes. J Biol Chem 291:4256–4265CrossRefPubMedGoogle Scholar
  16. 16.
    Kivirikko KI, Pihlajaniemi T (1998) Collagen hydroxylases and the protein disulfide isomerase subunit of prolyl 4-hydroxylases. Adv Enzymol Relat Areas Mol Biol 72:325–398PubMedGoogle Scholar
  17. 17.
    Hirsila M, Koivunen P, Xu L, Seeley T, Kivirikko KI, Myllyharju J (2005) Effect of desferrioxamine and metals on the hydroxylases in the oxygen sensing pathway. FASEB J 19:1308–1310CrossRefPubMedGoogle Scholar
  18. 18.
    Thienpont B, Steinbacher J, Zhao H, D’Anna F, Kuchnio A, Ploumakis A, Ghesquiere B, Van Dyck L, Boeckx B, Schoonjans L, Hermans E, Amant F, Kristensen VN, Peng Koh K, Mazzone M, Coleman M, Carell T, Carmeliet P, Lambrechts D (2016) Tumour hypoxia causes DNA hypermethylation by reducing TET activity. Nature 537:63–68CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hu L, Lu J, Cheng J, Rao Q, Li Z, Hou H, Lou Z, Zhang L, Li W, Gong W, Liu M, Sun C, Yin X, Li J, Tan X, Wang P, Wang Y, Fang D, Cui Q, Yang P, He C, Jiang H, Luo C, Xu Y (2015) Structural insight into substrate preference for TET-mediated oxidation. Nature 527:118–122CrossRefPubMedGoogle Scholar
  20. 20.
    Nettersheim D, Heukamp LC, Fronhoffs F, Grewe MJ, Haas N, Waha A, Honecker F, Waha A, Kristiansen G, Schorle H (2013) Analysis of TET expression/activity and 5mC oxidation during normal and malignant germ cell development. PLoS One 8:e82881CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Benesova M, Trejbalova K, Kucerova D, Vernerova Z, Hron T, Szabo A, Amouroux R, Klezl P, Hajkova P, Hejnar J (2017) Overexpression of TET dioxygenases in seminomas associates with low levels of DNA methylation and hydroxymethylation. Mol Carcinog 56:1837–1850CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Vasanthakumar A, Godley LA (2015) 5-Hydroxymethylcytosine in cancer: significance in diagnosis and therapy. Cancer Genet 208:167–177CrossRefPubMedGoogle Scholar
  23. 23.
    Ito Shinsuke, Shen Li, Dai Qing, Wu Susan C, Collins Leonard B, Swenberg James A, He Chuan, Zhang Yi (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333:1300–1303CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Iurlaro M, Ficz G, Oxley D, Raiber E, Bachman M, Booth MJ, Andrews S, Balasubramanian S, Reik W (2013) A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation. Genome Biol 14:R119CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Iurlaro M, McInroy GR, Burgess HE, Dean W, Raiber E, Bachman M, Beraldi D, Balasubramanian S, Reik W (2016) In vivo genome-wide profiling reveals a tissue-specific role for 5-formylcytosine. Genome Biol 17:141CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Lian CG, Xu Y, Ceol C, Wu F, Larson A, Dresser K, Xu W, Tan L, Hu Y, Zhan Q, Lee CW, Hu D, Lian BQ, Kleffel S, Yang Y, Neiswender J, Khorasani AJ, Fang R, Lezcano C, Duncan LM, Scolyer RA, Thompson JF, Kakavand H, Houvras Y, Zon LI, Mihm MC Jr, Kaiser UB, Schatton T, Woda BA, Murphy GF, Shi YG (2012) Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. Cell 150:1135–1146CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Song SJ, Poliseno L, Song MS, Ala U, Webster K, Ng C, Beringer G, Brikbak NJ, Yuan X, Cantley LC, Richardson AL, Pandolfi PP (2013) MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling. Cell 154:311–324CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25:1010–1022CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128:683–692CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP (1999) CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA 96:8681–8686CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    An J, Rao A, Ko M (2017) TET family dioxygenases and DNA demethylation in stem cells and cancers. Exp Mol Med 49:e323CrossRefPubMedGoogle Scholar
  32. 32.
    Shi X, Yu Y, Luo M, Zhang Z, Shi S, Feng X, Chen Z, He J (2016) Loss of 5-hydroxymethylcytosine is an independent unfavorable prognostic factor for esophageal squamous cell carcinoma. PLoS One 11:e0153100CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Chen Z, Shi X, Guo L, Li Y, Luo M, He J (2017) Decreased 5-hydroxymethylcytosine levels correlate with cancer progression and poor survival: a systematic review and meta-analysis. Oncotarget 8:1944–1952PubMedGoogle Scholar
  34. 34.
    Liao Y, Gu J, Wu Y, Long X, Ge DI, Xu J, Ding J (2016) Low level of 5-hydroxymethylcytosine predicts poor prognosis in non-small cell lung cancer. Oncol Lett 11:3753–3760CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Orr BA, Haffner MC, Nelson WG, Yegnasubramanian S, Eberhart CG (2012) Decreased 5-hydroxymethylcytosine is associated with neural progenitor phenotype in normal brain and shorter survival in malignant glioma. PLoS One 7:e41036CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Van Damme M, Crompot E, Meuleman N, Maerevoet M, Mineur P, Bron D, Lagneaux L, Stamatopoulos B (2016) Characterization of TET and IDH gene expression in chronic lymphocytic leukemia: comparison with normal B cells and prognostic significance. Clin Epigenet 8:132CrossRefGoogle Scholar
  37. 37.
    Hu X, Zhang L, Mao SQ, Li Z, Chen J, Zhang RR, Wu HP, Gao J, Guo F, Liu W, Xu GF, Dai HQ, Shi YG, Li X, Hu B, Tang F, Pei D, Xu GL (2014) Tet and TDG mediate DNA demethylation essential for mesenchymal-to-epithelial transition in somatic cell reprogramming. Cell Stem Cell 14:512–522CrossRefPubMedGoogle Scholar
  38. 38.
    Abdel-Wahab O, Mullally A, Hedvat C, Garcia-Manero G, Patel J, Wadleigh M, Malinge S, Yao J, Kilpivaara O, Bhat R, Huberman K, Thomas S, Dolgalev I, Heguy A, Paietta E, Le Beau MM, Beran M, Tallman MS, Ebert BL, Kantarjian HM, Stone RM, Gilliland DG, Crispino JD, Levine RL (2009) Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood 114:144–147CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Masse A, Kosmider O, Le Couedic JP, Robert F, Alberdi A, Lecluse Y, Plo I, Dreyfus FJ, Marzac C, Casadevall N, Lacombe C, Romana SP, Dessen P, Soulier J, Viguie F, Fontenay M, Vainchenker W, Bernard OA (2009) Mutation in TET2 in myeloid cancers. N Engl J Med 360:2289–2301CrossRefPubMedGoogle Scholar
  40. 40.
    Solary E, Bernard OA, Tefferi A, Fuks F, Vainchenker W (2014) The Ten-Eleven Translocation-2 (TET2) gene in hematopoiesis and hematopoietic diseases. Leukemia 28:485–496CrossRefPubMedGoogle Scholar
  41. 41.
    Couronne L, Bastard C, Bernard OA (2012) TET2 and DNMT3A mutations in human T-cell lymphoma. N Engl J Med 366:95–96CrossRefPubMedGoogle Scholar
  42. 42.
    Ko M, Huang Y, Jankowska AM, Pape UJ, Tahiliani M, Bandukwala HS, An J, Lamperti ED, Koh KP, Ganetzky R, Liu XS, Aravind L, Agarwal S, Maciejewski JP, Rao A (2010) Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468:839–843CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Huang H, Jiang X, Li Z, Li Y, Song CX, He C, Sun M, Chen P, Gurbuxani S, Wang J, Hong GM, Elkahloun AG, Arnovitz S, Wang J, Szulwach K, Lin L, Street C, Wunderlich M, Dawlaty M, Neilly MB, Jaenisch R, Yang FC, Mulloy JC, Jin P, Liu PP, Rowley JD, Xu M, He C, Chen J (2013) TET1 plays an essential oncogenic role in MLL-rearranged leukemia. Proc Natl Acad Sci USA 110:11994–11999CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    De Keersmaecker K, Atak ZK, Li N, Vicente C, Patchett S, Girardi T, Gianfelici V, Geerdens E, Clappier E, Porcu M, Lahortiga I, Luca R, Yan J, Hulselmans G, Vranckx H, Vandepoel R, Sweron B, Jacobs K, Mentens N, Wlodarska I, Cauwelier B, Cloos J, Soulier J, Uyttebroeck A, Bagni C, Hassan BA, Vandenberghe P, Johnson AW, Aerts S, Cools J (2013) Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia. Nat Genet 45:186–190CrossRefPubMedGoogle Scholar
  45. 45.
    Gu TP, Guo F, Yang H, Wu HP, Xu GF, Liu W, Xie ZG, Shi L, He X, Jin SG, Iqbal K, Shi YG, Deng Z, Szabo PE, Pfeifer GP, Li J, Xu GL (2011) The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477:606–610CrossRefPubMedGoogle Scholar
  46. 46.
    Dawlaty MM, Ganz K, Powell BE, Hu YC, Markoulaki S, Cheng AW, Gao Q, Kim J, Choi SW, Page DC, Jaenisch R (2011) Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development. Cell Stem Cell 9:166–175CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D, Lobry C, Figueroa ME, Vasanthakumar A, Patel J, Zhao X, Perna F, Pandey S, Madzo J, Song C, Dai Q, He C, Ibrahim S, Beran M, Zavadil J, Nimer SD, Melnick A, Godley LA, Aifantis I, Levine RL (2011) Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20:11–24CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Quivoron C, Couronne L, Della Valle V, Lopez CK, Plo I, Wagner-Ballon O, Do Cruzeiro M, Delhommeau F, Arnulf B, Stern MH, Godley L, Opolon P, Tilly H, Solary E, Duffourd Y, Dessen P, Merle-Beral H, Nguyen-Khac F, Fontenay M, Vainchenker W, Bastard C, Mercher T, Bernard OA (2011) TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 20:25–38CrossRefPubMedGoogle Scholar
  49. 49.
    Dawlaty MM, Breiling A, Le T, Raddatz G, Barrasa MI, Cheng AW, Gao Q, Powell BE, Li Z, Xu M, Faull KF, Lyko F, Jaenisch R (2013) Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development. Dev Cell 24:310–323CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Schito L, Semenza GL (2016) Hypoxia-inducible factors: master regulators of cancer progression. Trends Cancer 2:758–770CrossRefPubMedGoogle Scholar
  51. 51.
    Mariani CJ, Vasanthakumar A, Madzo J, Yesilkanal A, Bhagat T, Yu Y, Bhattacharyya S, Wenger RH, Cohn SL, Nanduri J, Verma A, Prabhakar NR, Godley LA (2014) TET1-mediated hydroxymethylation facilitates hypoxic gene induction in neuroblastoma. Cell Rep 7:1343–1352CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Alivand MR, Soheili ZS, Pornour M, Solali S, Sabouni F (2017) Novel epigenetic controlling of hypoxia pathway related to overexpression and promoter hypomethylation of TET1 and TET2 in RPE cells. J Cell Biochem 118:3193–3204CrossRefPubMedGoogle Scholar
  53. 53.
    Pollard PJ, Briere JJ, Alam NA, Barwell J, Barclay E, Wortham NC, Hunt T, Mitchell M, Olpin S, Moat SJ, Hargreaves IP, Heales SJ, Chung YL, Griffiths JR, Dalgleish A, McGrath JA, Gleeson MJ, Hodgson SV, Poulsom R, Rustin P, Tomlinson IP (2005) Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum Mol Genet 14:2231–2239CrossRefPubMedGoogle Scholar
  54. 54.
    Xiao M, Yang H, Xu W, Ma S, Lin H, Zhu H, Liu L, Liu Y, Yang C, Xu Y, Zhao S, Ye D, Xiong Y, Guan KL (2012) Inhibition of alpha-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev 26:1326–1338CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Letouze E, Martinelli C, Loriot C, Burnichon N, Abermil N, Ottolenghi C, Janin M, Menara M, Nguyen AT, Benit P, Buffet A, Marcaillou C, Bertherat J, Amar L, Rustin P, De Reynies A, Gimenez-Roqueplo AP, Favier J (2013) SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell 23:739–752CrossRefPubMedGoogle Scholar
  56. 56.
    Carey BW, Finley LW, Cross JR, Allis CD, Thompson CB (2015) Intracellular alpha-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518:413–416CrossRefPubMedGoogle Scholar
  57. 57.
    Dargahi N, Katsara M, Tselios T, Androutsou ME, de Courten M, Matsoukas J, Apostolopoulos V (2017) Multiple sclerosis: immunopathology and treatment update. Brain Sci.  https://doi.org/10.3390/brainsci7070078 PubMedPubMedCentralGoogle Scholar
  58. 58.
    Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, Ito S, Yang C, Wang P, Xiao MT, Liu LX, Jiang WQ, Liu J, Zhang JY, Wang B, Frye S, Zhang Y, Xu YH, Lei QY, Guan KL, Zhao SM, Xiong Y (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 19:17–30CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Chowdhury R, Yeoh KK, Tian YM, Hillringhaus L, Bagg EA, Rose NR, Leung IK, Li XS, Woon EC, Yang M, McDonough MA, King ON, Clifton IJ, Klose RJ, Claridge TD, Ratcliffe PJ, Schofield CJ, Kawamura A (2011) The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep 12:463–469CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Koivunen P, Lee S, Duncan CG, Lopez G, Lu G, Ramkissoon S, Losman JA, Joensuu P, Bergmann U, Gross S, Travins J, Weiss S, Looper R, Ligon KL, Verhaak RG, Yan H, Kaelin WG Jr (2012) Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature 483:484–488CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Andronesi OC, Kim GS, Gerstner E, Batchelor T, Tzika AA, Fantin VR, Vander Heiden MG, Sorensen AG (2012) Detection of 2-hydroxyglutarate in IDH-mutated glioma patients by in vivo spectral-editing and 2D correlation magnetic resonance spectroscopy. Sci Transl Med 4:116ra4CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Rzem R, Veiga-da-Cunha M, Noel G, Goffette S, Nassogne MC, Tabarki B, Scholler C, Marquardt T, Vikkula M, Van Schaftingen E (2004) A gene encoding a putative FAD-dependent l-2-hydroxyglutarate dehydrogenase is mutated in l-2-hydroxyglutaric aciduria. Proc Natl Acad Sci USA 101:16849–16854CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Topcu M, Jobard F, Halliez S, Coskun T, Yalcinkayal C, Gerceker FO, Wanders RJ, Prud’homme JF, Lathrop M, Ozguc M, Fischer J (2004) l-2-Hydroxyglutaric aciduria: identification of a mutant gene C14orf160, localized on chromosome 14q22.1. Hum Mol Genet 13:2803–2811CrossRefPubMedGoogle Scholar
  64. 64.
    Amouroux R, Nashun B, Shirane K, Nakagawa S, Hill PW, D’Souza Z, Nakayama M, Matsuda M, Turp A, Ndjetehe E, Encheva V, Kudo NR, Koseki H, Sasaki H, Hajkova P (2016) De novo DNA methylation drives 5hmC accumulation in mouse zygotes. Nat Cell Biol 18:225–233CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Hirsila M, Koivunen P, Gunzler V, Kivirikko KI, Myllyharju J (2003) Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor. J Biol Chem 278:30772–30780CrossRefPubMedGoogle Scholar
  66. 66.
    Cummins EP, Seeballuck F, Keely SJ, Mangan NE, Callanan JJ, Fallon PG, Taylor CT (2008) The hydroxylase inhibitor dimethyloxalylglycine is protective in a murine model of colitis. Gastroenterology 134:156–165CrossRefPubMedGoogle Scholar
  67. 67.
    Ockaili R, Natarajan R, Salloum F, Fisher BJ, Jones D, Fowler AA 3rd, Kukreja RC (2005) HIF-1 activation attenuates postischemic myocardial injury: role for heme oxygenase-1 in modulating microvascular chemokine generation. Am J Physiol Heart Circ Physiol 289:542CrossRefGoogle Scholar
  68. 68.
    Hill P, Shukla D, Tran MG, Aragones J, Cook HT, Carmeliet P, Maxwell PH (2008) Inhibition of hypoxia inducible factor hydroxylases protects against renal ischemia-reperfusion injury. J Am Soc Nephrol 19:39–46CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Munari E, Chaux A, Vaghasia AM, Taheri D, Karram S, Bezerra SM, Gonzalez Roibon N, Nelson WG, Yegnasubramanian S, Netto GJ, Haffner MC (2016) Global 5-hydroxymethylcytosine levels are profoundly reduced in multiple genitourinary malignancies. PLoS One 11:e0146302CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Haffner MC, Chaux A, Meeker AK, Esopi DM, Gerber J, Pellakuru LG, Toubaji A, Argani P, Iacobuzio-Donahue C, Nelson WG, Netto GJ, De Marzo AM, Yegnasubramanian S (2011) Global 5-hydroxymethylcytosine content is significantly reduced in tissue stem/progenitor cell compartments and in human cancers. Oncotarget 2:627–637CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Hsu CH, Peng KL, Kang ML, Chen YR, Yang YC, Tsai CH, Chu CS, Jeng YM, Chen YT, Lin FM, Huang HD, Lu YY, Teng YC, Lin ST, Lin RK, Tang FM, Lee SB, Hsu HM, Yu JC, Hsiao PW, Juan LJ (2012) TET1 suppresses cancer invasion by activating the tissue inhibitors of metalloproteinases. Cell Rep 2:568–579CrossRefPubMedGoogle Scholar
  72. 72.
    Chen K, Zhang J, Guo Z, Ma Q, Xu Z, Zhou Y, Xu Z, Li Z, Liu Y, Ye X, Li X, Yuan B, Ke Y, He C, Zhou L, Liu J, Ci W (2016) Loss of 5-hydroxymethylcytosine is linked to gene body hypermethylation in kidney cancer. Cell Res 26:103–118CrossRefPubMedGoogle Scholar
  73. 73.
    Lee JJ, Cook M, Mihm MC, Xu S, Zhan Q, Wang TJ, Murphy GF, Lian CG (2015) Loss of the epigenetic mark, 5-hydroxymethylcytosine, correlates with small cell/nevoid subpopulations and assists in microstaging of human melanoma. Oncotarget 6:37995PubMedPubMedCentralGoogle Scholar
  74. 74.
    Gong F, Guo Y, Niu Y, Jin J, Zhang X, Shi X, Zhang L, Li R, Chen L, Ma RZ (2017) Epigenetic silencing of TET2 and TET3 induces an EMT-like process in melanoma. Oncotarget 8:315–328PubMedGoogle Scholar
  75. 75.
    Zhao Z, Chen L, Dawlaty MM, Pan F, Weeks O, Zhou Y, Cao Z, Shi H, Wang J, Lin L, Chen S, Yuan W, Qin Z, Ni H, Nimer SD, Yang FC, Jaenisch R, Jin P, Xu M (2015) Combined loss of Tet1 and Tet2 promotes B cell, but not myeloid malignancies, in mice. Cell Rep 13:1692–1704CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Sciacovelli M, Gonçalves E, Johnson TI, Zecchini VR, da Costa Ana, Henriques Sofia, Gaude E, Drubbel AV, Theobald SJ, Abbo SR, Tran MGB, Rajeeve V, Cardaci S, Foster S, Yun H, Cutillas P, Warren A, Gnanapragasam V, Gottlieb E, Franze K, Huntly B, Maher ER, Maxwell PH, Saez-Rodriguez J, Frezza C (2016) Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature 537:544–547CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Pavlova O, Fraitag S, Hohl D (2016) 5-Hydroxymethylcytosine expression in proliferative nodules arising within congenital nevi allows differentiation from malignant melanoma. J Investig Dermatol 136:2453–2461CrossRefPubMedGoogle Scholar
  78. 78.
    Murata A, Baba Y, Ishimoto T, Miyake K, Kosumi K, Harada K, Kurashige J, Iwagami S, Sakamoto Y, Miyamoto Y, Yoshida N, Yamamoto M, Oda S, Watanabe M, Nakao M, Baba H (2015) TET family proteins and 5-hydroxymethylcytosine in esophageal squamous cell carcinoma. Oncotarget 6:23372–23382CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Zhang Y, Wu K, Shao Y, Sui F, Yang Q, Shi B, Hou P, Ji M (2016) Decreased 5-Hydroxymethylcytosine (5-hmC) predicts poor prognosis in early-stage laryngeal squamous cell carcinoma. Am J Cancer Res 6:1089–1098PubMedPubMedCentralGoogle Scholar
  80. 80.
    Marçais A, Waast L, Bruneau J, Hanssens K, Asnafi V, Gaulard P, Suarez F, Dubreuil P, Gessain A, Hermine O, Pique C (2016) Adult T cell leukemia aggressivenness correlates with loss of both 5-hydroxymethylcytosine and TET2 expression. Oncotarget 8:52256–52268PubMedPubMedCentralGoogle Scholar
  81. 81.
    Itzykson R, Kosmider O, Cluzeau T, Mansat-De Mas V, Dreyfus F, Beyne-Rauzy O, Quesnel B, Vey N, Gelsi-Boyer V, Raynaud S, Preudhomme C, Ades L, Fenaux P, Fontenay M, Groupe Francophone des Myelodysplasies, (GFM) (2011) Impact of TET2 mutations on response rate to azacitidine in myelodysplastic syndromes and low blast count acute myeloid leukemias. Leukemia 25:1147–1152CrossRefPubMedGoogle Scholar
  82. 82.
    Bejar R, Lord A, Stevenson K, Bar-Natan M, Perez-Ladaga A, Zaneveld J, Wang H, Caughey B, Stojanov P, Getz G, Garcia-Manero G, Kantarjian H, Chen R, Stone RM, Neuberg D, Steensma DP, Ebert BL (2014) TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients. Blood 124:2705–2712CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Koivunen P, Hirsila M, Remes AM, Hassinen IE, Kivirikko KI, Myllyharju J (2007) Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell metabolism and stabilization of HIF. J Biol Chem 282:4524–4532CrossRefPubMedGoogle Scholar
  84. 84.
    Koivunen P, Hirsila M, Kivirikko KI, Myllyharju J (2006) The length of peptide substrates has a marked effect on hydroxylation by the hypoxia-inducible factor prolyl 4-hydroxylases. J Biol Chem 281:28712–28720CrossRefPubMedGoogle Scholar
  85. 85.
    Ehrismann D, Flashman E, Genn DN, Mathioudakis N, Hewitson KS, Ratcliffe PJ, Schofield CJ (2007) Studies on the activity of the hypoxia-inducible-factor hydroxylases using an oxygen consumption assay. Biochem J 401:227–234CrossRefPubMedGoogle Scholar
  86. 86.
    Myllyharju J, Kivirikko KI (1997) Characterization of the iron- and 2-oxoglutarate-binding sites of human prolyl 4-hydroxylase. EMBO J 16:1173–1180CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Berg RA, Kishida Y, Sakakibara S, Prockop DJ (1977) Hydroxylation of (Pro-Pro-Gly)5 and (Pro-Pro-Gly)10 by prolyl hydroxylase. Evidence for an asymmetric active site in the enzyme. Biochemistry 16:1615–1621CrossRefPubMedGoogle Scholar
  88. 88.
    Koivunen P, Hirsila M, Gunzler V, Kivirikko KI, Myllyharju J (2004) Catalytic properties of the asparaginyl hydroxylase (FIH) in the oxygen sensing pathway are distinct from those of its prolyl 4-hydroxylases. J Biol Chem 279:9899–9904CrossRefPubMedGoogle Scholar
  89. 89.
    Hancock RL, Masson N, Dunne K, Flashman E, Kawamura A (2017) The activity of JmjC histone lysine demethylase KDM4A is highly sensitive to oxygen concentrations. ACS Chem Biol 12:1011–1019CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Williams ST, Walport LJ, Hopkinson RJ, Madden SK, Chowdhury R, Schofield CJ, Kawamura A (2014) Studies on the catalytic domains of multiple JmjC oxygenases using peptide substrates. Epigenetics 9:1596–1603CrossRefPubMedGoogle Scholar
  91. 91.
    Lee DH, Jin SG, Cai S, Chen Y, Pfeifer GP, O’Connor TR (2005) Repair of methylation damage in DNA and RNA by mammalian AlkB homologues. J Biol Chem 280:39448–39459CrossRefPubMedGoogle Scholar
  92. 92.
    Majamaa K, Hanauske-Abel HM, Gunzler V, Kivirikko KI (1984) The 2-oxoglutarate binding site of prolyl 4-hydroxylase. Identification of distinct subsites and evidence for 2-oxoglutarate decarboxylation in a ligand reaction at the enzyme-bound ferrous ion. Eur J Biochem 138:239–245CrossRefPubMedGoogle Scholar
  93. 93.
    Tuderman L, Myllyla R, Kivirikko KI (1977) Mechanism of the prolyl hydroxylase reaction. 1. Role of co-substrates. Eur J Biochem 80:341–348CrossRefPubMedGoogle Scholar
  94. 94.
    Rose NR, Ng SS, Mecinovic J, Lienard BM, Bello SH, Sun Z, McDonough MA, Oppermann U, Schofield CJ (2008) Inhibitor scaffolds for 2-oxoglutarate-dependent histone lysine demethylases. J Med Chem 51:7053–7056CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Oulu Center for Cell-Matrix ResearchUniversity of OuluOuluFinland

Personalised recommendations