Skip to main content
Log in

Bifidobacteria and the infant gut: an example of co-evolution and natural selection

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Throughout the human life, the gut microbiota interacts with us in a number of different ways, thereby influencing our health status. The acquisition of such an interactive gut microbiota commences at birth. Medical and environmental factors including diet, antibiotic exposure and mode of delivery are major factors that shape the composition of the microbial communities in the infant gut. Among the most abundant members of the infant microbiota are species belonging to the Bifidobacterium genus, which are believed to confer beneficial effects upon their host. Bifidobacteria may be acquired directly from the mother by vertical transmission and their persistence in the infant gut is associated with their saccharolytic activity toward glycans that are abundant in the infant gut. Here, we discuss the establishment of the infant gut microbiota and the contribution of bifidobacteria to this early life microbial consortium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adlerberth I, Wold AE (2009) Establishment of the gut microbiota in Western infants. Acta Paediatr 98:229–238

    Article  CAS  PubMed  Google Scholar 

  2. Agans R, Rigsbee L, Kenche H, Michail S, Khamis HJ, Paliy O (2011) Distal gut microbiota of adolescent children is different from that of adults. FEMS Microbiol Ecol 77:404–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ajslev TA, Andersen CS, Gamborg M, Sorensen TI, Jess T (2011) Childhood overweight after establishment of the gut microbiota: the role of delivery mode, pre-pregnancy weight and early administration of antibiotics. Int J Obes 35:522–529

    Article  CAS  Google Scholar 

  4. Albrecht S, Schols HA, van den Heuvel EG, Voragen AG, Gruppen H (2011) Occurrence of oligosaccharides in feces of breast-fed babies in their first six months of life and the corresponding breast milk. Carbohydr Res 346:2540–2550

    Article  CAS  PubMed  Google Scholar 

  5. Altmann F, Kosma P, O’Callaghan A, Leahy S, Bottacini F, Molloy E, Plattner S, Schiavi E, Gleinser M, Groeger D et al (2016) Genome analysis and characterisation of the exopolysaccharide produced by Bifidobacterium longum subsp. longum 35624. PLoS One 11:e0162983

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Alvarez-Martin P, O’Connell Motherway M, Turroni F, Foroni E, Ventura M, van Sinderen D (2012) A two-component regulatory system controls autoregulated serpin expression in Bifidobacterium breve UCC2003. Appl Environ Microbiol 78:7032–7041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Arboleya S, Ang L, Margolles A, Yiyuan L, Dongya Z, Liang X, Solis G, Fernandez N, de Los Reyes-Gavilan CG, Gueimonde M (2012) Deep 16S rRNA metagenomics and quantitative PCR analyses of the premature infant fecal microbiota. Anaerobe 18:378–380

    Article  CAS  PubMed  Google Scholar 

  8. Arboleya S, Sanchez B, Milani C, Duranti S, Solis G, Fernandez N, de los Reyes-Gavilan CG, Ventura M, Margolles A, Gueimonde M (2015) Intestinal microbiota development in preterm neonates and effect of perinatal antibiotics. J Pediatr 166:538–544

    Article  CAS  PubMed  Google Scholar 

  9. Ashida H, Miyake A, Kiyohara M, Wada J, Yoshida E, Kumagai H, Katayama T, Yamamoto K (2009) Two distinct alpha-l-fucosidases from Bifidobacterium bifidum are essential for the utilization of fucosylated milk oligosaccharides and glycoconjugates. Glycobiology 19:1010–1017

    Article  CAS  PubMed  Google Scholar 

  10. Backhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, Li Y, Xia Y, Xie H, Zhong H et al (2015) Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17:852

    Article  CAS  PubMed  Google Scholar 

  11. Bailey MT, Lubach GR, Coe CL (2004) Prenatal stress alters bacterial colonization of the gut in infant monkeys. J Pediatr Gastroenterol Nutr 38:414–421

    Article  PubMed  Google Scholar 

  12. Barcenilla A, Pryde SE, Martin JC, Duncan SH, Stewart CS, Henderson C, Flint HJ (2000) Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol 66:1654–1661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Belenguer A, Duncan SH, Calder AG, Holtrop G, Louis P, Lobley GE, Flint HJ (2006) Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl Environ Microbiol 72:3593–3599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bienenstock J, Buck RH, Linke H, Forsythe P, Stanisz AM, Kunze WA (2013) Fucosylated but not sialylated milk oligosaccharides diminish colon motor contractions. PLoS One 8:e76236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Blustein J, Attina T, Liu M, Ryan AM, Cox LM, Blaser MJ, Trasande L (2013) Association of caesarean delivery with child adiposity from age 6 weeks to 15 years. Int J Obes 37:900–906

    Article  CAS  Google Scholar 

  16. Bottacini F, O’Connell Motherway M, Casey E, McDonnell B, Mahony J, Ventura M, van Sinderen D (2015) Discovery of a conjugative megaplasmid in Bifidobacterium breve. Appl Environ Microbiol 81:166–176

    Article  PubMed  CAS  Google Scholar 

  17. Bottacini F, O’Connell Motherway M, Kuczynski J, O’Connell KJ, Serafini F, Duranti S, Milani C, Turroni F, Lugli GA, Zomer A et al (2014) Comparative genomics of the Bifidobacterium breve taxon. BMC Genom 15:170

    Article  Google Scholar 

  18. Bottacini F, Ventura M, van Sinderen D, O’Connell Motherway M (2014) Diversity, ecology and intestinal function of bifidobacteria. Microb Cell Fact 13(Suppl 1):S4

    Article  PubMed  PubMed Central  Google Scholar 

  19. Castanys-Munoz E, Martin MJ, Prieto PA (2013) 2′-Fucosyllactose: an abundant, genetically determined soluble glycan present in human milk. Nutr Rev 71:773–789

    Article  PubMed  Google Scholar 

  20. Cerdeno-Tarraga AM, Patrick S, Crossman LC, Blakely G, Abratt V, Lennard N, Poxton I, Duerden B, Harris B, Quail MA et al (2005) Extensive DNA inversions in the B. fragilis genome control variable gene expression. Science 307:1463–1465

    Article  CAS  PubMed  Google Scholar 

  21. Chaplin AV, Efimov BA, Smeianov VV, Kafarskaia LI, Pikina AP, Shkoporov AN (2015) Intraspecies genomic diversity and long-term persistence of Bifidobacterium longum. PLoS One 10:e0135658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Christiaen SE, O’Connell Motherway M, Bottacini F, Lanigan N, Casey PG, Huys G, Nelis HJ, van Sinderen D, Coenye T (2014) Autoinducer-2 plays a crucial role in gut colonization and probiotic functionality of Bifidobacterium breve UCC2003. PLoS One 9:e98111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Clarke G, O’Mahony SM, Dinan TG, Cryan JF (2014) Priming for health: gut microbiota acquired in early life regulates physiology, brain and behaviour. Acta Paediatr 103:812–819

    Article  CAS  PubMed  Google Scholar 

  24. Colagiorgi A, Turroni F, Mancabelli L, Serafini F, Secchi A, van Sinderen D, Ventura M (2015) Insights into teichoic acid biosynthesis by Bifidobacterium bifidum PRL2010. FEMS Microbiol Lett 362:fnv141

    Article  PubMed  Google Scholar 

  25. Cox LM, Yamanishi S, Sohn J, Alekseyenko AV, Leung JM, Cho I, Kim SG, Li H, Gao Z, Mahana D et al (2014) Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 158:705–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. D’Elia JN, Salyers AA (1996) Effect of regulatory protein levels on utilization of starch by Bacteroides thetaiotaomicron. J Bacteriol 178:7180–7186

    Article  PubMed  PubMed Central  Google Scholar 

  27. De Boever P, Wouters R, Verschaeve L, Berckmans P, Schoeters G, Verstraete W (2000) Protective effect of the bile salt hydrolase-active Lactobacillus reuteri against bile salt cytotoxicity. Appl Microbiol Biotechnol 53:709–714

    Article  PubMed  Google Scholar 

  28. De Leoz ML, Kalanetra KM, Bokulich NA, Strum JS, Underwood MA, German JB, Mills DA, Lebrilla CB (2015) Human milk glycomics and gut microbial genomics in infant feces show a correlation between human milk oligosaccharides and gut microbiota: a proof-of-concept study. J Proteome Res 14:491–502

    Article  PubMed  CAS  Google Scholar 

  29. De Vuyst L, Leroy F (2011) Cross-feeding between bifidobacteria and butyrate-producing colon bacteria explains bifidobacterial competitiveness, butyrate production, and gas production. Int J Food Microbiol 149:73–80

    Article  PubMed  CAS  Google Scholar 

  30. Dethlefsen L, Huse S, Sogin ML, Relman DA (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6:e280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. DiGiulio DB, Romero R, Amogan HP, Kusanovic JP, Bik EM, Gotsch F, Kim CJ, Erez O, Edwin S, Relman DA (2008) Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation. PLoS One 3:e3056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Dogra S, Sakwinska O, Soh SE, Ngom-Bru C, Bruck WM, Berger B, Brussow H, Lee YS, Yap F, Chong YS et al. (2015) Dynamics of infant gut microbiota are influenced by delivery mode and gestational duration and are associated with subsequent adiposity. mBio 6:1–9

    Article  Google Scholar 

  33. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 107:11971–11975

    Article  PubMed  PubMed Central  Google Scholar 

  34. Duncan SH, Flint HJ (2008) Proposal of a neotype strain (A1-86) for Eubacterium rectale. Request for an opinion. Int J Syst Evol Microbiol 58:1735–1736

    Article  CAS  PubMed  Google Scholar 

  35. Duranti S, Milani C, Lugli GA, Turroni F, Mancabelli L, Sanchez B, Ferrario C, Viappiani A, Mangifesta M, Mancino W et al (2015) Insights from genomes of representatives of the human gut commensal Bifidobacterium bifidum. Environ Microbiol 17(7):2515–2531

    Article  CAS  PubMed  Google Scholar 

  36. Duranti S, Turroni F, Lugli GA, Milani C, Viappiani A, Mangifesta M, Gioiosa L, Palanza P, van Sinderen D, Ventura M (2014) Genomic characterization and transcriptional studies of the starch-utilizing strain Bifidobacterium adolescentis 22L. Appl Environ Microbiol 80:6080–6090

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638

    Article  PubMed  PubMed Central  Google Scholar 

  38. Egan M, Jiang H, O’Connell Motherway M, Oscarson S, van Sinderen D (2016) Glycosulfatase-encoding gene cluster in Bifidobacterium breve UCC2003. Appl Environ Microbiol 82:6611–6623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Egan M, Motherway MO, Kilcoyne M, Kane M, Joshi L, Ventura M, van Sinderen D (2014) Cross-feeding by Bifidobacterium breve UCC2003 during co-cultivation with Bifidobacterium bifidum PRL2010 in a mucin-based medium. BMC Microbiol 14:282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Egan M, O’Connell Motherway M, Ventura M, van Sinderen D (2014) Metabolism of sialic acid by Bifidobacterium breve UCC2003. Appl Environ Microbiol 80:4414–4426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Fallani M, Amarri S, Uusijarvi A, Adam R, Khanna S, Aguilera M, Gil A, Vieites JM, Norin E, Young D et al (2011) Determinants of the human infant intestinal microbiota after the introduction of first complementary foods in infant samples from five European centres. Microbiology 157:1385–1392

    Article  CAS  PubMed  Google Scholar 

  42. Fallani M, Young D, Scott J, Norin E, Amarri S, Adam R, Aguilera M, Khanna S, Gil A, Edwards CA et al (2010) Intestinal microbiota of 6-week-old infants across Europe: geographic influence beyond delivery mode, breast-feeding, and antibiotics. J Pediatr Gastroenterol Nutr 51:77–84

    Article  PubMed  Google Scholar 

  43. Falony G, Calmeyn T, Leroy F, De Vuyst L (2009) Coculture fermentations of Bifidobacterium species and Bacteroides thetaiotaomicron reveal a mechanistic insight into the prebiotic effect of inulin-type fructans. Appl Environ Microbiol 75:2312–2319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fanning S, Hall LJ, Cronin M, Zomer A, MacSharry J, Goulding D, Motherway MO, Shanahan F, Nally K, Dougan G et al (2012) Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. Proc Natl Acad Sci USA 109:2108–2113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Farfan MJ, Cantero L, Vidal R, Botkin DJ, Torres AG (2011) Long polar fimbriae of enterohemorrhagic Escherichia coli O157:H7 bind to extracellular matrix proteins. Infect Immun 79:3744–3750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Foroni E, Serafini F, Amidani D, Turroni F, He F, Bottacini F, O’Connell Motherway M, Viappiani A, Zhang Z, Rivetti C et al (2011) Genetic analysis and morphological identification of pilus-like structures in members of the genus Bifidobacterium. Microb Cell Fact 10(Suppl 1):S16

    Article  PubMed  PubMed Central  Google Scholar 

  47. Fujita K, Oura F, Nagamine N, Katayama T, Hiratake J, Sakata K, Kumagai H, Yamamoto K (2005) Identification and molecular cloning of a novel glycoside hydrolase family of core 1 type O-glycan-specific endo-alpha-N-acetylgalactosaminidase from Bifidobacterium longum. J Biol Chem 280:37415–37422

    Article  CAS  PubMed  Google Scholar 

  48. Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, Tobe T, Clarke JM, Topping DL, Suzuki T et al (2011) Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469:543–547

    Article  CAS  PubMed  Google Scholar 

  49. Funkhouser LJ, Bordenstein SR (2013) Mom knows best: the universality of maternal microbial transmission. PLoS Biol 11:e1001631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Garrido D, Ruiz-Moyano S, Lemay DG, Sela DA, German JB, Mills DA (2015) Comparative transcriptomics reveals key differences in the response to milk oligosaccharides of infant gut-associated bifidobacteria. Sci Rep 5:13517

    Article  PubMed  PubMed Central  Google Scholar 

  51. Grangette C, Nutten S, Palumbo E, Morath S, Hermann C, Dewulf J, Pot B, Hartung T, Hols P, Mercenier A (2005) Enhanced antiinflammatory capacity of a Lactobacillus plantarum mutant synthesizing modified teichoic acids. Proc Natl Acad Sci USA 102:10321–10326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hinde K, German JB (2012) Food in an evolutionary context: insights from mother’s milk. J Sci Food Agric 92:2219–2223

    Article  CAS  PubMed  Google Scholar 

  53. Hinde K, Milligan LA (2011) Primate milk: proximate mechanisms and ultimate perspectives. Evol Anthropol 20:9–23

    Article  PubMed  Google Scholar 

  54. Hollister EB, Riehle K, Luna RA, Weidler EM, Rubio-Gonzales M, Mistretta TA, Raza S, Doddapaneni HV, Metcalf GA, Muzny DM et al (2015) Structure and function of the healthy pre-adolescent pediatric gut microbiome. Microbiome 3:36

    Article  PubMed  PubMed Central  Google Scholar 

  55. Huh SY, Rifas-Shiman SL, Zera CA, Edwards JW, Oken E, Weiss ST, Gillman MW (2012) Delivery by caesarean section and risk of obesity in preschool age children: a prospective cohort study. Arch Dis Child 97:610–616

    Article  PubMed  PubMed Central  Google Scholar 

  56. Huurre A, Kalliomaki M, Rautava S, Rinne M, Salminen S, Isolauri E (2008) Mode of delivery—effects on gut microbiota and humoral immunity. Neonatology 93:236–240

    Article  PubMed  Google Scholar 

  57. James K, Motherway MO, Bottacini F, van Sinderen D (2016) Bifidobacterium breve UCC2003 metabolises the human milk oligosaccharides lacto-N-tetraose and lacto-N-neo-tetraose through overlapping, yet distinct pathways. Sci Rep 6:38560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jimenez E, Delgado S, Fernandez L, Garcia N, Albujar M, Gomez A, Rodriguez JM (2008) Assessment of the bacterial diversity of human colostrum and screening of staphylococcal and enterococcal populations for potential virulence factors. Res Microbiol 159:595–601

    Article  PubMed  Google Scholar 

  59. Jimenez E, Marin ML, Martin R, Odriozola JM, Olivares M, Xaus J, Fernandez L, Rodriguez JM (2008) Is meconium from healthy newborns actually sterile? Res Microbiol 159:187–193

    Article  CAS  PubMed  Google Scholar 

  60. Karav S, Parc AL, de Moura Bell JM, Rouquie C, Mills DA, Barile D, Block DE (2015) Kinetic characterization of a novel endo-beta-N-acetylglucosaminidase on concentrated bovine colostrum whey to release bioactive glycans. Enzyme Microb Technol 77:46–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kelly ED, Bottacini F, O’Callaghan J, Motherway MO, O’Connell KJ, Stanton C, van Sinderen D (2016) Glycoside hydrolase family 13 alpha-glucosidases encoded by Bifidobacterium breve UCC2003; A comparative analysis of function, structure and phylogeny. Int J Food Microbiol 224:55–65

    Article  CAS  PubMed  Google Scholar 

  62. Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, Angenent LT, Ley RE (2011) Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci USA 108(Suppl 1):4578–4585

    Article  CAS  PubMed  Google Scholar 

  63. Kuwahara T, Yamashita A, Hirakawa H, Nakayama H, Toh H, Okada N, Kuhara S, Hattori M, Hayashi T, Ohnishi Y (2004) Genomic analysis of Bacteroides fragilis reveals extensive DNA inversions regulating cell surface adaptation. Proc Natl Acad Sci USA 101:14919–14924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lahtinen SJ, Boyle RJ, Kivivuori S, Oppedisano F, Smith KR, Robins-Browne R, Salminen SJ, Tang ML (2009) Prenatal probiotic administration can influence Bifidobacterium microbiota development in infants at high risk of allergy. J Allergy Clin Immunol 123:499–501

    Article  PubMed  Google Scholar 

  65. Lamendella R, Santo Domingo JW, Kelty C, Oerther DB (2008) Bifidobacteria in feces and environmental waters. Appl Environ Microbiol 74:575–584

    Article  CAS  PubMed  Google Scholar 

  66. Lee DW, Selamoglu N, Lanciano P, Cooley JW, Forquer I, Kramer DM, Daldal F (2011) Loss of a conserved tyrosine residue of cytochrome b induces reactive oxygen species production by cytochrome bc1. J Biol Chem 286:18139–18148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lee JH, O’Sullivan DJ (2010) Genomic insights into bifidobacteria. Microbiol Mol Biol Rev 74:378–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lewis ZT, Totten SM, Smilowitz JT, Popovic M, Parker E, Lemay DG, Van Tassell ML, Miller MJ, Jin YS, German JB et al (2015) Maternal fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants. Microbiome 3:13

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023

    Article  CAS  PubMed  Google Scholar 

  70. Lugli GA, Milani C, Turroni F, Tremblay D, Ferrario C, Mancabelli L, Duranti S, Ward DV, Ossiprandi MC, Moineau S et al (2015) Prophages of the genus Bifidobacterium as modulating agents of the infant gut microbiota. Environ Microbiol 18(7):2196–2213

    Article  Google Scholar 

  71. Madan JC, Salari RC, Saxena D, Davidson L, O’Toole GA, Moore JH, Sogin ML, Foster JA, Edwards WH, Palumbo P et al (2012) Gut microbial colonisation in premature neonates predicts neonatal sepsis. Arch Dis Child Fetal Neonatal Ed 97:F456–F462

    Article  PubMed  PubMed Central  Google Scholar 

  72. Marcobal A, Barboza M, Sonnenburg ED, Pudlo N, Martens EC, Desai P, Lebrilla CB, Weimer BC, Mills DA, German JB et al (2011) Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways. Cell Host Microbe 10:507–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Matamoros S, Gras-Leguen C, Le Vacon F, Potel G, de La Cochetiere MF (2013) Development of intestinal microbiota in infants and its impact on health. Trends Microbiol 21:167–173

    Article  CAS  PubMed  Google Scholar 

  74. Matsuki T, Yahagi K, Mori H, Matsumoto H, Hara T, Tajima S, Ogawa E, Kodama H, Yamamoto K, Yamada T et al (2016) A key genetic factor for fucosyllactose utilization affects infant gut microbiota development. Nat Commun 7:11939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Milani C, Hevia A, Foroni E, Duranti S, Turroni F, Lugli GA, Sanchez B, Martin R, Gueimonde M, van Sinderen D et al (2013) Assessing the fecal microbiota: an optimized ion torrent 16S rRNA gene-based analysis protocol. PLoS One 8:e68739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Milani C, Lugli GA, Duranti S, Turroni F, Bottacini F, Mangifesta M, Sanchez B, Viappiani A, Mancabelli L, Taminiau B et al (2014) Genomic encyclopedia of type strains of the genus Bifidobacterium. Appl Environ Microbiol 80:6290–6302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Milani C, Lugli GA, Duranti S, Turroni F, Mancabelli L, Ferrario C, Mangifesta M, Hevia A, Viappiani A, Scholz M et al (2015) Bifidobacteria exhibit social behavior through carbohydrate resource sharing in the gut. Sci Rep 5:15782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Milani C, Mancabelli L, Lugli GA, Duranti S, Turroni F, Ferrario C, Mangifesta M, Viappiani A, Ferretti P, Gorfer V et al (2015b) Exploring vertical transmission of bifidobacteria from mother to child. Appl Environ Microbiol 81(20):7078–7087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Milani C, Turroni F, Duranti S, Lugli GA, Mancabelli L, Ferrario C, van Sinderen D, Ventura M (2016) Genomics of the genus bifidobacterium reveals species-specific adaptation to the glycan-rich gut environment. Appl Environ Microbiol 82:980–991

    Article  CAS  PubMed Central  Google Scholar 

  80. Mohamadzadeh M, Pfeiler EA, Brown JB, Zadeh M, Gramarossa M, Managlia E, Bere P, Sarraj B, Khan MW, Pakanati KC et al (2011) Regulation of induced colonic inflammation by Lactobacillus acidophilus deficient in lipoteichoic acid. Proc Natl Acad Sci USA 108(Suppl 1):4623–4630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Morris BE, Henneberger R, Huber H, Moissl-Eichinger C (2013) Microbial syntrophy: interaction for the common good. FEMS Microbiol Rev 37:384–406

    Article  CAS  PubMed  Google Scholar 

  82. Morrison DJ, Mackay WG, Edwards CA, Preston T, Dodson B, Weaver LT (2006) Butyrate production from oligofructose fermentation by the human faecal flora: what is the contribution of extracellular acetate and lactate? Br J Nutr 96:570–577

    CAS  PubMed  Google Scholar 

  83. Mueller S, Saunier K, Hanisch C, Norin E, Alm L, Midtvedt T, Cresci A, Silvi S, Orpianesi C, Verdenelli MC et al (2006) Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl Environ Microbiol 72:1027–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Munoz-Tamayo R, Laroche B, Walter E, Dore J, Duncan SH, Flint HJ, Leclerc M (2011) Kinetic modelling of lactate utilization and butyrate production by key human colonic bacterial species. FEMS Microbiol Ecol 76:615–624

    Article  CAS  PubMed  Google Scholar 

  85. Murphy R, Stewart AW, Braithwaite I, Beasley R, Hancox RJ, Mitchell EA, IPTS Group (2014) Antibiotic treatment during infancy and increased body mass index in boys: an international cross-sectional study. Int J Obes 38:1115–1119

    Article  Google Scholar 

  86. Nishimoto M, Kitaoka M (2007) Identification of N-acetylhexosamine 1-kinase in the complete lacto-N-biose I/galacto-N-biose metabolic pathway in Bifidobacterium longum. Appl Environ Microbiol 73:6444–6449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nuriel-Ohayon M, Neuman H, Koren O (2016) Microbial changes during pregnancy, birth, and infancy. Front Microbiol 7:1031

    Article  PubMed  PubMed Central  Google Scholar 

  88. O’Callaghan A, van Sinderen D (2016) Bifidobacteria and their role as members of the human gut microbiota. Front Microbiol 7:925

    PubMed  PubMed Central  Google Scholar 

  89. O’Connell Motherway M, Fitzgerald GF, van Sinderen D (2011) Metabolism of a plant derived galactose-containing polysaccharide by Bifidobacterium breve UCC2003. Microb Biotechnol 4:403–416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. O’Connell Motherway M, Kinsella M, Fitzgerald GF, van Sinderen D (2013) Transcriptional and functional characterization of genetic elements involved in galacto-oligosaccharide utilization by Bifidobacterium breve UCC2003. Microb Biotechnol 6:67–79

    Article  PubMed  CAS  Google Scholar 

  91. O’Connell Motherway M, Zomer A, Leahy SC, Reunanen J, Bottacini F, Claesson MJ, O’Brien F, Flynn K, Casey PG, Munoz JA et al (2011) Functional genome analysis of Bifidobacterium breve UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and conserved host-colonization factor. Proc Natl Acad Sci USA 108:11217–11222

    Article  PubMed  PubMed Central  Google Scholar 

  92. Ottman N, Smidt H, de Vos WM, Belzer C (2012) The function of our microbiota: who is out there and what do they do? Front Cell Infect Microbiol 2:104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Pande S, Shitut S, Freund L, Westermann M, Bertels F, Colesie C, Bischofs IB, Kost C (2015) Metabolic cross-feeding via intercellular nanotubes among bacteria. Nat Commun 6:6238

    Article  CAS  PubMed  Google Scholar 

  94. Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, van den Brandt PA, Stobberingh EE (2006) Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118:511–521

    Article  PubMed  Google Scholar 

  95. Phelan VV, Liu WT, Pogliano K, Dorrestein PC (2012) Microbial metabolic exchange—the chemotype-to-phenotype link. Nat Chem Biol 8:26–35

    Article  CAS  Google Scholar 

  96. Pokusaeva K, Fitzgerald GF, van Sinderen D (2011) Carbohydrate metabolism in Bifidobacteria. Genes Nutr 6:285–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Pokusaeva K, Neves AR, Zomer A, O’Connell-Motherway M, MacSharry J, Curley P, Fitzgerald GF, van Sinderen D (2010) Ribose utilization by the human commensal Bifidobacterium breve UCC2003. Microb Biotechnol 3:311–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pokusaeva K, O’Connell-Motherway M, Zomer A, Fitzgerald GF, van Sinderen D (2009) Characterization of two novel alpha-glucosidases from Bifidobacterium breve UCC2003. Appl Environ Microbiol 75:1135–1143

    Article  CAS  PubMed  Google Scholar 

  99. Potempa J, Korzus E, Travis J (1994) The serpin superfamily of proteinase inhibitors: structure, function, and regulation. J Biol Chem 269:15957–15960

    CAS  PubMed  Google Scholar 

  100. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Rajilic-Stojanovic M, de Vos WM (2014) The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev 38:996–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rajilic-Stojanovic M, Heilig HG, Molenaar D, Kajander K, Surakka A, Smidt H, de Vos WM (2009) Development and application of the human intestinal tract chip, a phylogenetic microarray: analysis of universally conserved phylotypes in the abundant microbiota of young and elderly adults. Environ Microbiol 11:1736–1751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Rinne M, Kalliomaki M, Arvilommi H, Salminen S, Isolauri E (2005) Effect of probiotics and breastfeeding on the bifidobacterium and lactobacillus/enterococcus microbiota and humoral immune responses. J Pediatr 147:186–191

    Article  PubMed  Google Scholar 

  104. Roger LC, Costabile A, Holland DT, Hoyles L, McCartney AL (2010) Examination of faecal Bifidobacterium populations in breast- and formula-fed infants during the first 18 months of life. Microbiology 156:3329–3341

    Article  CAS  PubMed  Google Scholar 

  105. Ruas-Madiedo P, Gueimonde M, Arigoni F, de los Reyes-Gavilan CG, Margolles A (2009) Bile affects the synthesis of exopolysaccharides by Bifidobacterium animalis. Appl Environ Microbiol 75:1204–1207

    Article  CAS  PubMed  Google Scholar 

  106. Ruas-Madiedo P, Gueimonde M, Fernandez-Garcia M, de los Reyes-Gavilan CG, Margolles A (2008) Mucin degradation by Bifidobacterium strains isolated from the human intestinal microbiota. Appl Environ Microbiol 74:1936–1940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ruiz L, Delgado S, Ruas-Madiedo P, Margolles A, Sanchez B (2016) Proteinaceous molecules mediating bifidobacterium-host interactions. Front Microbiol 7:1193

    Article  PubMed  PubMed Central  Google Scholar 

  108. Ruiz L, Gueimonde M, Coute Y, Salminen S, Sanchez JC, de los Reyes-Gavilan CG, Margolles A (2011) Evaluation of the ability of Bifidobacterium longum to metabolize human intestinal mucus. FEMS Microbiol Lett 314:125–130

    Article  CAS  PubMed  Google Scholar 

  109. Ruiz L, Margolles A, Sanchez B (2013) Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Front Microbiol 4:396

    Article  PubMed  PubMed Central  Google Scholar 

  110. Ryan SM, Fitzgerald GF, van Sinderen D (2006) Screening for and identification of starch-, amylopectin-, and pullulan-degrading activities in bifidobacterial strains. Appl Environ Microbiol 72:5289–5296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sabbioni A, Ferrario C, Milani C, Mancabelli L, Riccardi E, Di Ianni F, Beretti V, Superchi P, Ossiprandi MC (2016) Modulation of the bifidobacterial communities of the dog microbiota by zeolite. Front Microbiol 7:1491

    Article  PubMed  PubMed Central  Google Scholar 

  112. Salminen S, Gibson GR, McCartney AL, Isolauri E (2004) Influence of mode of delivery on gut microbiota composition in seven year old children. Gut 53:1388–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Samuel BS, Gordon JI (2006) A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism. Proc Natl Acad Sci USA 103:10011–10016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sanchez B, Champomier-Verges MC, Anglade P, Baraige F, de Los Reyes-Gavilan CG, Margolles A, Zagorec M (2005) Proteomic analysis of global changes in protein expression during bile salt exposure of Bifidobacterium longum NCIMB 8809. J Bacteriol 187:5799–5808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sanchez B, Champomier-Verges MC, Stuer-Lauridsen B, Ruas-Madiedo P, Anglade P, Baraige F, de los Reyes-Gavilan CG, Johansen E, Zagorec M, Margolles A (2007) Adaptation and response of Bifidobacterium animalis subsp. lactis to bile: a proteomic and physiological approach. Appl Environ Microbiol 73:6757–6767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Satokari R, Gronroos T, Laitinen K, Salminen S, Isolauri E (2009) Bifidobacterium and Lactobacillus DNA in the human placenta. Lett Appl Microbiol 48:8–12

    Article  CAS  PubMed  Google Scholar 

  117. Schiavi E, Gleinser M, Molloy E, Groeger D, Frei R, Ferstl R, Rodriguez-Perez N, Ziegler M, Grant R, Moriarty TF et al (2016) The surface-associated exopolysaccharide of Bifidobacterium longum 35624 plays an essential role in dampening host proinflammatory responses and repressing local TH17 responses. Appl Environ Microbiol 82:7185–7196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Schreiner HC, Sinatra K, Kaplan JB, Furgang D, Kachlany SC, Planet PJ, Perez BA, Figurski DH, Fine DH (2003) Tight-adherence genes of Actinobacillus actinomycetemcomitans are required for virulence in a rat model. Proc Natl Acad Sci USA 100:7295–7300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Scott KP, Martin JC, Chassard C, Clerget M, Potrykus J, Campbell G, Mayer CD, Young P, Rucklidge G, Ramsay AG et al (2011) Substrate-driven gene expression in Roseburia inulinivorans: importance of inducible enzymes in the utilization of inulin and starch. Proc Natl Acad Sci USA 108(Suppl 1):4672–4679

    Article  CAS  PubMed  Google Scholar 

  120. Seksik P, Lepage P, de la Cochetiere MF, Bourreille A, Sutren M, Galmiche JP, Dore J, Marteau P (2005) Search for localized dysbiosis in Crohn’s disease ulcerations by temporal temperature gradient gel electrophoresis of 16S rRNA. J Clin Microbiol 43:4654–4658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Sela DA (2011) Bifidobacterial utilization of human milk oligosaccharides. Int J Food Microbiol 149:58–64

    Article  CAS  PubMed  Google Scholar 

  122. Sela DA, Chapman J, Adeuya A, Kim JH, Chen F, Whitehead TR, Lapidus A, Rokhsar DS, Lebrilla CB, German JB et al (2008) The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc Natl Acad Sci USA 105:18964–18969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Smilowitz JT, Lebrilla CB, Mills DA, German JB, Freeman SL (2014) Breast milk oligosaccharides: structure-function relationships in the neonate. Annu Rev Nutr 34:143–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sonnenburg JL, Chen CT, Gordon JI (2006) Genomic and metabolic studies of the impact of probiotics on a model gut symbiont and host. PLoS Biol 4:e413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Stewart CJ, Embleton ND, Marrs EC, Smith DP, Nelson A, Abdulkadir B, Skeath T, Petrosino JF, Perry JD, Berrington JE et al (2016) Temporal bacterial and metabolic development of the preterm gut reveals specific signatures in health and disease. Microbiome 4:67

    Article  PubMed  PubMed Central  Google Scholar 

  126. Tailford LE, Crost EH, Kavanaugh D, Juge N (2015) Mucin glycan foraging in the human gut microbiome. Front Genet 6:81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Tanaka S, Kobayashi T, Songjinda P, Tateyama A, Tsubouchi M, Kiyohara C, Shirakawa T, Sonomoto K, Nakayama J (2009) Influence of antibiotic exposure in the early postnatal period on the development of intestinal microbiota. FEMS Immunol Med Microbiol 56:80–87

    Article  CAS  PubMed  Google Scholar 

  128. Tao N, Wu S, Kim J, An HJ, Hinde K, Power ML, Gagneux P, German JB, Lebrilla CB (2011) Evolutionary glycomics: characterization of milk oligosaccharides in primates. J Proteome Res 10:1548–1557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Turroni F, Berry D, Ventura M (2016) Editorial: bifidobacteria and their role in the human gut microbiota. Front Microbiol 7:2148

    Article  PubMed  Google Scholar 

  130. Turroni F, Bottacini F, Foroni E, Mulder I, Kim JH, Zomer A, Sanchez B, Bidossi A, Ferrarini A, Giubellini V et al (2010) Genome analysis of Bifidobacterium bifidum PRL2010 reveals metabolic pathways for host-derived glycan foraging. Proc Natl Acad Sci USA 107:19514–19519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Turroni F, Duranti S, Bottacini F, Guglielmetti S, Van Sinderen D, Ventura M (2014) Bifidobacterium bifidum as an example of a specialized human gut commensal. Front Microbiol 5:437

    Article  PubMed  PubMed Central  Google Scholar 

  132. Turroni F, Foroni E, O’Connell Motherway M, Bottacini F, Giubellini V, Zomer A, Ferrarini A, Delledonne M, Zhang Z, van Sinderen D et al (2010) Characterization of the serpin-encoding gene of Bifidobacterium breve 210B. Appl Environ Microbiol 76:3206–3219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Turroni F, Foroni E, Pizzetti P, Giubellini V, Ribbera A, Merusi P, Cagnasso P, Bizzarri B, de’Angelis GL, Shanahan F et al (2009) Exploring the diversity of the bifidobacterial population in the human intestinal tract. Appl Environ Microbiol 75:1534–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Turroni F, Marchesi JR, Foroni E, Gueimonde M, Shanahan F, Margolles A, van Sinderen D, Ventura M (2009) Microbiomic analysis of the bifidobacterial population in the human distal gut. ISME J 3:745–751

    Article  CAS  PubMed  Google Scholar 

  135. Turroni F, Milani C, Duranti S, Mancabelli L, Mangifesta M, Viappiani A, Lugli GA, Ferrario C, Gioiosa L, Ferrarini A et al (2016) Deciphering bifidobacterial-mediated metabolic interactions and their impact on gut microbiota by a multi-omics approach. Isme J 10(7):1656–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Turroni F, Milani C, van Sinderen D, Ventura M (2011) Genetic strategies for mucin metabolism in Bifidobacterium bifidum PRL2010: an example of possible human-microbe co-evolution. Gut Microbes 2:183–189

    Article  PubMed  Google Scholar 

  137. Turroni F, Ozcan E, Milani C, Mancabelli L, Viappiani A, van Sinderen D, Sela DA, Ventura M (2015) Glycan cross-feeding activities between bifidobacteria under in vitro conditions. Front Microbiol 6:1030

    Article  PubMed  PubMed Central  Google Scholar 

  138. Turroni F, Peano C, Pass DA, Foroni E, Severgnini M, Claesson MJ, Kerr C, Hourihane J, Murray D, Fuligni F et al (2012) Diversity of bifidobacteria within the infant gut microbiota. PLoS One 7:e36957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Turroni F, Serafini F, Foroni E, Duranti S, O’Connell Motherway M, Taverniti V, Mangifesta M, Milani C, Viappiani A, Roversi T et al (2013) Role of sortase-dependent pili of Bifidobacterium bifidum PRL2010 in modulating bacterium-host interactions. Proc Natl Acad Sci USA 110(27):11151–11156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Turroni F, Serafini F, Mangifesta M, Arioli S, Mora D, van Sinderen D, Ventura M (2014) Expression of sortase-dependent pili of Bifidobacterium bifidum PRL2010 in response to environmental gut conditions. FEMS Microbiol Lett 357:23–33

    Article  CAS  PubMed  Google Scholar 

  141. Turroni F, Ventura M, Butto LF, Duranti S, O’Toole PW, Motherway MO, van Sinderen D (2014) Molecular dialogue between the human gut microbiota and the host: a Lactobacillus and Bifidobacterium perspective. Cell Mol Life Sci 71:183–203

    Article  CAS  PubMed  Google Scholar 

  142. Vaishampayan PA, Kuehl JV, Froula JL, Morgan JL, Ochman H, Francino MP (2010) Comparative metagenomics and population dynamics of the gut microbiota in mother and infant. Genome Biol Evol 2:53–66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. van der Maarel MJ, van der Veen B, Uitdehaag JC, Leemhuis H, Dijkhuizen L (2002) Properties and applications of starch-converting enzymes of the alpha-amylase family. J Biotechnol 94:137–155

    Article  PubMed  Google Scholar 

  144. Vanhoutte T, Huys G, Brandt E, Swings J (2004) Temporal stability analysis of the microbiota in human feces by denaturing gradient gel electrophoresis using universal and group-specific 16S rRNA gene primers. FEMS Microbiol Ecol 48:437–446

    Article  CAS  PubMed  Google Scholar 

  145. Ventura M, Canchaya C, Fitzgerald GF, Gupta RS, van Sinderen D (2007) Genomics as a means to understand bacterial phylogeny and ecological adaptation: the case of bifidobacteria. Antonie Van Leeuwenhoek 91:351–372

    Article  PubMed  Google Scholar 

  146. Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D (2007) Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 71:495–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ventura M, Turroni F, Lugli GA, van Sinderen D (2014) Bifidobacteria and humans: our special friends, from ecological to genomics perspectives. J Sci Food Agric 94(2):163–168

    Article  CAS  PubMed  Google Scholar 

  148. Ventura M, Turroni F, Canchaya C, Vaughan EE, O’Toole PW, van Sinderen D (2009) Microbial diversity in the human intestine and novel insights from metagenomics. Front Biosci 14:3214–3221

    Article  CAS  Google Scholar 

  149. Ventura M, Turroni F, Lugli GA, van Sinderen D (2014) Bifidobacteria and humans: our special friends, from ecological to genomics perspectives. J Sci Food Agric 94:163–168

    Article  CAS  PubMed  Google Scholar 

  150. Ventura M, Turroni F, Motherway MO, MacSharry J, van Sinderen D (2012) Host-microbe interactions that facilitate gut colonization by commensal bifidobacteria. Trends Microbiol 20:467–476

    Article  CAS  PubMed  Google Scholar 

  151. Ventura M, Turroni F, Zomer A, Foroni E, Giubellini V, Bottacini F, Canchaya C, Claesson MJ, He F, Mantzourani M et al (2009) The Bifidobacterium dentium Bd1 genome sequence reflects its genetic adaptation to the human oral cavity. PLoS Genet 5:e1000785

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Wada J, Ando T, Kiyohara M, Ashida H, Kitaoka M, Yamaguchi M, Kumagai H, Katayama T, Yamamoto K (2008) Bifidobacterium bifidum lacto-N-biosidase, a critical enzyme for the degradation of human milk oligosaccharides with a type 1 structure. Appl Environ Microbiol 74:3996–4004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Watson D, O’Connell Motherway M, Schoterman MH, van Neerven RJ, Nauta A, van Sinderen D (2013) Selective carbohydrate utilization by lactobacilli and bifidobacteria. J Appl Microbiol 114:1132–1146

    Article  CAS  PubMed  Google Scholar 

  154. Westerbeek EA, van den Berg A, Lafeber HN, Knol J, Fetter WP, van Elburg RM (2006) The intestinal bacterial colonisation in preterm infants: a review of the literature. Clin Nutr 25:361–368

    Article  PubMed  Google Scholar 

  155. Xavier KB, Bassler BL (2003) LuxS quorum sensing: more than just a numbers game. Curr Opin Microbiol 6:191–197

    Article  CAS  PubMed  Google Scholar 

  156. Xia G, Kohler T, Peschel A (2010) The wall teichoic acid and lipoteichoic acid polymers of Staphylococcus aureus. Int J Med Microbiol IJMM 300:148–154

    Article  CAS  PubMed  Google Scholar 

  157. Yassour M, Vatanen T, Siljander H, Hamalainen AM, Harkonen T, Ryhanen SJ, Franzosa EA, Vlamakis H, Huttenhower C, Gevers D et al (2016) Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci Transl Med 8:343ra381

    Article  CAS  Google Scholar 

  158. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP et al (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Yoshida E, Sakurama H, Kiyohara M, Nakajima M, Kitaoka M, Ashida H, Hirose J, Katayama T, Yamamoto K, Kumagai H (2012) Bifidobacterium longum subsp. infantis uses two different beta-galactosidases for selectively degrading type-1 and type-2 human milk oligosaccharides. Glycobiology 22:361–368

    Article  CAS  PubMed  Google Scholar 

  160. Zanotti I, Turroni F, Piemontese A, Mancabelli L, Milani C, Viappiani A, Prevedini G, Sanchez B, Margolles A, Elviri L et al (2015) Evidence for cholesterol-lowering activity by Bifidobacterium bifidum PRL2010 through gut microbiota modulation. Appl Microbiol Biotechnol 99:6813–6829

    Article  CAS  PubMed  Google Scholar 

  161. Ze X, Duncan SH, Louis P, Flint HJ (2012) Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J 6:1535–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the EU Joint Programming Initiative—a Healthy Diet for a Healthy Life (JPI HDHL, http://www.healthydietforhealthylife.eu/) and the MIUR to MV. We thank GenProbio srl for financial support of the Laboratory of Probiogenomics. LM is supported by Fondazione Cariparma, Parma, Italy. SD is supported by Fondazione Caritro, Trento, Italy. DvS is a member of The APC Microbiome Institute funded by Science Foundation Ireland (SFI), through the Irish Government’s National Development Plan (Grant number SFI/12/RC/2273).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Ventura.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turroni, F., Milani, C., Duranti, S. et al. Bifidobacteria and the infant gut: an example of co-evolution and natural selection. Cell. Mol. Life Sci. 75, 103–118 (2018). https://doi.org/10.1007/s00018-017-2672-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2672-0

Keywords

Navigation