Cellular and Molecular Life Sciences

, Volume 75, Issue 5, pp 849–857 | Cite as

TUSC3: functional duality of a cancer gene

  • Kateřina Vašíčková
  • Peter Horak
  • Petr VaňharaEmail author


Two decades ago, following a systematic screening of LOH regions on chromosome 8p22, TUSC3 has been identified as a candidate tumor suppressor gene in ovarian, prostate and pancreatic cancers. Since then, a growing body of evidence documented its clinical importance in various other types of cancers, and first initial insights into its molecular function and phenotypic effects have been gained, though the precise role of TUSC3 in different cancers remains unclear. As a part of the oligosaccharyltransferase complex, TUSC3 localizes to the endoplasmic reticulum and functions in final steps of N-glycosylation of proteins, while its loss evokes the unfolded protein response. We are still trying to figure out how this mechanistic function is reconcilable with its varied effects on cancer promotion. In this review, we focus on cancer-related effects of TUSC3 and envisage a possible role of TUSC3 beyond endoplasmic reticulum.


TUSC3 Cancer Tumor suppressor Oncogene Endoplasmic reticulum N-Glycosylation Immunoediting 


Author contributions

KV drafted the manuscript, PH and PV conceptualized, wrote and revised the manuscript.

Compliance with ethical standards


Grant Agency of Masaryk University (MUNI/A/1369/2016), European Regional Development Fund (Center for Analysis and Modeling of Tissues and Organs, CZ.1.07/2.3.00/20.0185), the National Program of Sustainability II (Project no. LQ1605, MEYS CR).

Conflict of interest

Authors declare no conflict of interest.


  1. 1.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674CrossRefPubMedGoogle Scholar
  2. 2.
    He Q, He Q, Liu X et al (2014) Genome-wide prediction of cancer driver genes based on SNP and cancer SNV data. Am J Cancer Res. 4(4):394–410PubMedPubMedCentralGoogle Scholar
  3. 3.
    MacGrogan D, Levy A, Bova GS, Isaacs WB, Bookstein R (1996) Structure and methylation-associated silencing of a gene within a homozygously deleted region of human chromosome band 8p22. Genomics 35:55–65CrossRefPubMedGoogle Scholar
  4. 4.
    Khalid AM, Asano A, Hosaka YZ, Takeuchi T, Yamano Y (2013) Tumor suppressor candidate TUSC3 expression during rat testis maturation. Biosci Biotechnol Biochem 77:2019–2024CrossRefPubMedGoogle Scholar
  5. 5.
    Aken BL, Ayling S, Barrell D et al (2016) The Ensembl gene annotation system. Database (Oxford) 2016:baw093. doi: 10.1093/database/baw093 CrossRefGoogle Scholar
  6. 6.
    Kelleher DJ, Gilmore R (2006) An evolving view of the eukaryotic oligosaccharyltransferase. Glycobiology 16:47–62CrossRefGoogle Scholar
  7. 7.
    Mohorko E, Owen RL, Malojčić G, Brozzo MS, Aebi M, Glockshuber R (2014) Structural basis of substrate specificity of human oligosaccharyl transferase subunit N33/Tusc3 and its role in regulating protein N-glycosylation. Structure 22:590–601CrossRefPubMedGoogle Scholar
  8. 8.
    Shrimal S, Cherepanova NA, Gilmore R (2015) Cotranslational and posttranslocational N-glycosylation of proteins in the endoplasmic reticulum. Semin Cell Dev Biol 41:71–78CrossRefPubMedGoogle Scholar
  9. 9.
    Horak P, Tomasich E, Vaňhara P et al (2014) TUSC3 loss alters the ER stress response and accelerates prostate cancer growth in vivo. Sci Rep 4:3739CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Vaňhara P, Horak P, Pils D et al (2013) Loss of the oligosaccharyl transferase subunit TUSC3 promotes proliferation and migration of ovarian cancer cells. Int J Oncol 42:1383–1389CrossRefPubMedGoogle Scholar
  11. 11.
    Cherepanova N, Shrimal S, Gilmore R (2016) N-Linked glycosylation and homeostasis of the endoplasmic reticulum. Curr Opin Cell Biol 41:57–65CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Cherepanova NA, Shrimal S, Gilmore R (2014) Oxidoreductase activity is necessary for N-glycosylation of cysteine-proximal acceptor sites in glycoproteins. J Cell Biol 206:525–539CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Schwarz M, Knauer R, Lehle L (2005) Yeast oligosaccharyltransferase consists of two functionally distinct sub-complexes, specified by either the Ost3p or Ost6p subunit. FEBS Lett 579:6564–6568CrossRefPubMedGoogle Scholar
  14. 14.
    Cherepanova NA, Gilmore R (2016) Mammalian cells lacking either the cotranslational or posttranslocational oligosaccharyltransferase complex display substrate-dependent defects in asparagine linked glycosylation. Sci Rep 6:20946CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Molinari F, Foulquier F, Tarpey PS, et al (2015) Oligosaccharyltransferase-subunit mutations in nonsyndromic mental retardation. Am J Hum Gen. 82:1150–1157CrossRefGoogle Scholar
  16. 16.
    Contessa JN, Bhojani MS, Freeze HH, Ross BD, Rehemtulla A, Lawrence TS (2010) Molecular imaging of N-linked glycosylation suggests glycan biosynthesis is a novel target for cancer therapy. Clin Cancer Res 16(12):3205–3214CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Goytain A, Quamme GA (2005) Identification and characterization of a novel mammalian Mg2+ transporter with channel-like properties. BMC Genomics 1:48CrossRefGoogle Scholar
  18. 18.
    Zhou H, Clapham DE (2009) Mammalian MagT1 and TUSC3 are required for cellular magnesium uptake and vertebrate embryonic development. Proc Natl Acad Sci USA 106:15750–15755CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Pak BJ, Park H, Chang ER, Pang SC, Graham CH (1998) Differential expression display in first analysis trimester of oxygen-mediated human trophoblast changes cells in gene. Placenta 19:483–488CrossRefPubMedGoogle Scholar
  20. 20.
    Soleymanlou N, Jurisica I, Nevo O et al (2005) Molecular evidence of placental hypoxia in preeclampsia. J Clin Endocrinol Metab 90(7):4299–4308CrossRefPubMedGoogle Scholar
  21. 21.
    Yuen RKC, Avila L, Peñaherrera MS et al (2009) Human placental-specific epipolymorphism and its association with adverse pregnancy outcomes. PLoS ONE 4:1–11CrossRefGoogle Scholar
  22. 22.
    Garshasbi M, Hadavi V, Habibi H et al (2008) Report a defect in the TUSC3 gene is associated with autosomal recessive mental retardation. Am J Hum Genet 2008:1158–1164CrossRefGoogle Scholar
  23. 23.
    Garshasbi M, Kahrizi K, Hosseini M et al (2011) Clinical report a novel nonsense mutation in TUSC3 is responsible for non-syndromic autosomal recessive mental retardation in a consanguineous Iranian family. Am J Med Genet 2011:1976–1980CrossRefGoogle Scholar
  24. 24.
    Maulik PK, Mascarenhas MN, Mathers CD, Dua T, Saxena S (2011) Prevalence of intellectual disability: a meta-analysis of population-based studies: Research in developmental disabilities. Res Dev Dis 32(2):419–436CrossRefGoogle Scholar
  25. 25.
    Hill WD, Davies G, Liewald DC et al (2016) Examining non-syndromic autosomal recessive intellectual disability (NS-ARID) genes for an enriched association with intelligence differences. Intelligence 54:80–89CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Khan MA, Rafiq MA, Noor A et al (2011) A novel deletion mutation in the TUSC3 gene in a consanguineous Pakistani family with autosomal recessive nonsyndromic intellectual disability. BMC Med Genet 12:56CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Al-Amri A, Saegh AA, Al-Mamari W et al (2016) Homozygous single base deletion in TUSC3 causes intellectual disability with developmental delay in an Omani family. Am J Med Genet 170:1826–1831CrossRefPubMedGoogle Scholar
  28. 28.
    Loddo S, Parisi V, Doccini V et al (2013) Homozygous deletion in TUSC3 causing syndromic intellectual disability: a new patient. Am J Med Genet 161:2084–2087CrossRefGoogle Scholar
  29. 29.
    Mosrati MA, Schrauwen I, Kamoun H et al (2012) Genome wide analysis in a family with sensorineural hearing loss, autism and mental retardation. Gene 510(2):102–106CrossRefPubMedGoogle Scholar
  30. 30.
    Piovani G, Savio G, Traversa M et al (2014) De novo 1 Mb interstitial deletion of 8p22 in a patient with slight mental retardation and speech delay. Mol Cytogenet 7:25CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Zhang Y, Su HJ, Pan KF et al (2014) Methylation status of blood leukocyte DNA and risk of gastric cancer in a high-risk Chinese population. Cancer Epidemiol Biomark Prev 23:2019–2026CrossRefGoogle Scholar
  32. 32.
    Ahuja N, Li Q, Mohan AL, Baylin SB (1998) Issa J-PJ. Aging and DNA methylation in colorectal mucose and cancer. Cancer Res 58:5489–5494PubMedGoogle Scholar
  33. 33.
    Hanks J, Ayed I, Kukreja N et al (2013) The association between mthfr 677C>T genotype and folate status and genomic and gene-specific dna methylation in the colon of individuals without colorectal neoplasia. Am J Clin Nutr 98:1564–1574CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Xu XL, Yu J, Zhang HY et al (2004) Methylation profile of the promoter CpG islands of 31 genes that may contribute to colorectal carcinogenesis. World J Gastroenterol 10:3441–3454CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Li Q, Jedlicka A, Ahuja N et al (1998) Concordant methylation of the ER and N33 genes in glioblastoma multiforme. Oncogene 16:3197–3202CrossRefPubMedGoogle Scholar
  36. 36.
    Zemlyakova VV, Zhevlova AI, Zborovskaya IB et al (2003) Methylation profile of several tumor suppressor genes in non-small-cell lung cancer. Mol Biol 37:836–840CrossRefGoogle Scholar
  37. 37.
    Duppel U, Woenckhaus M, Schulz C, Merk J, Dietmaier W (2016) Quantitative detection of TUSC3 promoter methylation—a potential biomarker for prognosis in lung cancer. Oncol Lett 2016:3004–3012CrossRefGoogle Scholar
  38. 38.
    Pils D, Horak P, Vanhara P et al (2013) Methylation status of TUSC3 is a prognostic factor in ovarian cancer. Cancer 119(5):946–954CrossRefPubMedGoogle Scholar
  39. 39.
    Belshaw NJ, Elliott GO, Foxall RJ et al (2008) Profiling CpG island field methylation in both morphologically normal and neoplastic human colonic mucosa. Br J Cancer 99:136–142CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Arasaradnam RP, Khoo K, Bradburn M, Mathers J, Kelly S (2010) DNA methylation of ESR-1 and N-33 in colorectal mucosa of patients with ulcerative colitis (UC). Epigenetics 5:422–426CrossRefPubMedGoogle Scholar
  41. 41.
    Yuasa Y, Nagasaki H, Oze I et al (2012) Insulin-like growth factor 2 hypomethylation of blood leukocyte DNA is associated with gastric cancer risk. Int J Cancer 131:2596–2603CrossRefPubMedGoogle Scholar
  42. 42.
    Zhang Y, He RQ, Dang YW et al (2016) Comprehensive analysis of the long noncoding RNA HOXA11-AS gene interaction regulatory network in NSCLC cells. Cancer Cell Int 16:89CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Scholz C, Nimmrich I, Burger M et al (2005) Distinction of acute lymphoblastic leukemia from acute myeloid leukemia through microarray-based DNA methylation analysis. Ann Hematol 84:236–244CrossRefPubMedGoogle Scholar
  44. 44.
    Conway K, Edmiston SN, Tse C-K et al (2015) Racial variation in breast tumor promoter methylation in the Carolina Breast Cancer Study. Cancer Epidemiol Biomark Prev 24:921–930CrossRefGoogle Scholar
  45. 45.
    Bova GS, Carter BS, Bussemakers MJG et al (1993) Homozygous deletion and frequent allelic loss of chromosome 8p22 loci in human prostate cancer. Cancer Res 1993:3869–3873Google Scholar
  46. 46.
    Emi M, Fujiwara Y, Nakajima T, Cancer C, Cancer L (1992) Frequent loss of heterozygosity for loci on chromosome 8p in hepatocellular carcinoma, colorectal cancer, and lung cancer. Cancer Res 2:5368–5372Google Scholar
  47. 47.
    Tirkkonen M, Tanner M, Karhu R, Kallioniemi A, Isola J, Kallioniemi OP (1998) Molecular cytogenetics of primary breast cancer by CGH. Genes Chromosome Cancer 21(3):177–184CrossRefGoogle Scholar
  48. 48.
    Bashyam MD, Bair R, Kim YH et al (2005) Array-based comparative genomic hybridization identifies localized DNA amplifications and homozygous deletions in pancreatic cancer. Neoplasia 7:556–562CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Takle LA, Knowles MA (1996) Deletion mapping implicates two tumor suppressor genes on chromosome 8p in the development of bladder cancer. Oncogene 12(5):1083–1087PubMedGoogle Scholar
  50. 50.
    Fujiwara Y, Emi M, Ohata H et al (1993) Evidence for the presence of two tumor suppressor genes on chromosome 8p for colorectal carcinoma. Cancer Res 53(5):1172–1174PubMedGoogle Scholar
  51. 51.
    Ahmed MN, Kim K, Haddad B, Berchuck A, Qumsiyeh MB (2000) Comparative genomic hybridization studies in hydatidiform moles and choriocarcinoma: amplification of 7q21–q31 and loss of 8p12–p21 in choriocarcinoma. Cancer Genet Cytogenet 116:10–15CrossRefPubMedGoogle Scholar
  52. 52.
    Cunningham JM, Shan A, Wick MJ et al (1996) Allelic imbalance and microsatellite instability in prostatic adenocarcinoma. Cancer Res 56(19):4475–4482PubMedGoogle Scholar
  53. 53.
    Arbieva ZH, Banerjee K, Kim SY et al (2000) High-resolution physical map and transcript identification of a prostate cancer deletion interval on 8p22. Genome Res 10:244–257CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Pils D, Horak P, Gleiss A et al (2005) Five genes from chromosomal band 8p22 are significantly down-regulated in ovarian carcinoma: N33 and EFA6R have a potential impact on overall survival. Cancer 104(11):2417–2429CrossRefPubMedGoogle Scholar
  55. 55.
    Cooke SL, Pole JCM, Chin S-F, Ellis IO, Caldas C, Edwards PAW (2008) High-resolution array CGH clarifies events occurring on 8p in carcinogenesis. BMC Cancer 8:288CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Angstadt AY, Motsinger-Reif A, Thomas R et al (2011) Characterization of canine osteosarcoma by array comparative genomic hybridization and RT-qPCR: signatures of genomic imbalance in canine osteosarcoma parallel the human counterpart. Genes Chromosome Cancer 50:859–874CrossRefGoogle Scholar
  57. 57.
    Griffith OL, Melck A, Jones SJ, Wiseman SM (2006) Meta-analysis and meta-review of thyroid cancer gene expression profiling studies identifies important diagnostic biomarkers. J Clin Oncol 24(31):5043–5051CrossRefPubMedGoogle Scholar
  58. 58.
    Chung K-W, Kim SW, Kim SW (2012) Gene expression profiling of papillary thyroid carcinomas in Korean patients by oligonucleotide microarrays. J Korean Surg Soc 82:271–280CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Gutierrez VF, Marcos CA, Llorente JL et al (2012) Genetic profile of second primary tumors and recurrences in head and neck squamous cell carcinomas. Head Neck 34(6):830–839CrossRefPubMedGoogle Scholar
  60. 60.
    Gu Y, Wang Q, Guo K et al (2016) TUSC3 promotes colorectal cancer progression and epithelial-mesenchymal transition (EMT) through WNT/beta-catenin and MAPK signalling. J Pathol 239:60–71CrossRefPubMedGoogle Scholar
  61. 61.
    Kratochvílová K, Horak P, Ešner M et al (2015) Tumor suppressor candidate 3 (TUSC3) prevents the epithelial-to-mesenchymal transition and inhibits tumor growth by modulating the endoplasmic reticulum stress response in ovarian cancer cells. Int J Cancer 137(6):1330–1340CrossRefPubMedGoogle Scholar
  62. 62.
    Fan X, Zhang X, Shen J et al (2016) Decreased TUSC3 promotes pancreatic cancer proliferation, invasion and metastasis. PLoS ONE 11(2):e0149028CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Jiang Z, Guo M, Zhang X et al (2016) TUSC3 suppresses glioblastoma development by inhibiting Akt signaling. Tumor Biol 37:12039–12047CrossRefGoogle Scholar
  64. 64.
    Gu Y, Pei X, Ren Y et al (2017) Oncogenic function of TUSC3 in non-small cell lung cancer is associated with Hedgehog signalling pathway. Biochim Biophys Acta 1863(7):1749–1760CrossRefPubMedGoogle Scholar
  65. 65.
    Mullighan CG, Zhang J, Kasper LH et al (2011) CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature 471(7337):235–239CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Khan MM, Nomura T, Chiba T et al (2004) The fusion oncoprotein PML-RARalpha induces endoplasmic reticulum (ER)-associated degradation of N-CoR and ER stress. J Biol Chem 279(12):11814–11824CrossRefPubMedGoogle Scholar
  67. 67.
    Schardt JA, Eyholzer M, Timchenko NA, Mueller BU, Pabst T (2010) Unfolded protein response suppresses CEBPA by induction of calreticulin in acute myeloid leukaemia. J Cell Mol Med 14(6B):1509–1519CrossRefPubMedGoogle Scholar
  68. 68.
    Kharabi Masouleh B, Geng H, Hurtz C et al (2014) Mechanistic rationale for targeting the unfolded protein response in pre-B acute lymphoblastic leukemia. Proc Nat Acad Sci USA 111(21):E2219–E2228CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Khoury GA, Baliban RC, Floudas CA (2011) Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci Rep 1:90CrossRefPubMedCentralGoogle Scholar
  70. 70.
    Li CW, Lim SO, Xia W et al (2016) Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun 7:12632CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Lauc G, Huffman JE, Pucic M et al (2013) Loci associated with N-glycosylation of human immunoglobulin G show pleiotropy with autoimmune diseases and haematological cancers. PLoS Genet 9(1):e1003225CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Liu K, Xie F, Gao A et al (2017) SOX2 regulates multiple malignant processes of breast cancer development through the SOX2/miR-181a-5p, miR-30e-5p/TUSC3 axis. Mol Cancer 16(1):62CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Pole JCM, Courtay-Cahen C, Garcia MJ et al (2006) High-resolution analysis of chromosome rearrangements on 8p in breast, colon and pancreatic cancer reveals a complex pattern of loss, gain and translocation. Oncogene 25:5693–5706CrossRefPubMedGoogle Scholar
  74. 74.
    Ribeiro IP, Marques F, Caramelo F et al (2014) Genetic gains and losses in oral squamous cell carcinoma: impact on clinical management. Cell Oncol 37:29–39CrossRefGoogle Scholar
  75. 75.
    Yu X, Zhang K, Liu F et al (2016) Tumor suppressor candidate 3 as a novel predictor for lymph node metastasis in lung cancer patients. Oncol Lett 2016:5099–5105CrossRefGoogle Scholar
  76. 76.
    Guervos MA, Marcos CA, Hermsen M, Nuno AS, Suarez C, Llorente JL (2007) Deletions of N33, STK11 and TP53 are involved in the development of lymph node metastasis in larynx and pharynx carcinomas. Cell Oncol 29(4):327–334PubMedPubMedCentralGoogle Scholar
  77. 77.
    Yu X, Zhang J, Zhong H et al (2016) Decreased tumor suppressor candidate 3 predicts poor prognosis of patients with esophageal squamous cell carcinoma. Int J Med Sci 13:963–969CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Peng Y, Cao J, Yao XY, Wang JX, Zhong MZ, Gan PP, Li JH (2017) TUSC3 induces autophagy in human non-small cell lung cancer cells through Wnt/β-catenin signaling. Oncotarget 8:52960–52974PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Histology and Embryology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
  2. 2.International Clinical Research CenterSt. Anne’s University Hospital BrnoBrnoCzech Republic
  3. 3.Department of Translational OncologyNational Center for Tumor Diseases (NCT)HeidelbergGermany
  4. 4.German Cancer Research Center (DKFZ)HeidelbergGermany

Personalised recommendations