Cellular and Molecular Life Sciences

, Volume 75, Issue 6, pp 965–973 | Cite as

A double dealing tale of p63: an oncogene or a tumor suppressor

  • Yonglong Chen
  • Yougong Peng
  • Shijie Fan
  • Yimin Li
  • Zhi-Xiong Xiao
  • Chenghua Li
Review
  • 308 Downloads

Abstract

As a member of tumor suppressor p53 family, p63, a gene encoding versatile protein variant, has been documented to correlate with cancer formation and progression, though it is rarely mutated in cancer patients. However, it has long been controversial on whether p63 is an oncogene or a tumor suppressor. Here, we comprehensively reviewed reports on roles of p63 in development, tumorigenesis and tumor progression. According to data from molecular cell biology, genetic models and clinic research, we conclude that p63 may act as either an oncogene or a tumor suppressor gene in different scenarios: TA isoforms of p63 gene are generally tumor-suppressive through repressing cell proliferation, survival and metastasis; ΔN isoforms, however, may initiate tumorigenesis via promoting cell proliferation and survival, but inhibit tumor metastasis and progression; effects of p63 on tumor formation and progression depend on the context of the whole p53 family, and either amplification or loss of p63 gene locus can break the balance to cause tumorigenesis.

Keywords

TAp63 ΔNp63 Oncoprotein Cell senescence Cell migration 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (#31671423) and Science and Technology Department of Sichuan Province (#2016JY0152). We thank the members of Zhi-Xiong Xiao lab for stimulative discussions.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Massion PP, Taflan PM, Jamshedur Rahman SM, Yildiz P, Shyr Y, Edgerton ME, Westfall MD, Roberts JR, Pietenpol JA, Carbone DP, Gonzalez AL (2003) Significance of p63 amplification and overexpression in lung cancer development and prognosis. Cancer Res 63(21):7113–7121PubMedGoogle Scholar
  2. 2.
    Mangiulli M, Valletti A, Caratozzolo MF, Tullo A, Sbisa E, Pesole G, D’Erchia AM (2009) Identification and functional characterization of two new transcriptional variants of the human p63 gene. Nucleic Acids Res 37(18):6092–6104CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, Dotsch V, Andrews NC, Caput D, McKeon F (1998) p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell 2(3):305–316. doi: 10.1016/S1097-2765(00)80275-0 CrossRefPubMedGoogle Scholar
  4. 4.
    Osada M, Park HL, Nagakawa Y, Yamashita K, Fomenkov A, Kim MS, Wu G, Nomoto S, Trink B, Sidransky D (2005) Differential recognition of response elements determines target gene specificity for p53 and p63. Mol Cell Biol 25(14):6077–6089CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Perez CA, Ott J, Mays DJ, Pietenpol JA (2007) p63 consensus DNA-binding site: identification, analysis and application into a p63MH algorithm. Oncogene 26(52):7363–7370CrossRefPubMedGoogle Scholar
  6. 6.
    McDade SS, Patel D, McCance DJ (2011) p63 maintains keratinocyte proliferative capacity through regulation of Skp2–p130 levels. J Cell Sci 124(Pt 10):1635–1643CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Murray-Zmijewski F, Lane DP, Bourdon JC (2006) p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death Differ 13(6):962–972CrossRefPubMedGoogle Scholar
  8. 8.
    Osada M, Ohba M, Kawahara C, Ishioka C, Kanamaru R, Katoh I, Ikawa Y, Nimura Y, Nakagawara A, Obinata M, Ikawa S (1998) Cloning and functional analysis of human p51, which structurally and functionally resembles p53. Nat Med 4(7):839–843CrossRefPubMedGoogle Scholar
  9. 9.
    Guo X, Keyes WM, Papazoglu C, Zuber J, Li W, Lowe SW, Vogel H, Mills AA (2009) TAp63 induces senescence and suppresses tumorigenesis in vivo. Nat Cell Biol 11(12):1451–1457. doi: 10.1038/ncb1988 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lo Iacono M, Di Costanzo A, Calogero RA, Mansueto G, Saviozzi S, Crispi S, Pollice A, La Mantia G, Calabro V (2006) The Hay Wells syndrome-derived TAp63alphaQ540L mutant has impaired transcriptional and cell growth regulatory activity. Cell Cycle 5(1):78–87CrossRefPubMedGoogle Scholar
  11. 11.
    Westfall MD, Mays DJ, Sniezek JC, Pietenpol JA (2003) The Delta Np63 alpha phosphoprotein binds the p21 and 14-3-3 sigma promoters in vivo and has transcriptional repressor activity that is reduced by Hay-Wells syndrome-derived mutations. Mol Cell Biol 23(7):2264–2276CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Campisi J (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120(4):513–522. doi: 10.1016/j.cell.2005.02.003 CrossRefPubMedGoogle Scholar
  13. 13.
    Keyes WM, Wu Y, Vogel H, Guo X, Lowe SW, Mills AA (2005) p63 deficiency activates a program of cellular senescence and leads to accelerated aging. Genes Dev 19(17):1986–1999CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Serrano M, Hannon GJ, Beach D (1993) A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366(6456):704–707CrossRefPubMedGoogle Scholar
  15. 15.
    Narita M, Nunez S, Heard E, Narita M, Lin AW, Hearn SA, Spector DL, Hannon GJ, Lowe SW (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113(6):703–716CrossRefPubMedGoogle Scholar
  16. 16.
    Takahashi A, Ohtani N, Hara E (2007) Irreversibility of cellular senescence: dual roles of p16INK4a/Rb-pathway in cell cycle control. Cell Div 2:10CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Celardo I, Grespi F, Antonov A, Bernassola F, Garabadgiu AV, Melino G, Amelio I (2013) Caspase-1 is a novel target of p63 in tumor suppression. Cell Death Dis 4:e645CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ihrie RA, Marques MR, Nguyen BT, Horner JS, Papazoglu C, Bronson RT, Mills AA, Attardi LD (2005) Perp is a p63-regulated gene essential for epithelial integrity. Cell 120(6):843–856. doi: 10.1016/j.cell.2005.01.008 CrossRefPubMedGoogle Scholar
  19. 19.
    Candi E, Rufini A, Terrinoni A, Dinsdale D, Ranalli M, Paradisi A, De Laurenzi V, Spagnoli LG, Catani MV, Ramadan S, Knight RA, Melino G (2006) Differential roles of p63 isoforms in epidermal development: selective genetic complementation in p63 null mice. Cell Death Differ 13(6):1037–1047CrossRefPubMedGoogle Scholar
  20. 20.
    Bergholz J, Zhang Y, Wu J, Meng L, Walsh EM, Rai A, Sherman MY, Xiao ZX (2013) DeltaNp63alpha regulates Erk signaling via MKP3 to inhibit cancer metastasis. Oncogene 33(2):212–224. doi: 10.1038/onc.2012.564 CrossRefGoogle Scholar
  21. 21.
    Wu G, Osada M, Guo Z, Fomenkov A, Begum S, Zhao M, Upadhyay S, Xing M, Wu F, Moon C, Westra WH, Koch WM, Mantovani R, Califano JA, Ratovitski E, Sidransky D, Trink B (2005) DeltaNp63alpha up-regulates the Hsp70 gene in human cancer. Cancer Res 65(3):758–766PubMedGoogle Scholar
  22. 22.
    van Bokhoven H, Hamel BC, Bamshad M, Sangiorgi E, Gurrieri F, Duijf PH, Vanmolkot KR, van Beusekom E, van Beersum SE, Celli J, Merkx GF, Tenconi R, Fryns JP, Verloes A, Newbury-Ecob RA, Raas-Rotschild A, Majewski F, Beemer FA, Janecke A, Chitayat D, Crisponi G, Kayserili H, Yates JR, Neri G, Brunner HG (2001) p63 Gene mutations in EEC syndrome, limb-mammary syndrome, and isolated split hand–split foot malformation suggest a genotype–phenotype correlation. Am J Hum Genet 69(3):481–492CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Duijf PH, Vanmolkot KR, Propping P, Friedl W, Krieger E, McKeon F, Dotsch V, Brunner HG, van Bokhoven H (2002) Gain-of-function mutation in ADULT syndrome reveals the presence of a second transactivation domain in p63. Hum Mol Genet 11(7):799–804CrossRefPubMedGoogle Scholar
  24. 24.
    Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT, Tabin C, Sharpe A, Caput D, Crum C, McKeon F (1999) p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398(6729):714–718. doi: 10.1038/19539 CrossRefPubMedGoogle Scholar
  25. 25.
    Berdon-Zapata V, Granillo-Alvarez M, Valdes-Flores M, Garcia-Ortiz JE, Kofman-Alfaro S, Zenteno JC (2004) p63 gene analysis in Mexican patients with syndromic and non-syndromic ectrodactyly. J Orthop Res 22(1):1–5. doi: 10.1016/S0736-0266(03)00166-9 CrossRefPubMedGoogle Scholar
  26. 26.
    Ianakiev P, Kilpatrick MW, Toudjarska I, Basel D, Beighton P, Tsipouras P (2000) Split-hand/split-foot malformation is caused by mutations in the p63 gene on 3q27. Am J Hum Genet 67(1):59–66. doi: 10.1086/302972 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Scherer SW, Poorkaj P, Allen T, Kim J, Geshuri D, Nunes M, Soder S, Stephens K, Pagon RA, Patton MA et al (1994) Fine mapping of the autosomal dominant split hand/split foot locus on chromosome 7, band q21.3-q22.1. Am J Hum Genet 55(1):12–20PubMedPubMedCentralGoogle Scholar
  28. 28.
    Duijf PH, van Bokhoven H, Brunner HG (2003) Pathogenesis of split-hand/split-foot malformation. Hum Mol Genet 12(Spec No 1):R51–R60CrossRefPubMedGoogle Scholar
  29. 29.
    Faiyaz-Ul-Haque M, Zaidi SH, King LM, Haque S, Patel M, Ahmad M, Siddique T, Ahmad W, Tsui LC, Cohn DH (2005) Fine mapping of the X-linked split-hand/split-foot malformation (SHFM2) locus to a 5.1-Mb region on Xq26.3 and analysis of candidate genes. Clin Genet 67(1):93–97. doi: 10.1111/j.1399-0004.2004.00369.x CrossRefPubMedGoogle Scholar
  30. 30.
    Del Campo M, Jones MC, Veraksa AN, Curry CJ, Jones KL, Mascarello JT, Ali-Kahn-Catts Z, Drumheller T, McGinnis W (1999) Monodactylous limbs and abnormal genitalia are associated with hemizygosity for the human 2q31 region that includes the HOXD cluster. Am J Hum Genet 65(1):104–110. doi: 10.1086/302467 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ugur SA, Tolun A (2008) Homozygous WNT10b mutation and complex inheritance in split-hand/foot malformation. Hum Mol Genet 17(17):2644–2653. doi: 10.1093/hmg/ddn164 CrossRefPubMedGoogle Scholar
  32. 32.
    Lo Iacono N, Mantero S, Chiarelli A, Garcia E, Mills AA, Morasso MI, Costanzo A, Levi G, Guerrini L, Merlo GR (2008) Regulation of Dlx5 and Dlx6 gene expression by p63 is involved in EEC and SHFM congenital limb defects. Development 135(7):1377–1388. doi: 10.1242/dev.011759 CrossRefPubMedGoogle Scholar
  33. 33.
    Kouwenhoven EN, van Heeringen SJ, Tena JJ, Oti M, Dutilh BE, Alonso ME, de la Calle-Mustienes E, Smeenk L, Rinne T, Parsaulian L, Bolat E, Jurgelenaite R, Huynen MA, Hoischen A, Veltman JA, Brunner HG, Roscioli T, Oates E, Wilson M, Manzanares M, Gomez-Skarmeta JL, Stunnenberg HG, Lohrum M, van Bokhoven H, Zhou H (2010) Genome-wide profiling of p63 DNA-binding sites identifies an element that regulates gene expression during limb development in the 7q21 SHFM1 locus. PLoS Genet 6(8):e1001065. doi: 10.1371/journal.pgen.1001065 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Simeone A, Acampora D, Pannese M, D’Esposito M, Stornaiuolo A, Gulisano M, Mallamaci A, Kastury K, Druck T, Huebner K et al (1994) Cloning and characterization of two members of the vertebrate Dlx gene family. Proc Natl Acad Sci USA 91(6):2250–2254CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Robledo RF, Rajan L, Li X, Lufkin T (2002) The Dlx5 and Dlx6 homeobox genes are essential for craniofacial, axial, and appendicular skeletal development. Genes Dev 16(9):1089–1101. doi: 10.1101/gad.988402 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Acampora D, Merlo GR, Paleari L, Zerega B, Postiglione MP, Mantero S, Bober E, Barbieri O, Simeone A, Levi G (1999) Craniofacial, vestibular and bone defects in mice lacking the Distal-less-related gene Dlx5. Development 126(17):3795–3809PubMedGoogle Scholar
  37. 37.
    Deutsch GB, Zielonka EM, Coutandin D, Weber TA, Schafer B, Hannewald J, Luh LM, Durst FG, Ibrahim M, Hoffmann J, Niesen FH, Senturk A, Kunkel H, Brutschy B, Schleiff E, Knapp S, Acker-Palmer A, Grez M, McKeon F, Dotsch V (2011) DNA damage in oocytes induces a switch of the quality control factor TAp63alpha from dimer to tetramer. Cell 144(4):566–576. doi: 10.1016/j.cell.2011.01.013 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Gonfloni S, Di Tella L, Caldarola S, Cannata SM, Klinger FG, Di Bartolomeo C, Mattei M, Candi E, De Felici M, Melino G, Cesareni G (2009) Inhibition of the c-Abl–TAp63 pathway protects mouse oocytes from chemotherapy-induced death. Nat Med 15(10):1179–1185. doi: 10.1038/nm.2033 CrossRefPubMedGoogle Scholar
  39. 39.
    Deutsch GB, Zielonka EM, Coutandin D, Dotsch V (2011) Quality control in oocytes: domain–domain interactions regulate the activity of p63. Cell Cycle 10(12):1884–1885CrossRefPubMedGoogle Scholar
  40. 40.
    Koster MI, Kim S, Mills AA, DeMayo FJ, Roop DR (2004) p63 is the molecular switch for initiation of an epithelial stratification program. Genes Dev 18(2):126–131CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, Bradley A (1999) p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398(6729):708–713. doi: 10.1038/19531 CrossRefPubMedGoogle Scholar
  42. 42.
    Kouwenhoven EN, Oti M, Niehues H, van Heeringen SJ, Schalkwijk J, Stunnenberg HG, van Bokhoven H, Zhou H (2015) Transcription factor p63 bookmarks and regulates dynamic enhancers during epidermal differentiation. EMBO Rep 16(7):863–878CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Chakravarti D, Su X, Cho MS, Bui NH, Coarfa C, Venkatanarayan A, Benham AL, Flores Gonzalez RE, Alana J, Xiao W, Leung ML, Vin H, Chan IL, Aquino A, Muller N, Wang H, Cooney AJ, Parker-Thornburg J, Tsai KY, Gunaratne PH, Flores ER (2014) Induced multipotency in adult keratinocytes through down-regulation of DeltaNp63 or DGCR8. Proc Natl Acad Sci USA 111(5):E572–E581CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Laurikkala J, Mikkola ML, James M, Tummers M, Mills AA, Thesleff I (2006) p63 regulates multiple signalling pathways required for ectodermal organogenesis and differentiation. Development 133(8):1553–1563CrossRefPubMedGoogle Scholar
  45. 45.
    Shalom-Feuerstein R, Lena AM, Zhou H, De La Forest Divonne S, Van Bokhoven H, Candi E, Melino G, Aberdam D (2011) DeltaNp63 is an ectodermal gatekeeper of epidermal morphogenesis. Cell Death Differ 18(5):887–896. doi: 10.1038/cdd.2010.159 CrossRefPubMedGoogle Scholar
  46. 46.
    Candi E, Rufini A, Terrinoni A, Giamboi-Miraglia A, Lena AM, Mantovani R, Knight R, Melino G (2007) DeltaNp63 regulates thymic development through enhanced expression of FgfR2 and Jag2. Proc Natl Acad Sci USA 104(29):11999–12004. doi: 10.1073/pnas.0703458104 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Romano RA, Smalley K, Magraw C, Serna VA, Kurita T, Raghavan S, Sinha S (2012) DeltaNp63 knockout mice reveal its indispensable role as a master regulator of epithelial development and differentiation. Development 139(4):772–782CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Rizzo JM, Oyelakin A, Min S, Smalley K, Bard J, Luo W, Nyquist J, Guttman-Yassky E, Yoshida T, De Benedetto A, Beck LA, Sinha S, Romano RA (2016) DeltaNp63 regulates IL-33 and IL-31 signaling in atopic dermatitis. Cell Death Differ 23(6):1073–1085CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Su X, Paris M, Gi YJ, Tsai KY, Cho MS, Lin YL, Biernaskie JA, Sinha S, Prives C, Pevny LH, Miller FD, Flores ER (2009) TAp63 prevents premature aging by promoting adult stem cell maintenance. Cell Stem Cell 5(1):64–75CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Sunahara M, Shishikura T, Takahashi M, Todo S, Yamamoto N, Kimura H, Kato S, Ishioka C, Ikawa S, Ikawa Y, Nakagawara A (1999) Mutational analysis of p51A/TAp63gamma, a p53 homolog, in non-small cell lung cancer and breast cancer. Oncogene 18(25):3761–3765CrossRefPubMedGoogle Scholar
  51. 51.
    Hibi K, Trink B, Patturajan M, Westra WH, Caballero OL, Hill DE, Ratovitski EA, Jen J, Sidransky D (2000) AIS is an oncogene amplified in squamous cell carcinoma. Proc Natl Acad Sci USA 97(10):5462–5467CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Flores ER, Sengupta S, Miller JB, Newman JJ, Bronson R, Crowley D, Yang A, McKeon F, Jacks T (2005) Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer Cell 7(4):363–373. doi: 10.1016/j.ccr.2005.02.019 CrossRefPubMedGoogle Scholar
  53. 53.
    Koga F, Kawakami S, Fujii Y, Saito K, Ohtsuka Y, Iwai A, Ando N, Takizawa T, Kageyama Y, Kihara K (2003) Impaired p63 expression associates with poor prognosis and uroplakin III expression in invasive urothelial carcinoma of the bladder. Clin Cancer Res 9(15):5501–5507PubMedGoogle Scholar
  54. 54.
    Park BJ, Lee SJ, Kim JI, Lee SJ, Lee CH, Chang SG, Park JH, Chi SG (2000) Frequent alteration of p63 expression in human primary bladder carcinomas. Cancer Res 60(13):3370–3374PubMedGoogle Scholar
  55. 55.
    Urist MJ, Di Como CJ, Lu ML, Charytonowicz E, Verbel D, Crum CP, Ince TA, McKeon FD, Cordon-Cardo C (2002) Loss of p63 expression is associated with tumor progression in bladder cancer. Am J Pathol 161(4):1199–1206CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Weber A, Bellmann U, Bootz F, Wittekind C, Tannapfel A (2002) Expression of p53 and its homologues in primary and recurrent squamous cell carcinomas of the head and neck. Int J Cancer 99(1):22–28. doi: 10.1002/ijc.10296 CrossRefPubMedGoogle Scholar
  57. 57.
    Sniezek JC, Matheny KE, Westfall MD, Pietenpol JA (2004) Dominant negative p63 isoform expression in head and neck squamous cell carcinoma. Laryngoscope 114(12):2063–2072CrossRefPubMedGoogle Scholar
  58. 58.
    Hu H, Xia SH, Li AD, Xu X, Cai Y, Han YL, Wei F, Chen BS, Huang XP, Han YS, Zhang JW, Zhang X, Wu M, Wang MR (2002) Elevated expression of p63 protein in human esophageal squamous cell carcinomas. Int J Cancer 102(6):580–583. doi: 10.1002/ijc.10739 CrossRefPubMedGoogle Scholar
  59. 59.
    Wang TY, Chen BF, Yang YC, Chen H, Wang Y, Cviko A, Quade BJ, Sun D, Yang A, McKeon FD, Crum CP (2001) Histologic and immunophenotypic classification of cervical carcinomas by expression of the p53 homologue p63: a study of 250 cases. Hum Pathol 32(5):479–486CrossRefPubMedGoogle Scholar
  60. 60.
    Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752CrossRefPubMedGoogle Scholar
  61. 61.
    Matos I, Dufloth R, Alvarenga M, Zeferino LC, Schmitt F (2005) p63, cytokeratin 5, and P-cadherin: three molecular markers to distinguish basal phenotype in breast carcinomas. Virchows Arch 447(4):688–694CrossRefPubMedGoogle Scholar
  62. 62.
    Li C, Chang DL, Yang Z, Qi J, Liu R, He H, Li D, Xiao ZX (2013) Pin1 modulates p63alpha protein stability in regulation of cell survival, proliferation and tumor formation. Cell Death Dis 4:e943CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Li X, Chen J, Yi Y, Li C, Zhang Y (2012) DNA damage down-regulates DeltaNp63alpha and induces apoptosis independent of wild type p53. Biochem Biophys Res Commun 423(2):338–343. doi: 10.1016/j.bbrc.2012.05.126 CrossRefPubMedGoogle Scholar
  64. 64.
    Sen T, Sen N, Brait M, Begum S, Chatterjee A, Hoque MO, Ratovitski E, Sidransky D (2011) DeltaNp63alpha confers tumor cell resistance to cisplatin through the AKT1 transcriptional regulation. Cancer Res 71(3):1167–1176. doi: 10.1158/0008-5472.CAN-10-1481 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    DeYoung MP, Johannessen CM, Leong CO, Faquin W, Rocco JW, Ellisen LW (2006) Tumor-specific p73 up-regulation mediates p63 dependence in squamous cell carcinoma. Cancer Res 66(19):9362–9368. doi: 10.1158/0008-5472.CAN-06-1619 CrossRefPubMedGoogle Scholar
  66. 66.
    Rocco JW, Leong CO, Kuperwasser N, DeYoung MP, Ellisen LW (2006) p63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis. Cancer Cell 9(1):45–56. doi: 10.1016/j.ccr.2005.12.013 CrossRefPubMedGoogle Scholar
  67. 67.
    Ramsey MR, He L, Forster N, Ory B, Ellisen LW (2011) Physical association of HDAC1 and HDAC2 with p63 mediates transcriptional repression and tumor maintenance in squamous cell carcinoma. Cancer Res 71(13):4373–4379CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Keyes WM, Pecoraro M, Aranda V, Vernersson-Lindahl E, Li W, Vogel H, Guo X, Garcia EL, Michurina TV, Enikolopov G, Muthuswamy SK, Mills AA (2011) DeltaNp63alpha is an oncogene that targets chromatin remodeler Lsh to drive skin stem cell proliferation and tumorigenesis. Cell Stem Cell 8(2):164–176. doi: 10.1016/j.stem.2010.12.009 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Carroll DK, Carroll JS, Leong CO, Cheng F, Brown M, Mills AA, Brugge JS, Ellisen LW (2006) p63 regulates an adhesion programme and cell survival in epithelial cells. Nat Cell Biol 8(6):551–561. doi: 10.1038/ncb1420 CrossRefPubMedGoogle Scholar
  70. 70.
    Srivastava K, Pickard A, McDade S, McCance DJ (2017) p63 drives invasion in keratinocytes expressing HPV16 E6/E7 genes through regulation of Src-FAK signalling. Oncotarget 8(10):16202–16219CrossRefPubMedGoogle Scholar
  71. 71.
    Yi Y, Chen D, Ao J, Sun S, Wu M, Li X, Bergholz J, Zhang Y, Xiao ZX (2017) Metformin promotes AMP-activated protein kinase-independent suppression of deltaNp63alpha protein expression and inhibits cancer cell viability. J Biol Chem 292(13):5253–5261CrossRefPubMedGoogle Scholar
  72. 72.
    Wu N, Rollin J, Masse I, Lamartine J, Gidrol X (2012) p63 regulates human keratinocyte proliferation via MYC-regulated gene network and differentiation commitment through cell adhesion-related gene network. J Biol Chem 287(8):5627–5638. doi: 10.1074/jbc.M111.328120 CrossRefPubMedGoogle Scholar
  73. 73.
    Han A, Li J, Li Y, Wang Y, Bergholz J, Zhang Y, Li C, Xiao ZhX (2016) p63alpha modulates c-Myc activity via direct interaction and regulation of MM1 protein stability. Oncotarget 7(28):44277–44287PubMedPubMedCentralGoogle Scholar
  74. 74.
    Barbareschi M, Pecciarini L, Cangi MG, Macri E, Rizzo A, Viale G, Doglioni C (2001) p63, a p53 homologue, is a selective nuclear marker of myoepithelial cells of the human breast. Am J Surg Pathol 25(8):1054–1060CrossRefPubMedGoogle Scholar
  75. 75.
    Wang X, Mori I, Tang W, Nakamura M, Nakamura Y, Sato M, Sakurai T, Kakudo K (2002) p63 expression in normal, hyperplastic and malignant breast tissues. Breast Cancer 9(3):216–219CrossRefPubMedGoogle Scholar
  76. 76.
    Stefanou D, Batistatou A, Nonni A, Arkoumani E, Agnantis NJ (2004) p63 expression in benign and malignant breast lesions. Histol Histopathol 19(2):465–471PubMedGoogle Scholar
  77. 77.
    Koga F, Kawakami S, Kumagai J, Takizawa T, Ando N, Arai G, Kageyama Y, Kihara K (2003) Impaired delta Np63 expression associates with reduced beta-catenin and aggressive phenotypes of urothelial neoplasms. Br J Cancer 88(5):740–747CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Vanaja DK, Cheville JC, Iturria SJ, Young CY (2003) Transcriptional silencing of zinc finger protein 185 identified by expression profiling is associated with prostate cancer progression. Cancer Res 63(14):3877–3882PubMedGoogle Scholar
  79. 79.
    Signoretti S, Waltregny D, Dilks J, Isaac B, Lin D, Garraway L, Yang A, Montironi R, McKeon F, Loda M (2000) p63 is a prostate basal cell marker and is required for prostate development. Am J Pathol 157(6):1769–1775CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Quade BJ, Yang A, Wang Y, Sun D, Park J, Sheets EE, Cviko A, Federschneider JM, Peters R, McKeon FD, Crum CP (2001) Expression of the p53 homologue p63 in early cervical neoplasia. Gynecol Oncol 80(1):24–29CrossRefPubMedGoogle Scholar
  81. 81.
    Adorno M, Cordenonsi M, Montagner M, Dupont S, Wong C, Hann B, Solari A, Bobisse S, Rondina MB, Guzzardo V, Parenti AR, Rosato A, Bicciato S, Balmain A, Piccolo S (2009) A mutant-p53/smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell 137(1):87–98CrossRefPubMedGoogle Scholar
  82. 82.
    Yang J, Weinberg RA (2008) Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14(6):818–829CrossRefPubMedGoogle Scholar
  83. 83.
    Barbieri CE, Tang LJ, Brown KA, Pietenpol JA (2006) Loss of p63 leads to increased cell migration and up-regulation of genes involved in invasion and metastasis. Cancer Res 66(15):7589–7597. doi: 10.1158/0008-5472.CAN-06-2020 CrossRefPubMedGoogle Scholar
  84. 84.
    Higashikawa K, Yoneda S, Tobiume K, Saitoh M, Taki M, Mitani Y, Shigeishi H, Ono S, Kamata N (2009) DeltaNp63alpha-dependent expression of Id-3 distinctively suppresses the invasiveness of human squamous cell carcinoma. Int J Cancer 124(12):2837–2844CrossRefPubMedGoogle Scholar
  85. 85.
    Hu L, Liang S, Chen H, Lv T, Wu J, Chen D, Wu M, Sun S, Zhang H, You H, Ji H, Zhang Y, Bergholz J, Xiao ZJ (2017) DeltaNp63alpha is a common inhibitory target in oncogenic PI3K/Ras/Her2-induced cell motility and tumor metastasis. Proc Natl Acad Sci U S A 114(20):E3964–E3973CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Wu J, Liang S, Bergholz J, He H, Walsh EM, Zhang Y, Xiao ZX (2014) DeltaNp63alpha activates CD82 metastasis suppressor to inhibit cancer cell invasion. Cell Death Dis 5:e1280CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Melino G (2011) p63 is a suppressor of tumorigenesis and metastasis interacting with mutant p53. Cell Death Differ 18(9):1487–1499. doi: 10.1038/cdd.2011.81 CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Higashikawa K, Yoneda S, Tobiume K, Taki M, Shigeishi H, Kamata N (2007) Snail-induced down-regulation of DeltaNp63alpha acquires invasive phenotype of human squamous cell carcinoma. Cancer Res 67(19):9207–9213CrossRefPubMedGoogle Scholar
  89. 89.
    Lindsay J, McDade SS, Pickard A, McCloskey KD, McCance DJ (2011) Role of DeltaNp63gamma in epithelial to mesenchymal transition. J Biol Chem 286(5):3915–3924CrossRefPubMedGoogle Scholar
  90. 90.
    Muller PA, Vousden KH, Norman JC (2011) p53 and its mutants in tumor cell migration and invasion. J Cell Biol 192(2):209–218. doi: 10.1083/jcb.201009059 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Muller PA, Caswell PT, Doyle B, Iwanicki MP, Tan EH, Karim S, Lukashchuk N, Gillespie DA, Ludwig RL, Gosselin P, Cromer A, Brugge JS, Sansom OJ, Norman JC, Vousden KH (2009) Mutant p53 drives invasion by promoting integrin recycling. Cell 139(7):1327–1341CrossRefPubMedGoogle Scholar
  92. 92.
    Olsen JR, Oyan AM, Rostad K, Hellem MR, Liu J, Li L, Micklem DR, Haugen H, Lorens JB, Rotter V, Ke XS, Lin B, Kalland KH (2013) p63 attenuates epithelial to mesenchymal potential in an experimental prostate cell model. PLoS One 8(5):e62547CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Gressner O, Schilling T, Lorenz K, Schulze Schleithoff E, Koch A, Schulze-Bergkamen H, Lena AM, Candi E, Terrinoni A, Catani MV, Oren M, Melino G, Krammer PH, Stremmel W, Muller M (2005) TAp63alpha induces apoptosis by activating signaling via death receptors and mitochondria. EMBO J 24(13):2458–2471. doi: 10.1038/sj.emboj.7600708 CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Wu G, Nomoto S, Hoque MO, Dracheva T, Osada M, Lee CC, Dong SM, Guo Z, Benoit N, Cohen Y, Rechthand P, Califano J, Moon CS, Ratovitski E, Jen J, Sidransky D, Trink B (2003) DeltaNp63alpha and TAp63alpha regulate transcription of genes with distinct biological functions in cancer and development. Cancer Res 63(10):2351–2357PubMedGoogle Scholar
  95. 95.
    Li C, Xiao ZX (2014) Regulation of p63 protein stability via ubiquitin-proteasome pathway. Biomed Res Int 2014:175721. doi: 10.1155/2014/175721 PubMedPubMedCentralGoogle Scholar
  96. 96.
    Su X, Chakravarti D, Cho MS, Liu L, Gi YJ, Lin YL, Leung ML, El-Naggar A, Creighton CJ, Suraokar MB, Wistuba I, Flores ER (2010) TAp63 suppresses metastasis through coordinate regulation of Dicer and miRNAs. Nature 467(7318):986–990. doi: 10.1038/nature09459 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Kumar MS, Pester RE, Chen CY, Lane K, Chin C, Lu J, Kirsch DG, Golub TR, Jacks T (2009) Dicer1 functions as a haploinsufficient tumor suppressor. Genes Dev 23(23):2700–2704CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Martello G, Rosato A, Ferrari F, Manfrin A, Cordenonsi M, Dupont S, Enzo E, Guzzardo V, Rondina M, Spruce T, Parenti AR, Daidone MG, Bicciato S, Piccolo S (2010) A MicroRNA targeting dicer for metastasis control. Cell 141(7):1195–1207CrossRefPubMedGoogle Scholar
  99. 99.
    Malaguarnera R, Mandarino A, Mazzon E, Vella V, Gangemi P, Vancheri C, Vigneri P, Aloisi A, Vigneri R, Frasca F (2005) The p53-homologue p63 may promote thyroid cancer progression. Endocr Relat Cancer 12(4):953–971. doi: 10.1677/erc.1.00968 CrossRefPubMedGoogle Scholar
  100. 100.
    Pruneri G, Fabris S, Dell’Orto P, Biasi MO, Valentini S, Del Curto B, Laszlo D, Cattaneo L, Fasani R, Rossini L, Manzotti M, Bertolini F, Martinelli G, Neri A, Viale G (2005) The transactivating isoforms of p63 are overexpressed in high-grade follicular lymphomas independent of the occurrence of p63 gene amplification. J Pathol 206(3):337–345CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
  2. 2.Department of General SurgeryThe Second People’s Hospital of JingmenJingmenChina

Personalised recommendations