Skip to main content
Log in

Cadherin 22 participates in the self-renewal of mouse female germ line stem cells via interaction with JAK2 and β-catenin

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The self-renewal capacity of the stem cell pool determines tissue function and health. Cadherin-22 (Cdh22), a member of the cadherin superfamily, has two splicing patterns in rats, and the short type that lacks a catenin binding domain is closely related to spermatogonial stem cell self-renewal. Previously, we reported that CDH22 was highly expressed in mouse ovary germ cells, especially in female germ line stem cells (FGSCs). However, its underlying function in FGSCs is still not clear. Here, we found that Cdh22 encodes only one type of protein product in mice and demonstrated that CDH22 was required for FGSC self-renewal. In addition, JAK2 and β-catenin were found to interact with CDH22 and be involved in CDH22 signaling in mouse FGSCs. Moreover, extrinsic CDH22 was identified as a potential molecule that participates in FGSC adhesion and is pivotal for FGSC maintenance and self-renewal. These results reveal that CDH22 functions as an essential molecule in FGSC maintenance and self-renewal via different mechanisms, including interaction with the JAK-STAT signaling pathway and β-catenin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BrdU:

5-Bromo-2′-deoxyuridine

CDH22:

Cadherin-22

FGSCs:

Female germ line stem cells

DMSO:

Dimethyl sulphoxide

JAK–STAT:

Janus kinase–signal transducer and activator of transcription

PCNA:

Proliferating cell nuclear antigen

References

  1. Zuckerman S (1951) The number of oocytes in the mature ovary. Horm Res 6:63–108

    Google Scholar 

  2. Borum K (1961) Oogenesis in the mouse : a study of the meiotic prophase. Exp Cell Res 24(3):495–507

    Article  CAS  PubMed  Google Scholar 

  3. Peters H (1970) Migration of gonocytes into the mammalian gonad and their differentiation. Philos Trans R Soc Lond 259(828):91–101

    Article  CAS  Google Scholar 

  4. Mclaren A (1984) Meiosis and differentiation of mouse germ cells. Symp Soc Exp Biol 38(38):7

    CAS  PubMed  Google Scholar 

  5. Faddy MJ, Jones EC, Edwards RG (1976) An analytical model for ovarian follicle dynamics. J Exp Zool 197(2):173

    Article  CAS  PubMed  Google Scholar 

  6. Perez GI et al (1999) Prolongation of ovarian lifespan into advanced chronological age by Bax-deficiency. Nat Genet 21(2):200–203

    Article  CAS  PubMed  Google Scholar 

  7. Faddy MJ (2000) Follicle dynamics during ovarian ageing. Mol Cell Endocrinol 163(1–2):43–48

    Article  CAS  PubMed  Google Scholar 

  8. Tilly JL (2001) Commuting the death sentence: how oocytes strive to survive. Nat Rev Mol Cell Biol 2(11):838–848

    Article  CAS  PubMed  Google Scholar 

  9. Johnson J et al (2004) Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature 428(6979):145–150

    Article  CAS  PubMed  Google Scholar 

  10. Johnson J et al (2005) Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell 122(2):303–315

    Article  CAS  PubMed  Google Scholar 

  11. Hu Y et al (2012) GSK3 inhibitor-BIO regulates proliferation of female germline stem cells from the postnatal mouse ovary. Cell Prolif 45(4):287–298

    Article  CAS  PubMed  Google Scholar 

  12. Bai Y et al (2013) Location and characterization of female germline stem cells (FGSCs) in juvenile porcine ovary. Cell Prolif 46(5):516–528

    CAS  PubMed  Google Scholar 

  13. Nakamura S et al (2010) Identification of germline stem cells in the ovary of the teleost medaka. Science 328(5985):1561–1563

    Article  CAS  PubMed  Google Scholar 

  14. Zou K et al (2009) Production of offspring from a germline stem cell line derived from neonatal ovaries. Nat Cell Biol 11(5):631–636

    Article  CAS  PubMed  Google Scholar 

  15. White YAR et al (2012) Oocyte formation by mitotically-active germ cells purified from ovaries of reproductive age women. Nat Med 18(3):413–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guo K et al (2016) Germ stem cells are active in postnatal mouse ovary under physiological conditions. Mol Hum Reprod 22(5):316–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang H et al (2012) Experimental evidence showing that no mitotically active female germ line progenitors exist in postnatal mouse ovaries. Proc Natl Acad Sci USA 109(31):12580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lei L, Spradling AC (2013) Female mice lack adult germ-line stem cells but sustain oogenesis using stable primordial follicles. Proc Natl Acad Sci USA 110(21):8585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Woods DC, Tilly JL (2015) Reply to Adult human and mouse ovaries lack DDX4-expressing functional oogonial stem cells. Nat Med 21(10):1116–1118

    Article  Google Scholar 

  20. Zarate-Garcia L et al (2016) FACS-sorted putative oogonial stem cells from the ovary are neither DDX4-positive nor germ cells. Sci Rep 6:27991

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li X, Ao J, Wu J (2017) Systematic identification and comparison of expressed profiles of lncRNAs and circRNAs with associated co-expression and ceRNA networks in mouse germline stem cells. Oncotarget 8(16):26573–26590

    PubMed  PubMed Central  Google Scholar 

  22. Wu C et al (2017) Tracing and characterizing the development of transplanted female germline stem cells in vivo. Mol Ther 25(6):1408–1419

    Article  CAS  PubMed  Google Scholar 

  23. Ding X et al (2016) Human GV oocytes generated by mitotically active germ cells obtained from follicular aspirates. Sci Rep 6:28218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang Y et al (2011) Production of transgenic mice by random recombination of targeted genes in female germline stem cells. J Mol Cell Biol 3(2):132–141

    Article  CAS  PubMed  Google Scholar 

  25. Zou K et al (2011) Improved efficiency of female germline stem cell purification using fragilis-based magnetic bead sorting. Stem Cells Dev 20(12):2197–2204

    Article  CAS  PubMed  Google Scholar 

  26. Woods DC, Tilly JL (2013) Isolation, characterization and propagation of mitotically active germ cells from adult mouse and human ovaries. Nat Protoc 8(5):966–988

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wang H et al (2014) Conversion of female germline stem cells from neonatal and prepubertal mice into pluripotent stem cells. J Mol Cell Biol 6(2):164–171

    Article  CAS  PubMed  Google Scholar 

  28. Xie W, Wang H, Wu J (2014) Similar morphological and molecular signatures shared by female and male germline stem cells. Sci Rep 4:5580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhou L et al (2014) Production of fat-1 transgenic rats using a post-natal female germline stem cell line. Mol Hum Reprod 20(3):271–281

    Article  CAS  PubMed  Google Scholar 

  30. Khosravifarsani S et al (2015) Isolation and enrichment of mouse female germ line stem cells. Cell J 16(4):406–415

    Google Scholar 

  31. Park ES, Tilly JL (2015) Use of DEAD-box polypeptide-4 (Ddx4) gene promoter-driven fluorescent reporter mice to identify mitotically active germ cells in post-natal mouse ovaries. Mol Hum Reprod 21(1):58

    Article  CAS  PubMed  Google Scholar 

  32. Lu Z et al (2016) Improvement in isolation and identification of mouse oogonial stem cells. Stem Cell Int 2016(19):1–10

    Google Scholar 

  33. Zhang C, Wu J (2016) Production of offspring from a germline stem cell line derived from prepubertal ovaries of germline reporter mice. Mol Hum Reprod 22(7):457

    Article  CAS  PubMed  Google Scholar 

  34. Pacchiarotti J et al (2010) Differentiation potential of germ line stem cells derived from the postnatal mouse ovary. Differentiation 79(3):159–170

    Article  CAS  PubMed  Google Scholar 

  35. Park ES, Woods DC, Tilly JL (2013) Bone morphogenetic protein 4 (BMP4) promotes mammalian oogonial stem cell differentiation via Smad1/5/8 signaling. Fertil Steril 100(5):1468–1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Song X, Xie T (2002) DE-cadherin-mediated cell adhesion is essential for maintaining somatic stem cells in the Drosophila ovary. Proc Natl Acad Sci USA 99(23):14813–14818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tokuda M et al (2007) CDH1 is a specific marker for undifferentiated spermatogonia in mouse testes. Biol Reprod 76(1):130–141

    Article  CAS  PubMed  Google Scholar 

  38. Baronsky T et al (2016) Reduction in E-cadherin expression fosters migration of Xenopus laevis primordial germ cells. Integr Biol 8(3):349–358

    Article  CAS  Google Scholar 

  39. Sugimoto K et al (1996) Molecular cloning and characterization of a newly identified member of the cadherin family, PB-cadherin. J Biol Chem 271(19):11548–11556

    Article  CAS  PubMed  Google Scholar 

  40. Wu J et al (2003) Expression of a novel factor, short-type PB-cadherin, in Sertoli cells and spermatogenic stem cells of the neonatal rat testis. J Endocrinol 176(3):381

    Article  CAS  PubMed  Google Scholar 

  41. Wu J, Jester W, Orth J (2005) Short-type PB-cadherin promotes survival of gonocytes and activates JAK-STAT signalling. Dev Biol 284(2):437–450

    Article  CAS  PubMed  Google Scholar 

  42. Wu J et al (2008) Short-type PB-cadherin promotes self-renewal of spermatogonial stem cells via multiple signaling pathways. Cell Signal 20(6):1052

    Article  CAS  PubMed  Google Scholar 

  43. Kitajima K, Koshimizu U, Nakamura T (1999) Expression of a novel type of classic cadherin, PB-cadherin in developing brain and limb buds. Dev Dyn 215(3):206–214

    Article  CAS  PubMed  Google Scholar 

  44. Hirano T, Nakajima K, Hibi M (1997) Signaling mechanisms through gp130: a model of the cytokine system. Cytokine Growth Factor Rev 8(4):241

    Article  CAS  PubMed  Google Scholar 

  45. Kanatsushinohara M et al (2008) Homing of mouse spermatogonial stem cells to germline niche depends on beta1-integrin. Cell Stem Cell 3(5):533

    Article  CAS  Google Scholar 

  46. Kiger AA et al (2001) Stem cell self-renewal specified by JAK-STAT activation in response to a support cell cue. Science 294(5551):2542

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (81200472) and Fundamental Research Funds for the Central Universities in China (KYTZ201602).

Author information

Authors and Affiliations

Authors

Contributions

XZ, collection and/or assembly of data, data analysis and interpretation. YY, collection and/or assembly of data, data analysis and interpretation. QX, collection and/or assembly of data, data analysis and interpretation. HS, collection and/or assembly of data, and data analysis. RW, collection and/or assembly of data, and data analysis. JW, collection and/or assembly of data, and data analysis. KZ, conception and design, financial support, manuscript writing, and final approval of manuscript.

Corresponding author

Correspondence to Kang Zou.

Ethics declarations

Conflict of interest

The authors have no potential conflicts of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Yang, Y., Xia, Q. et al. Cadherin 22 participates in the self-renewal of mouse female germ line stem cells via interaction with JAK2 and β-catenin. Cell. Mol. Life Sci. 75, 1241–1253 (2018). https://doi.org/10.1007/s00018-017-2689-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2689-4

Keywords

Navigation