Cellular and Molecular Life Sciences

, Volume 75, Issue 1, pp 83–91 | Cite as

Early microbiota, antibiotics and health

  • Alicja M. Nogacka
  • Nuria Salazar
  • Silvia Arboleya
  • Marta Suárez
  • Nuria Fernández
  • Gonzalo Solís
  • Clara G. de los Reyes-Gavilán
  • Miguel Gueimonde
Multi-author review


The colonization of the neonatal digestive tract provides a microbial stimulus required for an adequate maturation towards the physiological homeostasis of the host. This colonization, which is affected by several factors, begins with facultative anaerobes and continues with anaerobic genera. Accumulating evidence underlines the key role of the early neonatal period for this microbiota-induced maturation, being a key determinant factor for later health. Therefore, understanding the factors that determine the establishment of the microbiota in the infant is of critical importance. Exposure to antibiotics, either prenatally or postnatally, is common in early life mainly due to the use of intrapartum prophylaxis or to the administration of antibiotics in C-section deliveries. However, we are still far from understanding the impact of early antibiotics and their long-term effects. Increased risk of non-communicable diseases, such as allergies or obesity, has been observed in individuals exposed to antibiotics during early infancy. Moreover, the impact of antibiotics on the establishment of the infant gut resistome, and on the role of the microbiota as a reservoir of resistance genes, should be evaluated in the context of the problems associated with the increasing number of antibiotic resistant pathogenic strains. In this article, we review and discuss the above-mentioned issues with the aim of encouraging debate on the actions needed for understanding the impact of early life antibiotics upon human microbiota and health and for developing strategies aimed at minimizing this impact.


Infant Microbiota Antibiotics Intrapartum-antimicrobial-prophylaxis 



The work carried out in the authors’ laboratories on the early life microbiota is founded by the EU Joint Programming Initiative—A Healthy Diet for a Healthy Life (JPI HDHL, and the Spanish Ministry of Economy and Competitiveness (MINECO) (Project EarlyMicroHealth). The Grant GRUPIN14-043 from “Plan Regional de Investigación del Principado de Asturias” is also acknowledged. A. M. N. is the recipient of a JPI predoctoral fellowship and N. S. benefits from a JdC contract, from the Spanish Ministry of Economy and Competitiveness (MINECO).


  1. 1.
    Sekirov I, Russel SL, Antunes CM, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90:859–904PubMedCrossRefGoogle Scholar
  2. 2.
    Sommer F, Bäckhed F (2013) The gut microbiota—masters of host development and physiology. Nat Rev Microbiol 11:227–238PubMedCrossRefGoogle Scholar
  3. 3.
    Kuczynski J, Lauber CL, Walters WA et al (2011) Experimental and analytical tools for studying the human microbiome. Nat Rev Genet 13:47–58PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Salazar N, Arboleya S, Valdés L et al (2014) The human intestinal microbiome at extreme ages of life. Dietary intervention as a way to counteract alterations. Front Genet 5:406PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Al-Asmakh M, Zadjali F (2015) Use of germ-free animal models in microbiota-related research. J Microbiol Biotechnol 25:1583–1588PubMedCrossRefGoogle Scholar
  6. 6.
    Hansen CH, Nielsen DS, Kverka M et al (2012) Patterns of early gut colonization shape future immune responses of the host. PLoS One 7:e34043PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Renz H, Brandtzaeg P, Hornef M (2012) The impact of perinatal immune development on mucosal homeostasis and chronic inflammation. Nat Rev Immunol 12:9–23Google Scholar
  8. 8.
    Olszak T, An D, Zeissig S et al (2012) Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336:489–493PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Cox LM, Yamanishi S, Sohn J et al (2014) Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 158:705–721PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Gensollen T, Iyer SS, Kasper DL, Blumberg RS (2016) How colonization by microbiota in early life shapes the immune system. Science 352:539–544PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Claus SP, Tsang TM, Wang Y et al (2008) Systemic multicompartmental effects of the gut microbiome on mouse metabolic phenotypes. Mol Syst Biol 4:219PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Bercik P, Denou E, Collins J et al (2011) The intestinal microbiota affects central levels of brain-derived neurotrophic factors and behaviours in mice. Gastroenterology 141:599–609PubMedCrossRefGoogle Scholar
  13. 13.
    Clarke G, O’Mahony SM, Dinan TG, Cryan JF (2014) Priming for health: gut microbiota acquired in early life regulates physiology, brain and behavior. Acta Paediatr 103:812–819PubMedCrossRefGoogle Scholar
  14. 14.
    Neuman H, Debelius JW, Knight R, Koren O (2015) Microbial endocrinology: the interplay between the microbiota and the endocrine system. FEMS Microbiol Rev 39:509–521PubMedCrossRefGoogle Scholar
  15. 15.
    Jimenez E, Fernandez L, Marin ML et al (2005) Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Curr Microbiol 51:270–274PubMedCrossRefGoogle Scholar
  16. 16.
    Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J (2014) The placenta harbors a unique microbiome. Sci Transl Med 6:237ra65PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Collado MC, Rautava S, Aakko J, Isolauri E, Salminen S (2016) Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep 6:23129PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Arboleya S, Binetti A, Salazar N et al (2012) Establishment and development of intestinal microbiota in preterm neonates. FEMS Microbiol Ecol 79:763–772PubMedCrossRefGoogle Scholar
  19. 19.
    Arboleya S, Sánchez B, Milani C et al (2015) Intestinal microbiota development in preterm neonates and effect of perinatal antibiotics. J Pediatr 166:538–544PubMedCrossRefGoogle Scholar
  20. 20.
    Dogra S, Sakwinska O, Soh S-E et al (2015) Dynamics of infant gut microbiota are influences by delivery mode and gestational duration and are associated with subsequent adiposity. MBio 6:e02419PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Dominguez-Bello MG, Costello EK, Contreras M et al (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 107:11971–11975PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Jakobsson HE, Abrahamsson TR, Jenmalm MC et al (2014) Decreased gut microbiota diversity, delayed Bacteroidetes colonization and reduced Th1 responses in infants delivered by caesarean section. Gut 63:559–566PubMedCrossRefGoogle Scholar
  23. 23.
    Bäckhed F, Roswall J, Peng Y (2015) Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17:690–703PubMedCrossRefGoogle Scholar
  24. 24.
    Fouhy F, Ross RP, Fitzgerald GF, Stanton C, Cotter PD (2012) Composition of the early intestinal microbiota: knowledge, knowledge gaps and the use of high-throughput sequencing to address these gaps. Gut Microbes 3:203–220PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Faa G, Gerosa C, Fanni D, Nemolato S, van Eyken P, Fanos V (2013) Factors influencing the development of a personal tailored microbiota in the neonate, with particular emphasis on antibiotic therapy. J Matern Fetal Neonatal Med 26(S2):35–43PubMedCrossRefGoogle Scholar
  26. 26.
    Rutten NBMM, Rijkers GT, Meijssen CB et al (2015) Intestinal microbiota composition after antibiotic treatment in early life: the INCA study. BMC Pediatr 15:204PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Yatsunenko T, Rey FE, Manary MJ et al (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227PubMedPubMedCentralGoogle Scholar
  28. 28.
    Arrieta MC, Stiemsma LT, Amenyogbe N, Brown EM, Finlay B (2014) The intestinal microbiome in early life: health and disease. Front Immunol 5:427PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Fanaro S, Chierici R, Guerrini P, Vigi V (2003) Intestinal microflora in early infancy: composition and development. Acta Paediatr Suppl 91:48–55PubMedGoogle Scholar
  30. 30.
    Cheng J, Ringel-Kulka T, Heikamp-de Jong I et al (2016) Discordant temporal development of bacterial phyla and the emergence of core in the fecal microbiota of young children. ISME J 10:1002–1014PubMedCrossRefGoogle Scholar
  31. 31.
    Hollister EB, Riehle K, Luna RA et al (2015) Structure and function of the healthy preadolescent pediatric gut microbiome. Microbiome 3:36PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Sudo N, Sawamura S, Tanaka K, Aiba Y, Kubo C, Koga Y (1997) The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction. J Immunol 159:1739–1745PubMedGoogle Scholar
  33. 33.
    Bendtsen KM, Fisker L, Hansen AK, Hansen CH, Nielsen DS (2015) The influence of the young microbiome on inflammatory diseases—lessons from animal studies. Birth Defects Res C Embryo Today 105:278–295PubMedCrossRefGoogle Scholar
  34. 34.
    Simonyte Sjodin K, Vidman L, Ryden P, West CE (2016) Emerging evidence of the role of gut microbiota in the development of allergic diseases. Curr Opin Allergy Clin Immunol 16:390–395PubMedCrossRefGoogle Scholar
  35. 35.
    Russell SL, Gold MJ, Hartmann M et al (2012) Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep 13:440–447PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Russell SL, Gold MJ, Willing BP, Thorson L, Mcnagny KM, Finlay BB (2013) Perinatal antibiotic treatment affects murine microbiota, immune responses and allergic asthma. Gut Microbes 4:158–164PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Cho I, Yamanishi S, Cox L et al (2012) Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488:621–626PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Livanos AE, Greiner TU, Vangay P et al (2016) Antibiotic-mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice. Nat Microbiol 1:16140PubMedCrossRefGoogle Scholar
  39. 39.
    Watanabe J, Fujiwara R, Sasajima N, Ito S, Sonoyama K (2010) Administration of antibiotics during infancy promoted the development of atopic dermatitis-like skin lesions in NC/Nga mice. Biosci Biotechnol Biochem 74:358–363PubMedCrossRefGoogle Scholar
  40. 40.
    Kumar P, Magon N (2012) Hormones in pregnancy. Niger Med J 53:179–183PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Nuriel-Ohayon M, Neuman H, Koren O (2016) Microbial changes during pregnancy, birth, and infancy. Front Microbiol 7:1031PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Mueller NT, Whyatt R, Hoepner L et al (2015) Prenatal exposure to antibiotics, cesarean section and risk of childhood obesity. Int J Obes 39:665–670CrossRefGoogle Scholar
  43. 43.
    Stokholm J, Schjorring S, Eskildsen CE et al (2014) Antibiotic use during pregnancy alters the commensal vaginal microbiota. Clin Microbiol Infect 20:629–635PubMedCrossRefGoogle Scholar
  44. 44.
    Gomez de Agüero M, Ganal-Vonarburg SC, Fuhrer T et al (2016) The maternal microbiota drives early postnatal innate immune development. Science 351(6279):1296–1302PubMedCrossRefGoogle Scholar
  45. 45.
    Chernikova DA, Koestler DC, Hoen AG et al (2016) Fetal exposures and perinatal influences on the stool microbiota of premature infants. J Matern Fetal Neonatal Med 29:99–105PubMedCrossRefGoogle Scholar
  46. 46.
    Tormo-Badia N, Hakansson A, Vasudevan K, Molin G, Ahrne S, Cilio CM (2014) Antibiotic treatment of pregnant non-obese diabetic mice leads to altered gut microbiota and intestinal immunological changes in the offspring. Scand J Immunol 80:250–260PubMedCrossRefGoogle Scholar
  47. 47.
    Munyaka PM, Eissa N, Bernstein CN, Khafipour E, Ghaia JE (2015) Antepartum antibiotic treatment increases offspring susceptibility to experimental colitis: a role of the gut microbiota. PLoS One 10(11):e0142536PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Khan I, Azhar EI, Abbas AT et al (2016) Metagenomic analysis of antibiotic-induced changes in gut microbiota in a pregnant rat model. Front Pharmacol 7:104PubMedPubMedCentralGoogle Scholar
  49. 49.
    Tochitani S, Ikeno T, Ito T, Sakurai A, Yamauchi T, Matsuzaki H (2016) Administration of non-absorbable antibiotics to pregnant mice to perturb the maternal gut microbiota is associated with alterations in offspring behavior. PLoS One 11:e0138293PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Hu Y, Peng J, Tai N, Hu C, Zhang X, Wong FS (2015) Maternal antibiotic treatment protects offspring from diabetes development in non obese diabetic mice by generation of tolerogenic APCs. J Immunol 195:4176–4184PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Verani JR, McGee L, Schrag SF (2010) Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC). Prevention of perinatal group B Streptococcal disease. Revised guidelines from CDC. MMWR Recomm Rep 59(RR-10):1–36PubMedGoogle Scholar
  52. 52.
    Alós Cortés JI, Andreu Domingo A, Arribas Mir L et al (2013) Prevención de la infección perinatal por estreptococo del grupo B. Recomendaciones españolas. Actualización 2012. Documento de consenso SEIMC/SEGO/SEN/SEQ/SEMFYC. Enferm Infecc Microbiol Clin 31:158–172CrossRefGoogle Scholar
  53. 53.
    Di Renzo GC, Melin P, Berandi A et al (2015) Intrapartum GBS screening and antibiotic prophylaxis: a European consensus conference. J Matern Fetal Neonatal Med 28:766–782PubMedCrossRefGoogle Scholar
  54. 54.
    Benitz WE, Gould JB, Druzin ML (1999) Risk factors for early-onset group B Streptococcal sepsis: estimation of odd ratios by critical literature review. Pediatrics 103:e77PubMedCrossRefGoogle Scholar
  55. 55.
    Brocklehurst P (2015) Screening for Group B Streptococcus should be routine in pregnancy: ACAINST: current evidence does not support the introduction of microbiological screening for identifying carriers of Group B streptococcus. BJOG Int J Obstet Gynecol 122:368CrossRefGoogle Scholar
  56. 56.
    Van Dyke MK, Phares CR, Lynfield R et al (2009) Evaluation of universal antenatal screening for group B streptococcus. N Engl J Med 360:2626–2636PubMedCrossRefGoogle Scholar
  57. 57.
    Ohlson A, Shah VS (2014) Intrapartum antibiotics for known maternal group B Streptococcal colonization. Cochrane Database Syst Rev 10(6):CD007467Google Scholar
  58. 58.
    Bokulich NA, Chung J, Battaglia T et al (2016) Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med 8:343ra382CrossRefGoogle Scholar
  59. 59.
    Vangay P, Ward T, Gerber JS, Knights D (2015) Antibiotics, pediatric dysbiosis, and disease. Cell Host Microbe 17:553–564PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Azad MB, Konya T, Persaud RR et al (2016) Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: a prospective cohort study. BJOG Int J Obstet Gynecol 123:983–993CrossRefGoogle Scholar
  61. 61.
    Mazzola G, Murphy K, Ross RP et al (2016) Early gut microbiota perturbations following intrapartum antibiotic prophylaxis to prevent group B Streptococcal disease. PLoS One 11:e0157527PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Keski-Nisula L, Kyynarainen HR, Karkkainen U, Karhukorpi J, Heinonen S, Pekkanen J (2013) Maternal intrapartum antibiotics and decreased vertical transmission of Lactobacillus to neonates during birth. Acta Paediatr 102:480–485PubMedCrossRefGoogle Scholar
  63. 63.
    Fouhy F, Guinane CM, Hussey S et al (2012) High-throughput sequencing reveals the incomplete, short-term recovery of infant gut microbiota following parenteral antibiotic treatment with ampicillin and gentamicin. Antimicrob Agents Chemother 56:5811–5820PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    WHO/RHR/15.02 (2015) World Health Organization. Statement on Caesarean Section RatesGoogle Scholar
  65. 65.
    Smaill F, Hofmeyr GJ (2002) Antibiotic prophylaxis for cesarean section. Cochrane Database Syst Rev 3:CD000933Google Scholar
  66. 66.
    Hill CJ, Lynch DB, Murphy K et al (2017) Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET cohort. Microbiome 5:4PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Dominguez-Bello MG, De Jesus-Laboy KM, Shen N et al (2015) Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat Med 22(3):250–253CrossRefGoogle Scholar
  68. 68.
    Clark RH, Bloom BT, Spitzer AR, Gerstmann DR (2006) Reported medication use in the neonatal intensive care unit: data from a large national data set. Pediatrics 117(6):1979–1987. doi: 10.1542/peds.2005-1707 PubMedCrossRefGoogle Scholar
  69. 69.
    Stoll BJ, Hansen NI, Bell EF et al (2010) Neonatal outcomes of extremely preterm infants from the NICHD neonatal research network. Pediatrics 126:443–456PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Goldenberg RL, Hauth JC, Andrews WW (2000) Intrauterine infection and preterm delivery. N Engl J Med 342:1500–1507PubMedCrossRefGoogle Scholar
  71. 71.
    Stoll BJ, Hansen NI, Sánchez PJ et al (2011) Early onset neonatal sepsis: the burden of group B Streptococcal and E. coli disease continues. Pediatrics 127:817–826PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Cotten CM, Taylor S, Stoll B et al (2009) Prolonged duration of initial empirical antibiotic treatment is associated with increased rates of necrotizing enterocolitis and death for extremely low birth weight infants. Pediatrics 123:58–66PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Zhang T, Smith MA, Camp PG, Shajari S, MacLeod SM, Carleton BC (2013) Prescription drug dispensing profiles for one million children: a population-based analysis. Eur J Clin Pharmacol 69:581–588PubMedCrossRefGoogle Scholar
  74. 74.
    Antonopoulos DA, Huse SM, Morrison HG, Schmidt TM, Sogin ML, Young VB (2009) Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Infect Immun 77:2367–2375PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Tanaka S, Kobayashi T, Songjinda P et al (2009) Influence of antibiotic exposure in the early postnatal period on the development of intestinal microbiota. FEMS Immunol Med Microbiol 56:80–87PubMedCrossRefGoogle Scholar
  76. 76.
    Mathew JL (2004) Effect of maternal antibiotics on breastfeeding infants. Postgrad Med J 80(942):196–200PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Soto A, Martín V, Jiménez E, Mader I, Rodríguez JM, Fernández L (2014) Lactobacilli and bifidobacteria in human breast milk: influence of antibiotherapy and other host and clinical factors. J Pediatr Gastroenterol Nutr 59:78–88PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Pacifici G (2006) Placental transfer of antibiotics administered to the mother: a review. Int J Clin Pharmacol Ther 44:57PubMedCrossRefGoogle Scholar
  79. 79.
    Tamburini S, Shen N, Wu HC, Clemente JC (2016) The microbiome in early life: implications for health outcomes. Nat Med 22:713–722PubMedCrossRefGoogle Scholar
  80. 80.
    Ong MS, Umetsu DT, Mandl KD (2014) Consequences of antibiotics of antibiotics and infections in infancy: bugs, drugs, and wheezing. Ann Allergy Asthma Immunol 112:441–445PubMedCrossRefGoogle Scholar
  81. 81.
    Johnson CC, Ownby DR, Alford SH et al (2005) Antibiotic exposure in early infancy and risk for childhood atopy. J Allergy Clin Immunol 115:1218–1224PubMedCrossRefGoogle Scholar
  82. 82.
    Stensballe LG, Simonsen J, Jensen SM, Bonnelykke K, Bisgaard H (2013) Use of antibiotics during pregnancy increases the risk of asthma in early childhood. J Pediatr 162:832–838PubMedCrossRefGoogle Scholar
  83. 83.
    Chu S, Yu H, Chen Y, Chen Q, Wang B, Zhang J (2015) Periconceptional and gestational exposure to antibiotics and childhood asthma. PLOS One 10:e0140443PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Wickens K, Ignham T, Epton M et al (2008) The association of early life exposure to antibiotics and the development of asthma, eczema and atopy in a birth cohort: confounding or causality? Clin Exp Allergy 38:1318–1324PubMedCrossRefGoogle Scholar
  85. 85.
    Hill DA, Siracusa MC, Abt MC et al (2012) Commensal bacteria-derived signals regulate basophil hematopoiesis and allergic inflammation. Nat Med 18:538–546PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Gonzalez-Perez G, Hicks AL, Tekieli TM, Radens CM, Williams BL, Lamouse-Smith ES (2016) Maternal antibiotic treatment impacts development of the neonatal intestinal microbiome and antiviral immunity. J Immunol 169:3768–3779CrossRefGoogle Scholar
  87. 87.
    Cox LM, Blaser MJ (2014) Antibiotics in early life and obesity. Nat Rev Endocrinol 11:182–190PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Nobel YR, Cox LM, Kirigin FF et al (2015) Metabolic and metagenomics outcomes from early-life pulsed antibiotic treatment. Nat Commun 6:7486PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Trasande L, Blustein J, Liu M, Corwin E, Cox LM, Blaser MJ (2013) Infant antibiotic exposures and early-life body mass. Int J Obes 37:16–23CrossRefGoogle Scholar
  90. 90.
    Bailey LC, Forrest CB, Zhanj P, Richards TM, Livshits A, DeRusso PA (2014) Association of antibiotics in infancy with early childhood obesity. JAMA Pediatr 168:1063–1069PubMedCrossRefGoogle Scholar
  91. 91.
    Saari A, Virta LJ, Sankilampi U, Dunkel L, Saxen H (2015) Antibiotic exposure in infancy and risk of being overweight in the first 24 months of life. Pediatrics 133:617–626CrossRefGoogle Scholar
  92. 92.
    Candon S, Perez-Arroyo A, Marquet C et al (2015) Antibiotics in early life alter the gut microbiome and increase disease incidence in a spontaneous model of autoimmune insulin-dependent diabetes. PLOS One 10:e0125448PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Gibson MK, Crofts TS, Dantas G (2015) Antibiotics and the developing infant gut microbiota and resistome. Curr Opin Microbiol 27:51–56PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    D’Costa VM, McGrann KM, Hughes DW, Wright GD (2006) Sampling the antibiotic resistome. Science 311:374–377PubMedCrossRefGoogle Scholar
  95. 95.
    Gillings MR (2013) Evolutionary consequences of antibiotic use for the resistome, mobilome and microbial pangenome. Front Microbiol 4:4PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Toprak E, Veres A, Michel JB, Chait R, Hartl DL, Kishony R (2011) Evolutionary paths to antibiotic resistance under dynamically sustained drug stress. Nat Genet 44:101–105PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Barbosa TM, Levy SB (2000) The impact of antibiotic use on resistance development and persistence. Drug Resist Updat 3:303–311PubMedCrossRefGoogle Scholar
  98. 98.
    Versluis D, D’Andrea MM, Garcia JR et al (2015) Mining microbial metatranscriptomes for expression of antibiotic resistance genes under natural conditions. Sci Rep 5:11981PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Moore AM, Patel S, Forsberg KJ et al (2013) Pediatric fecal microbiota harbor diverse and novel antibiotic resistance genes. PLoS One 8(11):e78822PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Moles L, Gomez M, Jimenez E et al (2015) Preterm infant gut colonization in the neonatal ICU and complete restoration 2 years later. Clin Microbiol Infect 21:936e1–936e10CrossRefGoogle Scholar
  101. 101.
    Zhang L, Kinkelaar D, Huang Y, Li YL, Li XJ, Wang HH (2011) Acquired antibiotic resistance: are we born with it? Appl Environ Microbiol 77:7134–7141PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Gosalbes MJ, Valles Y, Jimenez-Hernandez N et al (2016) High frequencies of antibiotic resistance genes in infants’ meconium and early fecal samples. J Dev Orig Health Dis 7:35–44PubMedCrossRefGoogle Scholar
  103. 103.
    Fouhy F, Ogilvie LA, Jones BV et al (2014) Identification of aminoglycoside and beta-lactam resistance genes from within an infant gut functional metagenomic library. PLoS One 9:e108016PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Moore AM, Ahmadi S, Patel S et al (2015) Gut resistome development in healthy twin pairs in the first year of life. Microbiome 3:27PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Yassour M, Vatanen T, Siljander H et al (2016) Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci Transl Med 8:343ra81PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    von Wintersdorff CJH, Wolffs PFG, Savelkoul PHM et al (2016) The gut resistome is highly dynamic during the first months of life. Future Microbiol 11:501–510CrossRefGoogle Scholar
  107. 107.
    Ravi A, Avershina E, Foley SL et al (2015) The commensal infant gut meta-mobilome as a potential reservoir for persistent multidrug resistance integrons. Sci Rep 5:15317PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alicja M. Nogacka
    • 1
  • Nuria Salazar
    • 1
  • Silvia Arboleya
    • 2
    • 3
  • Marta Suárez
    • 4
  • Nuria Fernández
    • 4
  • Gonzalo Solís
    • 4
  • Clara G. de los Reyes-Gavilán
    • 1
  • Miguel Gueimonde
    • 1
  1. 1.Department of Microbiology and Biochemistry of Dairy ProductsInstituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC)VillaviciosaSpain
  2. 2.APC Microbiome InstituteUniversity College CorkCorkIreland
  3. 3.Teagasc Food Research Centre, MooreparkCorkIreland
  4. 4.Pediatrics ServiceHospital Universitario Central de Asturias, SESPAOviedoSpain

Personalised recommendations