Abstract
Mechanisms underlying anteroposterior body axis differences during adult tissue maintenance and regeneration are poorly understood. Here, we identify that post-translational modifications through the SUMO (Small Ubiquitin-like Modifier) machinery are evolutionarily conserved in the Lophotrocozoan Schmidtea mediterranea. Disruption of SUMOylation in adult animals by RNA-interference of the only SUMO E2 conjugating enzyme Ubc9 leads to a systemic increase in DNA damage and a remarkable regional defect characterized by increased cell death and loss of the posterior half of the body. We identified that Ubc9 is mainly expressed in planarian stem cells (neoblasts) but it is also transcribed in differentiated cells including neurons. Regeneration in Ubc9(RNAi) animals is impaired and associated with low neoblast proliferation. We present evidence indicating that Ubc9-induced regional cell death is preceded by alterations in transcription and spatial expression of repressors and activators of the Hedgehog signaling pathway. Our results demonstrate that SUMOylation acts as a regional-specific cue to regulate cell fate during tissue renewal and regeneration.
This is a preview of subscription content, access via your institution.







References
- 1.
Wurtzel O, Cote LE, Poirier A, Satija R, Regev A, Reddien PW (2015) A generic and cell-type-specific wound response precedes regeneration in planarians. Dev Cell 35(5):632–645. https://doi.org/10.1016/j.devcel.2015.11.004
- 2.
Oviedo NJ, Pearson BJ, Levin M, Sánchez Alvarado A (2008) Planarian PTEN homologs regulate stem cells and regeneration through TOR signaling. Dis Model Mech 1(2–3):131–143
- 3.
Owlarn S, Bartscherer K (2016) Go ahead, grow a head! A planarian’s guide to anterior regeneration. Regeneration 3(3):139–155. https://doi.org/10.1002/reg2.56
- 4.
Pearson BJ, Sanchez Alvarado A (2008) Regeneration, stem cells, and the evolution of tumor suppression. Cold Spring Harb Symp Quant Biol 73:565–572. https://doi.org/10.1101/sqb.2008.73.045
- 5.
Pellettieri J, Sanchez Alvarado A (2007) Cell turnover and adult tissue homeostasis: from humans to planarians. Annu Rev Genet 41:83–105. https://doi.org/10.1146/annurev.genet.41.110306.130244
- 6.
Roberts-Galbraith RH, Newmark PA (2015) On the organ trail: insights into organ regeneration in the planarian. Curr Opin Genet Dev 32:37–46. https://doi.org/10.1016/j.gde.2015.01.009
- 7.
Tanaka EM, Reddien PW (2011) The cellular basis for animal regeneration. Dev Cell 21(1):172–185. https://doi.org/10.1016/j.devcel.2011.06.016
- 8.
Aboobaker AA (2011) Planarian stem cells: a simple paradigm for regeneration. Trends Cell Biol 21(5):304–311. https://doi.org/10.1016/j.tcb.2011.01.005
- 9.
Peiris TH, Ramirez D, Barghouth PG, Ofoha U, Davidian D, Weckerle F, Oviedo NJ (2016) Regional signals in the planarian body guide stem cell fate in the presence of genomic instability. Development 143(10):1697–1709. https://doi.org/10.1242/dev.131318
- 10.
Epps JL, Tanda S (1998) The Drosophila semushi mutation blocks nuclear import of bicoid during embryogenesis. Current biology: CB 8(23):1277–1280
- 11.
Nowak M, Hammerschmidt M (2006) Ubc9 regulates mitosis and cell survival during zebrafish development. Mol Biol Cell 17(12):5324–5336. https://doi.org/10.1091/mbc.E06-05-0413
- 12.
Lomeli H, Vazquez M (2011) Emerging roles of the SUMO pathway in development. Cell Mol Life Sci 68(24):4045–4064. https://doi.org/10.1007/s00018-011-0792-5
- 13.
Flotho A, Melchior F (2013) Sumoylation: a regulatory protein modification in health and disease. Annu Rev Biochem 82:357–385. https://doi.org/10.1146/annurev-biochem-061909-093311
- 14.
Gareau JR, Lima CD (2010) The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol 11(12):861–871. https://doi.org/10.1038/nrm3011
- 15.
Hay RT (2013) Decoding the SUMO signal. Biochem Soc Trans 41(2):463–473. https://doi.org/10.1042/BST20130015
- 16.
Desterro JM, Thomson J, Hay RT (1997) Ubch9 conjugates SUMO but not ubiquitin. FEBS Lett 417(3):297–300
- 17.
Gong L, Kamitani T, Fujise K, Caskey LS, Yeh ET (1997) Preferential interaction of sentrin with a ubiquitin-conjugating enzyme, Ubc9. J Biol Chem 272(45):28198–28201
- 18.
Johnson ES, Blobel G (1997) Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. J Biol Chem 272(43):26799–26802
- 19.
Saitoh H, Sparrow DB, Shiomi T, Pu RT, Nishimoto T, Mohun TJ, Dasso M (1998) Ubc9p and the conjugation of SUMO-1 to RanGAP1 and RanBP2. Curr Biol 8(2):121–124
- 20.
Schwarz SE, Matuschewski K, Liakopoulos D, Scheffner M, Jentsch S (1998) The ubiquitin-like proteins SMT3 and SUMO-1 are conjugated by the UBC9 E2 enzyme. Proc Natl Acad Sci USA 95(2):560–564
- 21.
Nacerddine K, Lehembre F, Bhaumik M, Artus J, Cohen-Tannoudji M, Babinet C, Pandolfi PP, Dejean A (2005) The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev Cell 9(6):769–779. https://doi.org/10.1016/j.devcel.2005.10.007
- 22.
Reddien PW, Oviedo NJ, Jennings JR, Jenkin JC, Sanchez Alvarado A (2005) SMEDWI-2 is a PIWI-like protein that regulates planarian stem cells. Science 310(5752):1327–1330. https://doi.org/10.1126/science.1116110
- 23.
Peiris TH, Garcia-Ojeda ME, Oviedo NJ (2016) Alternative flow cytometry strategies to analyze stem cells and cell death in planarians. Regeneration 3(2):123–135. https://doi.org/10.1002/reg2.53
- 24.
Eisenhoffer GT, Kang H, Sánchez Alvarado A (2008) Molecular analysis of stem cells and their descendants during cell turnover and regeneration in the planarian Schmidtea mediterranea. Cell Stem Cell 3(3):327–339. https://doi.org/10.1016/j.stem.2008.07.002
- 25.
Seufert W, Futcher B, Jentsch S (1995) Role of a ubiquitin-conjugating enzyme in degradation of S- and M-phase cyclins. Nature 373(6509):78–81. https://doi.org/10.1038/373078a0
- 26.
al-Khodairy F, Enoch T, Hagan IM, Carr AM (1995) The Schizosaccharomyces pombe hus5 gene encodes a ubiquitin conjugating enzyme required for normal mitosis. J Cell Sci 108(Pt 2):475–486
- 27.
Meng F, Qian J, Yue H, Li X, Xue K (2016) SUMOylation of Rb enhances its binding with CDK2 and phosphorylation at early G1 phase. Cell Cycle 15(13):1724–1732. https://doi.org/10.1080/15384101.2016.1182267
- 28.
Bellail AC, Olson JJ, Hao C (2014) SUMO1 modification stabilizes CDK6 protein and drives the cell cycle and glioblastoma progression. Nat Commun 5:4234. https://doi.org/10.1038/ncomms5234
- 29.
Beane WS, Morokuma J, Lemire JM, Levin M (2013) Bioelectric signaling regulates head and organ size during planarian regeneration. Development 140(2):313–322. https://doi.org/10.1242/dev.086900
- 30.
Bender CE, Fitzgerald P, Tait SW, Llambi F, McStay GP, Tupper DO, Pellettieri J, Sanchez Alvarado A, Salvesen GS, Green DR (2012) Mitochondrial pathway of apoptosis is ancestral in metazoans. Proc Natl Acad Sci USA 109(13):4904–4909. https://doi.org/10.1073/pnas.1120680109
- 31.
Yin S, Huang Y, Zhangfang Y, Zhong X, Li P, Huang J, Liu D, Songyang Z (2016) SmedOB1 is required for planarian homeostasis and regeneration. Sci Reports 6:34013. https://doi.org/10.1038/srep34013
- 32.
Xiang Y, Miller DE, Ross EJ, Sanchez Alvarado A, Hawley RS (2014) Synaptonemal complex extension from clustered telomeres mediates full-length chromosome pairing in Schmidtea mediterranea. Proc Natl Acad Sci USA 111(48):E5159–E5168. https://doi.org/10.1073/pnas.1420287111
- 33.
Yazawa S, Umesono Y, Hayashi T, Tarui H, Agata K (2009) Planarian Hedgehog/Patched establishes anterior-posterior polarity by regulating Wnt signaling. Proc Natl Acad Sci USA 106(52):22329–22334. https://doi.org/10.1073/pnas.0907464106
- 34.
Rink JC, Gurley KA, Elliott SA, Sanchez Alvarado A (2009) Planarian Hh signaling regulates regeneration polarity and links Hh pathway evolution to cilia. Science 326(5958):1406–1410. https://doi.org/10.1126/science.1178712
- 35.
Currie KW, Molinaro AM, Pearson BJ (2016) Neuronal sources of hedgehog modulate neurogenesis in the adult planarian brain. eLife. https://doi.org/10.7554/eLife.19735
- 36.
Auerbach R, Auerbach W (1982) Regional differences in the growth of normal and neoplastic cells. Science 215(4529):127–134
- 37.
Giribet G (2008) Assembling the lophotrochozoan (= spiralian) tree of life. Philos Trans R Soc Lond B Biol Sci 363(1496):1513–1522. https://doi.org/10.1098/rstb.2007.2241
- 38.
Gehrke AR, Srivastava M (2016) Neoblasts and the evolution of whole-body regeneration. Curr Opin Genet Dev 40:131–137. https://doi.org/10.1016/j.gde.2016.07.009
- 39.
Currie KW, Brown DD, Zhu S, Xu C, Voisin V, Bader GD, Pearson BJ (2016) HOX gene complement and expression in the planarian Schmidtea mediterranea. EvoDevo 7:7. https://doi.org/10.1186/s13227-016-0044-8
- 40.
Yuan H, Zhou J, Deng M, Liu X, Le Bras M, de The H, Chen SJ, Chen Z, Liu TX, Zhu J (2010) Small ubiquitin-related modifier paralogs are indispensable but functionally redundant during early development of zebrafish. Cell Res 20(2):185–196. https://doi.org/10.1038/cr.2009.101
- 41.
Saracco SA, Miller MJ, Kurepa J, Vierstra RD (2007) Genetic analysis of SUMOylation in Arabidopsis: conjugation of SUMO1 and SUMO2 to nuclear proteins is essential. Plant Physiol 145(1):119–134. https://doi.org/10.1104/pp.107.102285
- 42.
Hayashi T, Seki M, Maeda D, Wang W, Kawabe Y, Seki T, Saitoh H, Fukagawa T, Yagi H, Enomoto T (2002) Ubc9 is essential for viability of higher eukaryotic cells. Exp Cell Res 280(2):212–221
- 43.
Yukita A, Hosoya A, Ito Y, Katagiri T, Asashima M, Nakamura H (2012) Ubc9 negatively regulates BMP-mediated osteoblastic differentiation in cultured cells. Bone 50(5):1092–1099. https://doi.org/10.1016/j.bone.2012.02.008
- 44.
Myatt SS, Kongsema M, Man CW, Kelly DJ, Gomes AR, Khongkow P, Karunarathna U, Zona S, Langer JK, Dunsby CW, Coombes RC, French PM, Brosens JJ, Lam EW (2014) SUMOylation inhibits FOXM1 activity and delays mitotic transition. Oncogene 33(34):4316–4329. https://doi.org/10.1038/onc.2013.546
- 45.
Lv X, Pan C, Zhang Z, Xia Y, Chen H, Zhang S, Guo T, Han H, Song H, Zhang L, Zhao Y (2016) SUMO regulates somatic cyst stem cell maintenance and directly targets the Hedgehog pathway in adult Drosophila testis. Development 143(10):1655–1662. https://doi.org/10.1242/dev.130773
- 46.
Tahmasebi S, Ghorbani M, Savage P, Gocevski G, Yang XJ (2014) The SUMO conjugating enzyme Ubc9 is required for inducing and maintaining stem cell pluripotency. Stem cells 32(4):1012–1020. https://doi.org/10.1002/stem.1600
- 47.
Pelisch F, Sonneville R, Pourkarimi E, Agostinho A, Blow JJ, Gartner A, Hay RT (2014) Dynamic SUMO modification regulates mitotic chromosome assembly and cell cycle progression in Caenorhabditis elegans. Nature communications 5:5485. https://doi.org/10.1038/ncomms6485
- 48.
Huang C, Cheng J, Bawa-Khalfe T, Yao X, Chin YE, Yeh ET (2016) SUMOylated ORC2 recruits a histone demethylase to regulate centromeric histone modification and genomic stability. Cell Reports 15(1):147–157. https://doi.org/10.1016/j.celrep.2016.02.091
- 49.
Moschos SJ, Mo YY (2006) Role of SUMO/Ubc9 in DNA damage repair and tumorigenesis. J Mol Histol 37(5–7):309–319. https://doi.org/10.1007/s10735-006-9030-0
- 50.
Shima H, Suzuki H, Sun J, Kono K, Shi L, Kinomura A, Horikoshi Y, Ikura T, Ikura M, Kanaar R, Igarashi K, Saitoh H, Kurumizaka H, Tashiro S (2013) Activation of the SUMO modification system is required for the accumulation of RAD51 at sites of DNA damage. J Cell Sci 126(Pt 22):5284–5292. https://doi.org/10.1242/jcs.133744
- 51.
Kurtzman AL, Schechter N (2001) Ubc9 interacts with a nuclear localization signal and mediates nuclear localization of the paired-like homeobox protein Vsx-1 independent of SUMO-1 modification. Proc Natl Acad Sci USA 98(10):5602–5607. https://doi.org/10.1073/pnas.101129698
- 52.
Ross S, Best JL, Zon LI, Gill G (2002) SUMO-1 modification represses Sp3 transcriptional activation and modulates its subnuclear localization. Mol Cell 10(4):831–842
- 53.
Wu CS, Ouyang J, Mori E, Nguyen HD, Marechal A, Hallet A, Chen DJ, Zou L (2014) SUMOylation of ATRIP potentiates DNA damage signaling by boosting multiple protein interactions in the ATR pathway. Genes Dev 28(13):1472–1484. https://doi.org/10.1101/gad.238535.114
- 54.
Bergink S, Ammon T, Kern M, Schermelleh L, Leonhardt H, Jentsch S (2013) Role of Cdc48/p97 as a SUMO-targeted segregase curbing Rad51-Rad52 interaction. Nat Cell Biol 15(5):526–532. https://doi.org/10.1038/ncb2729
- 55.
Chen Y, Struhl G (1996) Dual roles for patched in sequestering and transducing Hedgehog. Cell 87(3):553–563
- 56.
Ma G, Li S, Han Y, Li S, Yue T, Wang B, Jiang J (2016) Regulation of smoothened trafficking and hedgehog signaling by the SUMO pathway. Dev Cell 39(4):438–451. https://doi.org/10.1016/j.devcel.2016.09.014
- 57.
Zhang J, Liu Y, Jiang K, Jia J (2017) SUMO regulates the activity of Smoothened and Costal-2 in Drosophila Hedgehog signaling. Sci Reports 7:42749. https://doi.org/10.1038/srep42749
- 58.
Robb SM, Gotting K, Ross E, Sanchez Alvarado A (2015) SmedGD 2.0: the Schmidtea mediterranea genome database. Genesis 53(8):535–546. https://doi.org/10.1002/dvg.22872
- 59.
Brandl H, Moon H, Vila-Farre M, Liu SY, Henry I, Rink JC (2016) PlanMine–a mineable resource of planarian biology and biodiversity. Nucleic Acids Res 44(D1):D764–D773. https://doi.org/10.1093/nar/gkv1148
- 60.
Reddien PW, Bermange AL, Murfitt KJ, Jennings JR, Sánchez Alvarado A (2005) Identification of genes needed for regeneration, stem cell function, and tissue homeostasis by systematic gene perturbation in planaria. Dev Cell 8(5):635–649
- 61.
Pearson BJ, Eisenhoffer GT, Gurley KA, Rink JC, Miller DE, Sanchez Alvarado A (2009) Formaldehyde-based whole-mount in situ hybridization method for planarians. Dev Dyn 238(2):443–450. https://doi.org/10.1002/dvdy.21849
- 62.
Peiris TH, Ramirez D, Barghouth PG, Oviedo NJ (2016) The Akt signaling pathway is required for tissue maintenance and regeneration in planarians. BMC Dev Biol 16:7. https://doi.org/10.1186/s12861-016-0107-z
- 63.
Guedelhoefer OCT, Sanchez Alvarado A (2012) Amputation induces stem cell mobilization to sites of injury during planarian regeneration. Development 139(19):3510–3520. https://doi.org/10.1242/dev.082099
Acknowledgements
We thank Edelweiss Pfister for technical assistance and members of the Oviedo Lab for comments on the manuscript. We acknowledge Drs. Marcos Garcia-Ojeda and Anna Beaudin for assistance with FACS analysis and comments on the manuscript. Thanks are also extended to Ulrike Abu-Shach for technical assistance cloning Ubc9. The SYNORF antibody was obtained from the Developmental Studies Hybridoma Bank, created by the NICHD of the NIH and maintained at the University of Iowa, Department of Biology. We are grateful to Sánchez Alvarado/Hawley labs for providing a sample of the SMED-RAD51 antibody.
Author information
Affiliations
Contributions
MT, PGB, AT, LB, and NJO performed research and analyzed data. MT, LB, and NJO wrote the manuscript. All authors read the manuscript, provided comments and approved the final version.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing or financial interest.
Funding
We acknowledge support from University of California Merced and the Israel Science Foundation (ISF 1878/15) and the Israel Cancer Research Fund 14-101-PG to LB. This research was funded by the National Cancer Institute and National Institute of General Medical Sciences of the National Institute of Health, awards CA176114 and GM109372 to NJO.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Thiruvalluvan, M., Barghouth, P.G., Tsur, A. et al. SUMOylation controls stem cell proliferation and regional cell death through Hedgehog signaling in planarians. Cell. Mol. Life Sci. 75, 1285–1301 (2018). https://doi.org/10.1007/s00018-017-2697-4
Received:
Revised:
Accepted:
Published:
Issue Date:
Keywords
- Ubc9
- Regeneration
- Genomic instability
- Rad51
- Patched