Advertisement

Cellular and Molecular Life Sciences

, Volume 75, Issue 9, pp 1687–1706 | Cite as

The ancient claudin Dni2 facilitates yeast cell fusion by compartmentalizing Dni1 into a membrane subdomain

  • M.-Ángeles Curto
  • Sandra Moro
  • Francisco Yanguas
  • Carmen Gutiérrez-González
  • M.-Henar Valdivieso
Original Article

Abstract

Dni1 and Dni2 facilitate cell fusion during mating. Here, we show that these proteins are interdependent for their localization in a plasma membrane subdomain, which we have termed the mating fusion domain. Dni1 compartmentation in the domain is required for cell fusion. The contribution of actin, sterol-dependent membrane organization, and Dni2 to this compartmentation was analysed, and the results showed that Dni2 plays the most relevant role in the process. In turn, the Dni2 exit from the endoplasmic reticulum depends on Dni1. These proteins share the presence of a cysteine motif in their first extracellular loop related to the claudin GLWxxC(8–10 aa)C signature motif. Structure–function analyses show that mutating each Dni1 conserved cysteine has mild effects, and that only simultaneous elimination of several cysteines leads to a mating defect. On the contrary, eliminating each single cysteine and the C-terminal tail in Dni2 abrogates Dni1 compartmentation and cell fusion. Sequence alignments show that claudin trans-membrane helixes bear small-XXX-small motifs at conserved positions. The fourth Dni2 trans-membrane helix tends to form homo-oligomers in Escherichia plasma membrane, and two concatenated small-XXX-small motifs are required for efficient oligomerization and for Dni2 export from the yeast endoplasmic reticulum. Together, our results strongly suggest that Dni2 is an ancient claudin that blocks Dni1 diffusion from the intercellular region where two plasma membranes are in close proximity, and that this function is required for Dni1 to facilitate cell fusion.

Keywords

Actin Mating Membrane microdomains Small-XXX-small Sterols Tight junction Schizosaccharomyces pombe 

Abbreviations

CAT

Chloramphenicol acetyl transferase

ECL

Extra-cellular loop

ER

Endoplasmic reticulum

GFP

Green fluorescent protein

MFD

Membrane fusion domain

PDZ

Post-synaptic density protein PSD95, Drosophila disc large tumour suppressor Dlg1, and zonula occludens-1 zo-1 proteins

TJ

Tight junction

TMD

Trans-membrane Domain

WT

Wild-type

Notes

Acknowledgements

We thank E. Keck for the English revision. We are indebted to S. Moreno, D. Mulvihill, O. Nielsen, P. Nurse, P. Pérez, J.C. Ribas, Y. Sanchez, C. Shimoda, and K. Takegawa for strains and plasmids. A. Senes and C. Armstrong are acknowledged for providing plasmids and the guidance to perform the TOXCAT analyses. Financial support from the Ministerio de Economía y Competitividad (MINECO, Spain)/European Union FEDER program (BFU2013-48582-C2-2-P) and Junta de Castilla y León (Grant SA073U14) made this work possible. MAC, SM, and FY were supported by FPU fellowships from the Ministerio de Educación. CGG was supported by the Sistema de Garantía Juvenil program from the Ministerio de Empleo y Seguridad Social, Spain.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

18_2017_2709_MOESM1_ESM.tif (4 mb)
Supplementary material 1 (TIFF 4102 kb)
18_2017_2709_MOESM2_ESM.tif (1.8 mb)
Supplementary material 2 (TIFF 1813 kb)
18_2017_2709_MOESM3_ESM.tif (2.4 mb)
Supplementary material 3 (TIFF 2472 kb)
18_2017_2709_MOESM4_ESM.tif (1.9 mb)
Supplementary material 4 (TIFF 1928 kb)
18_2017_2709_MOESM5_ESM.tif (471 kb)
Supplementary material 5 (TIFF 471 kb)
18_2017_2709_MOESM6_ESM.mov (45 kb)
Supplementary material 6 (MOV 45 kb)
18_2017_2709_MOESM7_ESM.mov (166 kb)
Supplementary material 7 (MOV 165 kb)
18_2017_2709_MOESM8_ESM.pdf (124 kb)
Supplementary material 8 (PDF 124 kb)

References

  1. 1.
    Chen EH, Grote E, Mohler W, Vignery A (2007) Cell-cell fusion. FEBS Lett 581(11):2181–2193CrossRefPubMedGoogle Scholar
  2. 2.
    Aguilar PS, Baylies MK, Fleissner A, Helming L, Inoue N, Podbilewicz B, Wang H, Wong M (2013) Genetic basis of cell-cell fusion mechanisms. Trends Genet 29(7):427–437CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ydenberg CA, Rose MD (2008) Yeast mating: a model system for studying cell and nuclear fusion. Methods Mol Biol (Clifton, NJ) 475:3–20CrossRefGoogle Scholar
  4. 4.
    Merlini L, Dudin O, Martin SG (2013) Mate and fuse: how yeast cells do it. Open Biol 3(3):130008CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Martin SG (2016) Role and organization of the actin cytoskeleton during cell-cell fusion. Semin Cell Dev Biol 60:121–126CrossRefPubMedGoogle Scholar
  6. 6.
    White JM, Rose MD (2001) Yeast mating: getting close to membrane merger. Curr Biol 11(1):R16–R20CrossRefPubMedGoogle Scholar
  7. 7.
    Heiman MG, Walter P (2000) Prm1p, a pheromone-regulated multispanning membrane protein, facilitates plasma membrane fusion during yeast mating. J Cell Biol 151:719–730CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Fleissner A, Diamond S, Glass NL (2009) The Saccharomyces cerevisiae PRM1 homolog in Neurospora crassa is involved in vegetative and sexual cell fusion events but also has postfertilization functions. Genetics 181(2):497–510CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Curto MA, Sharifmoghadam MR, Calpena E, De Leon N, Hoya M, Doncel C, Leatherwood J, Valdivieso MH (2014) Membrane organization and cell fusion during mating in fission yeast requires multipass membrane protein Prm1. Genetics 196(4):1059–1076CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Clemente-Ramos JA, Martin-Garcia R, Sharifmoghadam MR, Konomi M, Osumi M, Valdivieso MH (2009) The tetraspan protein Dni1p is required for correct membrane organization and cell wall remodelling during mating in Schizosaccharomyces pombe. Mol Microbiol 73(4):695–709CrossRefPubMedGoogle Scholar
  11. 11.
    Muller EM, Mackin NA, Erdman SE, Cunningham KW (2003) Fig 1p facilitates Ca2+ influx and cell fusion during mating of Saccharomyces cerevisiae. J Biol Chem 278:38461–38469CrossRefPubMedGoogle Scholar
  12. 12.
    Proszynski TJ, Klemm R, Bagnat M, Gaus K, Simons K (2006) Plasma membrane polarization during mating in yeast cells. J Cell Biol 173(6):861–866CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bagnat M, Simons K (2002) Cell surface polarization during yeast mating. Proc Natl Acad Sci USA 99(22):14183–14188CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Olmo VN, Grote E (2010) Prm1 targeting to contact sites enhances fusion during mating in Saccharomyces cerevisiae. Eukaryot Cell 9(10):1538–1548CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Anderson RG, Jacobson K (2002) A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science 296(5574):1821–1825CrossRefPubMedGoogle Scholar
  16. 16.
    Laude AJ, Prior IA (2004) Plasma membrane microdomains: organization, function and trafficking. Mol Membr Biol 21(3):193–205CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Garcia-Parajo MF, Cambi A, Torreno-Pina JA, Thompson N, Jacobson K (2014) Nanoclustering as a dominant feature of plasma membrane organization. J Cell Sci 127(Pt 23):4995–5005CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Corcoran JA, Salsman J, de Antueno R, Touhami A, Jericho MH, Clancy EK, Duncan R (2006) The p14 fusion-associated small transmembrane (FAST) protein effects membrane fusion from a subset of membrane microdomains. J Biol Chem 281(42):31778–31789CrossRefPubMedGoogle Scholar
  19. 19.
    Olivera-Couto A, Aguilar PS (2012) Eisosomes and plasma membrane organization. Mol Genet Genom 287(8):607–620CrossRefGoogle Scholar
  20. 20.
    Roth MG (2004) Phosphoinositides in constitutive membrane traffic. Physiol Rev 84(3):699–730CrossRefPubMedGoogle Scholar
  21. 21.
    Rubinstein E (2011) The complexity of tetraspanins. Biochem Soc Trans 39(2):501–505CrossRefPubMedGoogle Scholar
  22. 22.
    Trimble WS, Grinstein S (2015) Barriers to the free diffusion of proteins and lipids in the plasma membrane. J Cell Biol 208(3):259–271CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Valdez-Taubas J, Pelham HR (2003) Slow diffusion of proteins in the yeast plasma membrane allows polarity to be maintained by endocytic cycling. Curr Biol 13(18):1636–1640CrossRefPubMedGoogle Scholar
  24. 24.
    Balda MS, Matter K (2016) Tight junctions as regulators of tissue remodelling. Curr Opin Cell Biol 42:94–101CrossRefPubMedGoogle Scholar
  25. 25.
    Lahiri S, Toulmay A, Prinz WA (2015) Membrane contact sites, gateways for lipid homeostasis. Curr Opin Cell Biol 33:82–87CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Simons K, Fuller SD (1985) Cell surface polarity in epithelia. Annu Rev Cell Biol 1:243–288CrossRefPubMedGoogle Scholar
  27. 27.
    Gunzel D, Yu AS (2013) Claudins and the modulation of tight junction permeability. Physiol Rev 93(2):525–569CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Evans MJ, von Hahn T, Tscherne DM, Syder AJ, Panis M, Wolk B, Hatziioannou T, McKeating JA, Bieniasz PD, Rice CM (2007) Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 446(7137):801–805CrossRefPubMedGoogle Scholar
  29. 29.
    Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S (1998) Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol 141(7):1539–1550CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Krause G, Winkler L, Mueller SL, Haseloff RF, Piontek J, Blasig IE (2008) Structure and function of claudins. Biochem Biophys Acta 1778(3):631–645CrossRefPubMedGoogle Scholar
  31. 31.
    Krause G, Protze J, Piontek J (2015) Assembly and function of claudins: structure-function relationships based on homology models and crystal structures. Semin Cell Dev Biol 42:3–12CrossRefPubMedGoogle Scholar
  32. 32.
    Lingaraju A, Long TM, Wang Y, Austin JR 2nd, Turner JR (2015) Conceptual barriers to understanding physical barriers. Semin Cell Dev Biol 42:13–21CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Aguilar PS, Engel A, Walter P (2007) The plasma membrane proteins Prm1 and Fig 1 ascertain fidelity of membrane fusion during yeast mating. Mol Biol Cell 18(2):547–556CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Alvarez FJ, Douglas LM, Rosebrock A, Konopka JB (2008) The Sur7 protein regulates plasma membrane organization and prevents intracellular cell wall growth in Candida albicans. Mol Biol Cell 19(12):5214–5225CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Forsburg SL, Rhind N (2006) Basic methods for fission yeast. Yeast 23(3):173–183CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Moreno S, Klar A, Nurse P (1991) Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol 194:795–823CrossRefPubMedGoogle Scholar
  37. 37.
    Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. CSHL Press, New YorkGoogle Scholar
  38. 38.
    Kunkel TA, Roberts JD, Zakour RA (1987) Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol 154:367–382CrossRefPubMedGoogle Scholar
  39. 39.
    Maundrell K (1993) Thiamine-repressible expression vectors pREP and pRIP for fission yeast. Gene 123:127–130CrossRefPubMedGoogle Scholar
  40. 40.
    Stern B, Nurse P (1997) Fission yeast pheromone blocks S-phase by inhibiting the G1 cyclinB-p34cdc2 kinase. EMBO J 16:534CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Sharifmoghadam MR, Valdivieso MH (2009) The fission yeast SEL1 domain protein Cfh3p: a novel regulator of the glucan synthase Bgs1p whose function is more relevant under stress conditions. J Biol Chem 284(17):11070–11079CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    de Leon N, Hoya M, Curto MA, Moro S, Yanguas F, Doncel C, Valdivieso MH (2016) The AP-2 complex is required for proper temporal and spatial dynamics of endocytic patches in fission yeast. Mol Microbiol 100(3):409–424CrossRefPubMedGoogle Scholar
  43. 43.
    Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Russ WP, Engelman DM (1999) TOXCAT: a measure of transmembrane helix association in a biological membrane. Proc Natl Acad Sci USA 96(3):863–868CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Armstrong CR (1858) Senes A (2016) Screening for transmembrane association in divisome proteins using TOXGREEN, a high-throughput variant of the TOXCAT assay. Biochem Biophys Acta 11:2573–2583Google Scholar
  46. 46.
    Dudin O, Bendezu FO, Groux R, Laroche T, Seitz A, Martin SG (2015) A formin-nucleated actin aster concentrates cell wall hydrolases for cell fusion in fission yeast. J Cell Biol 208(7):897–911CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Lock A, Forfar R, Weston C, Bowsher L, Upton GJ, Reynolds CA, Ladds G, Dixon AM (2014) One motif to bind them: a small-XXX-small motif affects transmembrane domain 1 oligomerization, function, localization, and cross-talk between two yeast GPCRs. Biochem Biophys Acta 1838(12):3036–3051CrossRefPubMedGoogle Scholar
  48. 48.
    Hsin J, LaPointe LM, Kazy A, Chipot C, Senes A, Schulten K (2011) Oligomerization state of photosynthetic core complexes is correlated with the dimerization affinity of a transmembrane helix. J Am Chem Soc 133(35):14071–14081CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Senes A, Gerstein M, Engelman DM (2000) Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with beta-branched residues at neighboring positions. J Mol Biol 296(3):921–936CrossRefPubMedGoogle Scholar
  50. 50.
    Gong Y, Renigunta V, Zhou Y, Sunq A, Wang J, Yang J, Renigunta A, Baker LA, Hou J (2015) Biochemical and biophysical analyses of tight junction permeability made of claudin-16 and claudin-19 dimerization. Mol Biol Cell 26(24):4333–4346CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Rossa J, Ploeger C, Vorreiter F, Saleh T, Protze J, Gunzel D, Wolburg H, Krause G, Piontek J (2014) Claudin-3 and claudin-5 protein folding and assembly into the tight junction are controlled by non-conserved residues in the transmembrane 3 (TM3) and extracellular loop 2 (ECL2) segments. J Biol Chem 289(11):7641–7653CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Teese MG, Langosch D (2015) Role of GxxxG motifs in transmembrane domain interactions. Biochemistry 54(33):5125–5135CrossRefPubMedGoogle Scholar
  53. 53.
    Koval M (2013) Differential pathways of claudin oligomerization and integration into tight junctions. Tissue Barriers 1(3):e24518CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Iwaki T, Tanaka N, Takagi H, Giga-Hama Y, Takegawa K (2004) Characterization of end4+, a gene required for endocytosis in Schizosaccharomyces pombe. Yeast 21(10):867–881CrossRefPubMedGoogle Scholar
  55. 55.
    Wachtler V, Rajagopalan S, Balasubramanian MK (2003) Sterol-rich plasma membrane domains in the fission yeast Schizosaccharomyces pombe. J Cell Sci 116(Pt 5):867–874CrossRefPubMedGoogle Scholar
  56. 56.
    Krug SM, Schulzke JD, Fromm M (2014) Tight junction, selective permeability, and related diseases. Semin Cell Dev Biol 36:166–176CrossRefPubMedGoogle Scholar
  57. 57.
    Simske JS (2013) Claudins reign: the claudin/EMP/PMP22/gamma channel protein family in C. elegans. Tissue Barriers 1(3):25502CrossRefGoogle Scholar
  58. 58.
    Hou J, Renigunta A, Gomes AS, Hou M, Paul DL, Waldegger S, Goodenough DA (2009) Claudin-16 and claudin-19 interaction is required for their assembly into tight junctions and for renal reabsorption of magnesium. Proc Natl Acad Sci USA 106(36):15350–15355CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Zihni C, Mills C, Matter K, Balda MS (2016) Tight junctions: from simple barriers to multifunctional molecular gates. Nat Rev 17(9):564–580CrossRefGoogle Scholar
  60. 60.
    Lambert D, O’Neill CA, Padfield PJ (2007) Methyl-beta-cyclodextrin increases permeability of Caco-2 cell monolayers by displacing specific claudins from cholesterol rich domains associated with tight junctions. Cell Physiol Biochem 20(5):495–506CrossRefPubMedGoogle Scholar
  61. 61.
    Krause SA, Xu H, Gray JV (2008) The synthetic genetic network around PKC1 identifies novel modulators and components of protein kinase C signaling in Saccharomyces cerevisiae. Eukaryot Cell 7(11):1880–1887CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Markvoort AJ, Marrink SJ (2011) Lipid acrobatics in the membrane fusion arena. Curr Top Membr 68:259–294CrossRefPubMedGoogle Scholar
  63. 63.
    Lee DB, Jamgotchian N, Allen SG, Abeles MB, Ward HJ (2008) A lipid-protein hybrid model for tight junction. Am J Physiol Renal Physiol 295(6):F1601–F1612CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Nguyen VS, Jobichen C, Tan KW, Tan YW, Chan SL, Ramesh K, Yuan Y, Hong Y, Seetharaman J, Leung KY, Sivaraman J, Mok YK (2015) Structure of AcrH-AopB chaperone-translocator complex reveals a role for membrane hairpins in type III secretion system translocon assembly. Structure 23(11):2022–2031CrossRefPubMedGoogle Scholar
  65. 65.
    Hemler ME (2008) Targeting of tetraspanin proteins–potential benefits and strategies. Nat Rev Drug Discov 7(9):747–758CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Sourisseau M, Michta ML, Zony C, Israelow B, Hopcraft SE, Narbus CM, Parra Martin A, Evans MJ (2013) Temporal analysis of hepatitis C virus cell entry with occludin directed blocking antibodies. PLoS Pathog 9(3):e1003244CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Departamento de Microbiología y GenéticaUniversidad de SalamancaSalamancaSpain
  2. 2.Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC)SalamancaSpain

Personalised recommendations