Skip to main content
Log in

Phoenixin-14: detection and novel physiological implications in cardiac modulation and cardioprotection

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Phoenixin-14 (PNX) is a newly identified peptide co-expressed in the hypothalamus with the anorexic and cardioactive Nesfatin-1. Like Nesfatin-1, PNX is able to cross the blood–brain barrier and this suggests a role in peripheral modulation. Preliminary mass spectrography data indicate that, in addition to the hypothalamus, PNX is present in the mammalian heart. This study aimed to quantify PNX expression in the rat heart, and to evaluate whether the peptide influences the myocardial function under basal condition and in the presence of ischemia/reperfusion (I/R). By ELISA the presence of PNX was detected in both hypothalamus and heart. In plasma of normal, but not of obese rats, the peptide concentrations increased after meal. Exposure of the isolated and Langendorff perfused rat heart to exogenous PNX induces a reduction of contractility and relaxation, without effects on coronary pressure and heart rate. As revealed by immunoblotting, these effects were accompanied by an increase of Erk1/2, Akt and eNOS phosphorylation. PNX (EC50 dose), administered after ischemia, induced post-conditioning-like cardioprotection. This was revealed by a smaller infarct size and a better systolic recovery with respect to those detected on hearts exposed to I/R alone. The peptide also activates the cardioprotective RISK and SAFE cascades and inhibits apoptosis. These effects were also observed in the heart of obese rats. Our data provide a first evidence on the peripheral activity of PNX and on its direct cardiomodulatory and cardioprotective role under both normal conditions and in the presence of metabolic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yosten GL, Lyu RM, Avsian-Kretchmer O, Hsueh AJ, Chang JK, Tullock CW, Dun SL, Dun N, Samson WK (2013) A novel reproductive peptide, phoenixin. J Neuroendocrinol 25(2):206–215. doi:10.1111/j1365-2826-2012-02381.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pałasz A, Rojczyk E, Bogus K, Worthington JJ, Wiaderkiewicz R (2015) The novel neuropeptide phoenixin is highly co-expressed with nesfatin-1 in the rat hypothalamus, an immunohistochemical study. Neurosci Lett 592:17–21. doi:10.1016/j.neulet.2015.02.060

    Article  PubMed  Google Scholar 

  3. Angelone T, Filice E, Pasqua T, Amodio N, Galluccio M, Montesanti G, Quintieri AM, Filice E (2013) Nesfatin-1 as a novel cardiac peptide: identification, functional characterization, and protection against ischemia/reperfusion injury. Cell Mol Life Sci 70:495–509. doi:10.1007/s00018-012-1138-7

    Article  CAS  PubMed  Google Scholar 

  4. Schalla M, Prinz P, Friedrich T, Scharner S, Kobelt P, Goebel-Stengel M, Rose M, Stengel A (2017) Phoenixin-14 injected intracerebroventricularly but not intraperitoneally stimulates food intake in rats. Peptides. doi:10.1016/j.peptides.2017.08.004

    PubMed  Google Scholar 

  5. Lyu RM, Huang XF, Zhang Y, Dun SL, Luo JJ, Chang JK, Dun NJ (2013) Phoenixin: a novel peptide in rodent sensory ganglia. Neuroscience 250:622–631. doi:10.1016/j.neuroscience.2013.07.057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jiang JH, He Z, Peng YL, Jin WD, Wang Z, Mu LY, Chang M, Wang R (2015) Phoenixin-14 enhances memory and mitigates memory impairment induced by Aβ1-42 and scopolamine in mice. Brain Res 1629:298–308. doi:10.1016/j.brainres.2015.10.030

    Article  CAS  PubMed  Google Scholar 

  7. Jiang JH, He Z, Peng YL, Jin WD, Mu J, Xue HX, Wang Z, Chang M, Wang R (2015) Effects of Phoenixin-14 on anxiolytic-like behavior in mice. Behav Brain Res 286:39–48. doi:10.1016/j.bbr.2015.02.011

    Article  CAS  PubMed  Google Scholar 

  8. Stein LM, Tullock CW, Mathews SK, Garcia-Galiano D, Elias CF, Samson WK, Yosten GL (2016) Hypothalamic action of phoenixin to control reproductive hormone secretion in females: importance of the orphan G protein-coupled receptor Gpr173. Am J Physiol Regul Integr Comp Physiol 311(3):R489–R496. doi:10.1152/ajpregu.00191

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hofmann T, Weibert E, Ahnis A, Elbelt U, Rose M, Klapp BF, Stengel A (2017) Phoenixin is negatively associated with anxiety in obese men. Peptides 88:32–36. doi:10.1016/j.peptides.2016.12.011

    Article  CAS  PubMed  Google Scholar 

  10. Pasqua T, Tota B, Penna C, Corti A, Cerra MC, Loh YP, Angelone T (2015) pGlu-serpinin protects the normotensive and hypertensive heart from ischemic injury. J Endocrinol 227(3):167–178. doi:10.1530/JOE-15-0199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Penna C, Pasqua T, Perrelli MG, Pagliaro P, Cerra MC, Angelone T (2012) Postconditioning with glucagon like peptide-2 reduces ischemia/reperfusion injury in isolated rat hearts: role of survival kinases and mitochondrial KATP channels. Basic Res Cardiol 107(4):272. doi:10.1007/s00395-012-0272-6

    Article  PubMed  Google Scholar 

  12. Pagliaro P, Mancardi D, Rastaldo R, Penna C, Gattullo D, Miranda KM, Feelisch M, Wink DA, Kass DA, Paolocci N (2003) Nitroxyl affords thiol-sensitive myocardial protective effects akin to early preconditioning. Free Radic Biol Med 34(1):33–43. doi:10.1016/S0891-5849(02)01179-6

    Article  CAS  PubMed  Google Scholar 

  13. Johnson RF, Johnson AK (1990) Light/dark cycle modulates food to water intake ratios in rats. Physiol Behav 48(5):707–711. doi:10.1016/0031-9384(90)90215-P

    Article  CAS  PubMed  Google Scholar 

  14. Abi-Gerges N, Fischmeister R, Méry PF (2001) G protein-mediated inhibitory effect of a nitric oxide donor on the L-type Ca2+ current in rat ventricular myocytes. J Physiol 531(Pt 1):117–130. doi:10.1111/j.1469-7793.2001.0117j.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hove-Madsen L, Méry PF, Jurevicius J, Skeberdis AV, Fischmeister R (1996) Regulation of myocardial calcium channels by cyclic AMP metabolism. Basic Res Cardiol 91(Suppl 2):1–8. doi:10.1007/BF00795355

    Article  CAS  PubMed  Google Scholar 

  16. Angelone T, Filice E, Quintieri AM, Imbrogno S, Recchia A, Pulerà E, Mannarino C, Pellegrino D, Cerra MC (2008) Beta3-adrenoceptors modulate left ventricular relaxation in the rat heart via the NO-cGMP-PKG pathway. Acta Physiol (Oxf) 193(3):229–239. doi:10.1111/j.1748-1716.2008.01838.x

    Article  CAS  Google Scholar 

  17. Leite-Moreira AF (2006) Current perspectives in diastolic dysfunction and diastolic heart failure. Heart 92(5):712–718. doi:10.1136/hrt.2005.062950

    Article  PubMed  PubMed Central  Google Scholar 

  18. Vinten-Johansen J, Zhao ZQ, Jiang R, Zatta AJ (2005) Myocardial protection in reperfusion with postconditioning. Expert Rev Cardiovasc Ther 3(6):1035–1045. doi:10.1586/14779072.3.6.1035

    Article  PubMed  Google Scholar 

  19. Penna C, Mancardi D, Raimondo S, Geuna S, Pagliaro P (2008) The paradigm of postconditioning to protect the heart. J Cell Mol Med 12:435–458. doi:10.1111/j.1582-4934.2007.00210.x

    Article  CAS  PubMed  Google Scholar 

  20. Angelone T, Filice E, Quintieri AM, Imbrogno S, Amodio N, Pasqua T, Pellegrino D, Mulè F, Cerra MC (2010) Receptor identification and physiological characterization of glucagon-like peptide-2 in the rat heart. Nutr Metab Cardiovasc Dis 22(6):486–494. doi:10.1016/j.numecd.2010.07.014

    Article  PubMed  Google Scholar 

  21. Heusch G (2009) No risk, no… cardioprotection? A critical perspective. Cardiovasc Res 84(2):173–175. doi:10.1093/cvr/cvp298

    Article  CAS  PubMed  Google Scholar 

  22. Lecour S (2009) Activation of the protective survivor activating factor enhancement (SAFE) pathway against reperfusion injury: does it go beyond the RISK pathway? J Mol Cell Cardiol 47:32e40. doi:10.1016/j.yjmcc.2009.03.019

    Article  Google Scholar 

  23. Quintieri AM, Baldino N, Filice E, Seta L, Vitetti A, Tota B, De Cindio B, Cerra MC, Angelone T (2013) Malvidin, a red wine polyphenol, modulates mammalian myocardial and coronary performance and protects the heart against ischemia/reperfusion injury. J Nutr Biochem 24:1221–1231. doi:10.1016/j.jnutbio.2012.09.006

    Article  CAS  PubMed  Google Scholar 

  24. Gomez L, Paillard M, Thibault H, Derumeaux G, Ovize M (2008) Inhibition of GSK3beta by postconditioning is required to prevent opening of the mitochondrial permeability transition pore during reperfusion. Circulation 117(21):2761–2768. doi:10.1161/CIRCULATIONAHA.107.755066

    Article  CAS  PubMed  Google Scholar 

  25. Tamareille S, Ghaboura N, Treguer F, Khachman D, Croué A, Henrion D, Furber A, Prunier F (2009) Myocardial reperfusion injury management: erythropoietin compared with postconditioning. Am J Physiol Heart Circ Physiol 297(6):H2035–H2043. doi:10.1152/ajpheart.00472.2009

    Article  CAS  PubMed  Google Scholar 

  26. Boengler K, Hilfiker-Kleiner D, Heusch G, Schulz R (2010) Inhibition of permeability transition pore opening by mitochondrial STAT3 and its role in myocardial ischemia/reperfusion. Basic Res Cardiol 105(6):771–785. doi:10.1007/s00395-010-0124-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hausenloy DJ, Yellon DM (2004) Adenosine-induced second window of protection is mediated by inhibition of mitochondrial permeability transition pore opening at the time of reperfusion. Cardiovasc Drugs Ther 18(1):79–80. doi:10.1023/B:CARD.0000025924.05028.da

    Article  CAS  PubMed  Google Scholar 

  28. Lu X, Costantini T, Lopez NE, Wolf PL, Hageny AM, Putnam J, Eliceiri B, Coimbra R (2013) Vagal nerve stimulation protects cardiac injury by attenuating mitochondrial dysfunction in a murine burn injury model. J Cell Mol Med 17(5):664–671. doi:10.1111/jcmm.12049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shi C, Wu F, Yew DT, Xu J, Zhu Y (2010) Bilobalide prevents apoptosis through activation of the PI3K/Akt pathway in SH-SY5Y cells. Apoptosis 6:715–727. doi:10.1007/s10495-010-0492-x

    Article  Google Scholar 

  30. Lee AS, Wang GJ, Chan HC, Chen FY, Chang CM, Yang CY, Lee YT, Chang KC, Chen CH (2012) Electronegative low-density lipoprotein induces cardiomyocyte apoptosis indirectly through endothelial cell-released chemokines. Apoptosis 17(9):1009–1018. doi:10.1007/s10495-012-0726-1

    Article  CAS  PubMed  Google Scholar 

  31. Dobrian AD, Davies MJ, Prewitt RL, Lauterio TJ (2000) Development of hypertension in a rat model of diet-induced obesity. Hypertension 35(4):1009–1015. doi:10.1210/en.2011-1176

    Article  CAS  PubMed  Google Scholar 

  32. Mastantuono T, Di Maro M, Chiurazzi M, Battiloro L, Starita N, Nasti G, Lapi D, Iuppariello L, Cesarelli M, D’Addio G, Colantuoni A (2016) Microvascular blood flow improvement in hyperglycemic obese adult patients by hypocaloric diet. Transl Med UniSa 1(15):1–7

    Google Scholar 

  33. Hausenloy DJ, Lecour S, Yellon DM (2011) Reperfusion injury salvage kinase and survivor activating factor enhancement prosurvival signaling pathways in ischemic postconditioning: two sides of the same coin. Antioxid Redox Signal 14(5):893–907. doi:10.1089/ars.2010.3360

    Article  CAS  PubMed  Google Scholar 

  34. Quintieri AM, Filice E, Amelio D, Pasqua T, Lupi FR, Scavello F, Cantafio P, Rocca C, Lauria A, Penna C, De Cindio B, Cerra MC, Angelone T (2016) The innovative “Bio-Oil Spread” prevents metabolic disorders and mediates preconditioning-like cardioprotection in rats. Nutr Metab Cardiovasc Dis 26(7):603–613. doi:10.1016/j.numecd.2016.02.009

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria Carmela Cerra or Tommaso Angelone.

Ethics declarations

Conflict of interest

The authors have nothing to disclose.

Funding

This research was supported by Doctorate in Life Sciences (RC, SF, GMC, IS, GA, RM, MCC, TA) and MIUR of Italy (ex 60%).

Electronic supplementary material

Below is the link to the electronic supplementary material.

18_2017_2661_MOESM1_ESM.tif

Supplementary Figure 1 Replicate effects of single concentration of PNX (0.5 nmol/L) on dLVP (n=3). Changes were evaluated as mean ± SE. Significant difference from control values (one-way ANOVA, Newman-Keuls test): *=p <0.05 (TIFF 945 kb)

18_2017_2661_MOESM2_ESM.tif

Supplementary Figure 2 a dLVP and b LVEDP at the end of reperfusion, and c IS in I/R–HFD, and PNX Post-HFD (n=3 for each group). Changes were evaluated as mean ± SE. There are no significant differences between groups (TIFF 1210 kb)

18_2017_2661_MOESM3_ESM.tif

Supplementary Figure 3 a dLVP and b LVEDP at the end of reperfusion, and c IS in I/R-SD group (for comparative purposes) and in inhibitor-treated groups (WT, L-NIO, PD and 5HD). There are no significant differences compared to I/R-SD group (TIFF 2246 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocca, C., Scavello, F., Granieri, M.C. et al. Phoenixin-14: detection and novel physiological implications in cardiac modulation and cardioprotection. Cell. Mol. Life Sci. 75, 743–756 (2018). https://doi.org/10.1007/s00018-017-2661-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2661-3

Keywords

Navigation