Cellular and Molecular Life Sciences

, Volume 75, Issue 6, pp 975–987 | Cite as

Role of cell cycle regulators in adipose tissue and whole body energy homeostasis

  • I. C. Lopez-Mejia
  • J. Castillo-Armengol
  • S. Lagarrigue
  • L. Fajas
Review
  • 315 Downloads

Abstract

In the course of the last decades, metabolism research has demonstrated that adipose tissue is not an inactive tissue. Rather, adipocytes are key actors of whole body energy homeostasis. Numerous novel regulators of adipose tissue differentiation and function have been identified. With the constant increase of obesity and associated disorders, the interest in adipose tissue function alterations in the XXIst century has become of paramount importance. Recent data suggest that adipocyte differentiation, adipose tissue browning and mitochondrial function, lipogenesis and lipolysis are strongly modulated by the cell division machinery. This review will focus on the function of cell cycle regulators in adipocyte differentiation, adipose tissue function and whole body energy homeostasis; with particular attention in mouse studies.

Keywords

Cell cycle CDKs Cyclins Adipose tissue Metabolism Obesity Insulin resistance 

Notes

Acknowledgements

We thank Anita Nasrallah for critical reading of the manuscript. The Fajas lab is funded by the Swiss national science foundation (SNF).

References

  1. 1.
    Abella A, Dubus P, Malumbres M, Rane SG, Kiyokawa H, Sicard A, Vignon F, Langin D, Barbacid M, Fajas L (2005) Cdk4 promotes adipogenesis through PPARgamma activation. Cell Metab 2:239–249CrossRefPubMedGoogle Scholar
  2. 2.
    Abraham RT (2001) Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 15:2177–2196CrossRefPubMedGoogle Scholar
  3. 3.
    Aguilar V, Annicotte JS, Escote X, Vendrell J, Langin D, Fajas L (2010) Cyclin G2 regulates adipogenesis through PPAR gamma coactivation. Endocrinology 151:5247–5254CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Aguilar V, Fajas L (2010) Cycling through metabolism. EMBO Mol Med 2:338–348CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    An W, Zhang Z, Zeng L, Yang Y, Zhu X, Wu J (2015) Cyclin Y is involved in the regulation of adipogenesis and lipid production. PLoS One 10:e0132721CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Armata HL, Golebiowski D, Jung DY, Ko HJ, Kim JK, Sluss HK (2010) Requirement of the ATM/p53 tumor suppressor pathway for glucose homeostasis. Mol Cell Biol 30:5787–5794CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ashcroft M, Kubbutat MH, Vousden KH (1999) Regulation of p53 function and stability by phosphorylation. Mol Cell Biol 19:1751–1758CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Baltzer C, Tiefenbock SK, Marti M, Frei C (2009) Nutrition controls mitochondrial biogenesis in the Drosophila adipose tissue through Delg and cyclin D/Cdk4. PLoS One 4:e6935CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Banks AS, McAllister FE, Camporez JP, Zushin PJ, Jurczak MJ, Laznik-Bogoslavski D, Shulman GI, Gygi SP, Spiegelman BM (2015) An ERK/Cdk5 axis controls the diabetogenic actions of PPARgamma. Nature 517:391–395CrossRefPubMedGoogle Scholar
  10. 10.
    Blain SW, Montalvo E, Massague J (1997) Differential interaction of the cyclin-dependent kinase (Cdk) inhibitor p27Kip1 with cyclin A-Cdk2 and cyclin D2-Cdk4. J Biol Chem 272:25863–25872CrossRefPubMedGoogle Scholar
  11. 11.
    Blanchet E, Annicotte JS, Lagarrigue S, Aguilar V, Clape C, Chavey C, Fritz V, Casas F, Apparailly F, Auwerx J et al (2011) E2F transcription factor-1 regulates oxidative metabolism. Nat Cell Biol 13:1146–1152CrossRefPubMedGoogle Scholar
  12. 12.
    Boque N, Campion J, Milagro FI, Moreno-Aliaga MJ, Martinez JA (2009) Some cyclin-dependent kinase inhibitors-related genes are regulated by vitamin C in a model of diet-induced obesity. Biol Pharm Bull 32:1462–1468CrossRefPubMedGoogle Scholar
  13. 13.
    Calo E, Quintero-Estades JA, Danielian PS, Nedelcu S, Berman SD, Lees JA (2010) Rb regulates fate choice and lineage commitment in vivo. Nature 466:1110–1114CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Capasso S, Alessio N, Di Bernardo G, Cipollaro M, Melone MA, Peluso G, Giordano A, Galderisi U (2014) Silencing of RB1 and RB2/P130 during adipogenesis of bone marrow stromal cells results in dysregulated differentiation. Cell Cycle 13:482–490CrossRefPubMedGoogle Scholar
  15. 15.
    Cerqueira A, Martin A, Symonds CE, Odajima J, Dubus P, Barbacid M, Santamaria D (2014) Genetic characterization of the role of the Cip/Kip family of proteins as cyclin-dependent kinase inhibitors and assembly factors. Mol Cell Biol 34:1452–1459CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Chen PL, Riley DJ, Chen Y, Lee WH (1996) Retinoblastoma protein positively regulates terminal adipocyte differentiation through direct interaction with C/EBPs. Genes Dev 10:2794–2804CrossRefPubMedGoogle Scholar
  17. 17.
    Cheng M, Olivier P, Diehl JA, Fero M, Roussel MF, Roberts JM, Sherr CJ (1999) The p21(Cip1) and p27(Kip1) CDK ‘inhibitors’ are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J 18:1571–1583CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Cheung ZH, Ip NY (2012) Cdk5: a multifaceted kinase in neurodegenerative diseases. Trends Cell Biol 22:169–175CrossRefPubMedGoogle Scholar
  19. 19.
    Choe SS, Huh JY, Hwang IJ, Kim JI, Kim JB (2016) Adipose tissue remodeling: its role in energy metabolism and metabolic disorders. Front Endocrinol 7:30CrossRefGoogle Scholar
  20. 20.
    Choi JH, Banks AS, Estall JL, Kajimura S, Bostrom P, Laznik D, Ruas JL, Chalmers MJ, Kamenecka TM, Bluher M et al (2010) Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5. Nature 466:451–456CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Choi JH, Banks AS, Kamenecka TM, Busby SA, Chalmers MJ, Kumar N, Kuruvilla DS, Shin Y, He Y, Bruning JB et al (2011) Antidiabetic actions of a non-agonist PPARgamma ligand blocking Cdk5-mediated phosphorylation. Nature 477:477–481CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Classon M, Kennedy BK, Mulloy R, Harlow E (2000) Opposing roles of pRB and p107 in adipocyte differentiation. Proc Natl Acad Sci USA 97:10826–10831CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Cohen P, Spiegelman BM (2015) Brown and beige fat: molecular parts of a thermogenic machine. Diabetes 64:2346–2351CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Dali-Youcef N, Mataki C, Coste A, Messaddeq N, Giroud S, Blanc S, Koehl C, Champy MF, Chambon P, Fajas L et al (2007) Adipose tissue-specific inactivation of the retinoblastoma protein protects against diabesity because of increased energy expenditure. Proc Natl Acad Sci USA 104:10703–10708CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Egly JM, Coin F (2011) A history of TFIIH: two decades of molecular biology on a pivotal transcription/repair factor. DNA Repair 10:714–721CrossRefPubMedGoogle Scholar
  26. 26.
    Fajas L, Annicotte JS, Miard S, Sarruf D, Watanabe M, Auwerx J (2004) Impaired pancreatic growth, beta cell mass, and beta cell function in E2F1(−/−) mice. J Clin Investig 113:1288–1295CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Fajas L, Egler V, Reiter R, Hansen J, Kristiansen K, Debril MB, Miard S, Auwerx J (2002) The retinoblastoma-histone deacetylase 3 complex inhibits PPARgamma and adipocyte differentiation. Dev Cell 3:903–910CrossRefPubMedGoogle Scholar
  28. 28.
    Fajas L, Landsberg RL, Huss-Garcia Y, Sardet C, Lees JA, Auwerx J (2002) E2Fs regulate adipocyte differentiation. Dev Cell 3:39–49CrossRefPubMedGoogle Scholar
  29. 29.
    Findeisen HM, Pearson KJ, Gizard F, Zhao Y, Qing H, Jones KL, Cohn D, Heywood EB, de Cabo R, Bruemmer D (2011) Oxidative stress accumulates in adipose tissue during aging and inhibits adipogenesis. PLoS One 6:e18532CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Fu M, Rao M, Bouras T, Wang C, Wu K, Zhang X, Li Z, Yao TP, Pestell RG (2005) Cyclin D1 inhibits peroxisome proliferator-activated receptor gamma-mediated adipogenesis through histone deacetylase recruitment. J Biol Chem 280:16934–16941CrossRefPubMedGoogle Scholar
  31. 31.
    Galderisi U, Cipollaro M, Giordano A (2006) The retinoblastoma gene is involved in multiple aspects of stem cell biology. Oncogene 25:5250–5256CrossRefPubMedGoogle Scholar
  32. 32.
    Garrido-Sanchez L, Roca-Rodriguez Mdel M, Fernandez-Veledo S, Vendrell J, Yubero-Serrano EM, Ocana-Wilhelmi L, Garcia-Fuentes E, Tinahones FJ (2014) CCNG2 and CDK4 is associated with insulin resistance in adipose tissue. Surg Obes Relat Dis 10:691–696CrossRefPubMedGoogle Scholar
  33. 33.
    Giono LE, Manfredi JJ (2007) Mdm2 plays a positive role as an effector of p53-dependent responses. Cell Cycle 6:2143–2147CrossRefPubMedGoogle Scholar
  34. 34.
    Goldfine AB, Crunkhorn S, Costello M, Gami H, Landaker EJ, Niinobe M, Yoshikawa K, Lo D, Warren A, Jimenez-Chillaron J et al (2006) Necdin and E2F4 are modulated by rosiglitazone therapy in diabetic human adipose and muscle tissue. Diabetes 55:640–650CrossRefPubMedGoogle Scholar
  35. 35.
    Haim Y, Bluher M, Slutsky N, Goldstein N, Kloting N, Harman-Boehm I, Kirshtein B, Ginsberg D, Gericke M, Guiu Jurado E et al (2015) Elevated autophagy gene expression in adipose tissue of obese humans: a potential non-cell-cycle-dependent function of E2F1. Autophagy 11:2074–2088CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Hansen JB, Jorgensen C, Petersen RK, Hallenborg P, De Matteis R, Boye HA, Petrovic N, Enerback S, Nedergaard J, Cinti S et al (2004) Retinoblastoma protein functions as a molecular switch determining white versus brown adipocyte differentiation. Proc Natl Acad Sci USA 101:4112–4117CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Helenius K, Yang Y, Alasaari J, Makela TP (2009) Mat1 inhibits peroxisome proliferator-activated receptor gamma-mediated adipocyte differentiation. Mol Cell Biol 29:315–323CrossRefPubMedGoogle Scholar
  38. 38.
    Hu X, Luo P, Peng X, Song T, Zhou Y, Wei H, Peng J, Jiang S (2015) Molecular cloning, expression pattern analysis of porcine Rb1 gene and its regulatory roles during primary dedifferentiated fat cells adipogenic differentiation. Gen Comp Endocrinol 214:77–86CrossRefPubMedGoogle Scholar
  39. 39.
    Huang Q, Liu M, Du X, Zhang R, Xue Y, Zhang Y, Zhu W, Li D, Zhao A, Liu Y (2014) Role of p53 in preadipocyte differentiation. Cell Biol Int 38:1384–1393CrossRefPubMedGoogle Scholar
  40. 40.
    Iankova I, Petersen RK, Annicotte JS, Chavey C, Hansen JB, Kratchmarova I, Sarruf D, Benkirane M, Kristiansen K, Fajas L (2006) Peroxisome proliferator-activated receptor gamma recruits the positive transcription elongation factor b complex to activate transcription and promote adipogenesis. Mol Endocrinol 20:1494–1505CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Inoue N, Yahagi N, Yamamoto T, Ishikawa M, Watanabe K, Matsuzaka T, Nakagawa Y, Takeuchi Y, Kobayashi K, Takahashi A et al (2008) Cyclin-dependent kinase inhibitor, p21WAF1/CIP1, is involved in adipocyte differentiation and hypertrophy, linking to obesity, and insulin resistance. J Biol Chem 283:21220–21229CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    LaBaer J, Garrett MD, Stevenson LF, Slingerland JM, Sandhu C, Chou HS, Fattaey A, Harlow E (1997) New functional activities for the p21 family of CDK inhibitors. Genes Dev 11:847–862CrossRefPubMedGoogle Scholar
  43. 43.
    Lagarrigue S, Lopez-Mejia IC, Denechaud PD, Escote X, Castillo-Armengol J, Jimenez V, Chavey C, Giralt A, Lai Q, Zhang L et al (2016) CDK4 is an essential insulin effector in adipocytes. J Clin Investig 126:335–348CrossRefPubMedGoogle Scholar
  44. 44.
    Lalioti V, Muruais G, Dinarina A, van Damme J, Vandekerckhove J, Sandoval IV (2009) The atypical kinase Cdk5 is activated by insulin, regulates the association between GLUT4 and E-Syt1, and modulates glucose transport in 3T3-L1 adipocytes. Proc Natl Acad Sci USA 106:4249–4253CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Landsberg RL, Sero JE, Danielian PS, Yuan TL, Lee EY, Lees JA (2003) The role of E2F4 in adipogenesis is independent of its cell cycle regulatory activity. Proc Natl Acad Sci USA 100:2456–2461CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Lee J, Baek JH, Choi KS, Kim HS, Park HY, Ha GH, Park H, Lee KW, Lee CG, Yang DY et al (2013) Cyclin-dependent kinase 4 signaling acts as a molecular switch between syngenic differentiation and neural transdifferentiation in human mesenchymal stem cells. Cell Cycle 12:442–451CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Lim S, Kaldis P (2013) Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development 140:3079–3093CrossRefPubMedGoogle Scholar
  48. 48.
    Lin J, Della-Fera MA, Li C, Page K, Choi YH, Hartzell DL, Baile CA (2003) P27 knockout mice: reduced myostatin in muscle and altered adipogenesis. Biochem Biophys Res Commun 300:938–942CrossRefPubMedGoogle Scholar
  49. 49.
    Lopez-Mejia IC, Fajas L (2015) Cell cycle regulation of mitochondrial function. Curr Opin Cell Biol 33:19–25CrossRefPubMedGoogle Scholar
  50. 50.
    Malumbres M (2014) Cyclin-dependent kinases. Genome Biol 15:122CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9:153–166CrossRefPubMedGoogle Scholar
  52. 52.
    Maury E, Brichard SM (2010) Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol Cell Endocrinol 314:1–16CrossRefPubMedGoogle Scholar
  53. 53.
    Mikolcevic P, Rainer J, Geley S (2012) Orphan kinases turn eccentric: a new class of cyclin Y-activated, membrane-targeted CDKs. Cell cycle 11(20):3758–3768Google Scholar
  54. 54.
    Minamino T, Orimo M, Shimizu I, Kunieda T, Yokoyama M, Ito T, Nojima A, Nabetani A, Oike Y, Matsubara H et al (2009) A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat Med 15:1082–1087CrossRefPubMedGoogle Scholar
  55. 55.
    Miyawaki K, Inoue H, Keshavarz P, Mizuta K, Sato A, Sakamoto Y, Moritani M, Kunika K, Tanahashi T, Itakura M (2008) Transgenic expression of a mutated cyclin-dependent kinase 4 (CDK4/R24C) in pancreatic beta-cells prevents progression of diabetes in db/db mice. Diabetes Res Clin Pract 82:33–41CrossRefPubMedGoogle Scholar
  56. 56.
    Molchadsky A, Ezra O, Amendola PG, Krantz D, Kogan-Sakin I, Buganim Y, Rivlin N, Goldfinger N, Folgiero V, Falcioni R et al (2013) p53 is required for brown adipogenic differentiation and has a protective role against diet-induced obesity. Cell Death Differ 20:774–783CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Molchadsky A, Shats I, Goldfinger N, Pevsner-Fischer M, Olson M, Rinon A, Tzahor E, Lozano G, Zipori D, Sarig R et al (2008) p53 plays a role in mesenchymal differentiation programs, in a cell fate dependent manner. PLoS One 3:e3707CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Murphy CG, Dickler MN (2015) The role of CDK4/6 inhibition in breast cancer. Oncologist 20:483–490CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Naaz A, Holsberger DR, Iwamoto GA, Nelson A, Kiyokawa H, Cooke PS (2004) Loss of cyclin-dependent kinase inhibitors produces adipocyte hyperplasia and obesity. FASEB J 18:1925–1927CrossRefPubMedGoogle Scholar
  60. 60.
    Ortega FJ, Moreno-Navarrete JM, Mayas D, Serino M, Rodriguez-Hermosa JI, Ricart W, Luche E, Burcelin R, Tinahones FJ, Fruhbeck G et al (2014) Inflammation and insulin resistance exert dual effects on adipose tissue tumor protein 53 expression. Int J Obes 38:737–745CrossRefGoogle Scholar
  61. 61.
    Ouyang D, Ye Y, Guo D, Yu X, Chen J, Qi J, Tan X, Zhang Y, Ma Y, Li Y (2015) MicroRNA-125b-5p inhibits proliferation and promotes adipogenic differentiation in 3T3-L1 preadipocytes. Acta Biochim Biophys Sin 47:355–361CrossRefPubMedGoogle Scholar
  62. 62.
    Pandurangan M, Jin BY, Kim DH (2016) ZnO nanoparticles upregulates adipocyte differentiation in 3T3-L1 Cells. Biol Trace Elem Res 170:201–207CrossRefPubMedGoogle Scholar
  63. 63.
    Peterlin BM, Price DH (2006) Controlling the elongation phase of transcription with P-TEFb. Mol Cell 23:297–305CrossRefPubMedGoogle Scholar
  64. 64.
    Petrov PD, Palou A, Bonet ML, Ribot J (2016) Cell-autonomous brown-like adipogenesis of preadipocytes from retinoblastoma haploinsufficient mice. J Cell Physiol 231:1941–1952CrossRefPubMedGoogle Scholar
  65. 65.
    Petrov PD, Ribot J, Palou A, Bonet ML (2015) Improved metabolic regulation is associated with retinoblastoma protein gene haploinsufficiency in mice. Am J Physiol Endocrinol Metab 308:E172–E183CrossRefPubMedGoogle Scholar
  66. 66.
    Phelps DE, Xiong Y (1998) Regulation of cyclin-dependent kinase 4 during adipogenesis involves switching of cyclin D subunits and concurrent binding of p18INK4c and p27Kip1. Cell Growth Differ Mol Biol J Am Assoc Cancer Res 9:595–610Google Scholar
  67. 67.
    Porse BT, Pedersen TA, Hasemann MS, Schuster MB, Kirstetter P, Luedde T, Damgaard I, Kurz E, Schjerling CK, Nerlov C (2006) The proline-histidine-rich CDK2/CDK4 interaction region of C/EBPalpha is dispensable for C/EBPalpha-mediated growth regulation in vivo. Mol Cell Biol 26:1028–1037CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Porteiro B, Diaz-Ruiz A, Martinez G, Senra A, Vidal A, Serrano M, Gualillo O, Lopez M, Malagon MM, Dieguez C et al (2013) Ghrelin requires p53 to stimulate lipid storage in fat and liver. Endocrinology 154:3671–3679CrossRefPubMedGoogle Scholar
  69. 69.
    Rane SG, Dubus P, Mettus RV, Galbreath EJ, Boden G, Reddy EP, Barbacid M (1999) Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in beta-islet cell hyperplasia. Nat Genet 22:44–52CrossRefPubMedGoogle Scholar
  70. 70.
    Rosen ED, Spiegelman BM (2014) What we talk about when we talk about fat. Cell 156:20–44CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Ross SR, Choy L, Graves RA, Fox N, Solevjeva V, Klaus S, Ricquier D, Spiegelman BM (1992) Hibernoma formation in transgenic mice and isolation of a brown adipocyte cell line expressing the uncoupling protein gene. Proc Natl Acad Sci USA 89:7561–7565CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Salazar-Roa M, Malumbres M (2017) Fueling the cell division cycle. Trends Cell Biol 27(1):69–81CrossRefPubMedGoogle Scholar
  73. 73.
    Sarruf DA, Iankova I, Abella A, Assou S, Miard S, Fajas L (2005) Cyclin D3 promotes adipogenesis through activation of peroxisome proliferator-activated receptor gamma. Mol Cell Biol 25:9985–9995CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Scime A, Grenier G, Huh MS, Gillespie MA, Bevilacqua L, Harper ME, Rudnicki MA (2005) Rb and p107 regulate preadipocyte differentiation into white versus brown fat through repression of PGC-1alpha. Cell Metab 2:283–295CrossRefPubMedGoogle Scholar
  75. 75.
    Shieh SY, Ahn J, Tamai K, Taya Y, Prives C (2000) The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev 14:289–300PubMedPubMedCentralGoogle Scholar
  76. 76.
    Sun LY, Pang CY, Li DK, Liao CH, Huang WC, Wu CC, Chou YY, Li WW, Chen SY, Liu HW et al (2013) Antioxidants cause rapid expansion of human adipose-derived mesenchymal stem cells via CDK and CDK inhibitor regulation. J Biomed Sci 20:53CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Van De Pette M, Tunster SJ, McNamara GI, Shelkovnikova T, Millership S, Benson L, Peirson S, Christian M, Vidal-Puig A, John RM (2016) Cdkn1c boosts the development of brown adipose tissue in a murine model of Silver Russell syndrome. PLoS Genet 12:e1005916CrossRefGoogle Scholar
  78. 78.
    Vergoni B, Cornejo PJ, Gilleron J, Djedaini M, Ceppo F, Jacquel A, Bouget G, Ginet C, Gonzalez T, Maillet J et al (2016) DNA damage and the activation of the p53 pathway mediate alterations in metabolic and secretory functions of adipocytes. Diabetes 65:3062–3074CrossRefPubMedGoogle Scholar
  79. 79.
    Vormer TL, Wojciechowicz K, Dekker M, de Vries S, van der Wal A, Delzenne-Goette E, Naik SH, Song JY, Dannenberg JH, Hansen JB et al (2014) RB family tumor suppressor activity may not relate to active silencing of E2F target genes. Can Res 74:5266–5276CrossRefGoogle Scholar
  80. 80.
    Wang GL, Shi X, Salisbury E, Sun Y, Albrecht JH, Smith RG, Timchenko NA (2006) Cyclin D3 maintains growth-inhibitory activity of C/EBPalpha by stabilizing C/EBPalpha-cdk2 and C/EBPalpha-Brm complexes. Mol Cell Biol 26:2570–2582CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Yahagi N, Shimano H, Matsuzaka T, Najima Y, Sekiya M, Nakagawa Y, Ide T, Tomita S, Okazaki H, Tamura Y et al (2003) p53 activation in adipocytes of obese mice. J Biol Chem 278:25395–25400CrossRefPubMedGoogle Scholar
  82. 82.
    Zhang J, Suh Y, Choi YM, Ahn J, Davis ME, Lee K (2014) Differential expression of cyclin G2, cyclin-dependent kinase inhibitor 2C and peripheral myelin protein 22 genes during adipogenesis. Anim Int J Anim Biosci 8:800–809CrossRefGoogle Scholar
  83. 83.
    Zhou BB, Bartek J (2004) Targeting the checkpoint kinases: chemosensitization versus chemoprotection. Nat Rev Cancer 4:216–225CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • I. C. Lopez-Mejia
    • 1
    • 2
  • J. Castillo-Armengol
    • 1
    • 2
  • S. Lagarrigue
    • 2
  • L. Fajas
    • 1
    • 2
  1. 1.Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
  2. 2.Department of PhysiologyUniversity of LausanneLausanneSwitzerland

Personalised recommendations