Cellular and Molecular Life Sciences

, Volume 75, Issue 5, pp 833–848 | Cite as

Crystal structures of eukaryote glycosyltransferases reveal biologically relevant enzyme homooligomers

  • Deborah Harrus
  • Sakari Kellokumpu
  • Tuomo Glumoff


Glycosyltransferases (GTases) transfer sugar moieties to proteins, lipids or existing glycan or polysaccharide molecules. GTases form an important group of enzymes in the Golgi, where the synthesis and modification of glycoproteins and glycolipids take place. Golgi GTases are almost invariably type II integral membrane proteins, with the C-terminal globular catalytic domain residing in the Golgi lumen. The enzymes themselves are divided into 103 families based on their sequence homology. There is an abundance of published crystal structures of GTase catalytic domains deposited in the Protein Data Bank (PDB). All of these represent either of the two main characteristic structural folds, GT-A or GT-B, or present a variation thereof. Since GTases can function as homomeric or heteromeric complexes in vivo, we have summarized the structural features of the dimerization interfaces in crystal structures of GTases, as well as considered the biochemical data available for these enzymes. For this review, we have considered all 898 GTase crystal structures in the Protein Data Bank and highlight the dimer formation characteristics of various GTases based on 24 selected structures.


Protein Structure Dimerization Biologically relevant dimer Crystallographic dimer Protein–protein interfaces GTase fold 



The financial support from the Academy of Finland (no. 285232, date 11.05.2015), University of Oulu, and Emil Aaltonen Foundation is gratefully acknowledged. We also want to acknowledge Thibaud Colas for his help with automatized scripts used for the study of the interfaces.

Supplementary material

18_2017_2659_MOESM1_ESM.pptx (145 kb)
Supplement Fig. 1. Log-ratio of the frequency of amino acids observed at the interface and within the full-length sequence of the crystallized domains of the 24 GTase homodimers of this study. Stars indicate the statistical significance according to critical values of χ2 (PPTX 145 kb)
18_2017_2659_MOESM2_ESM.pptx (2.4 mb)
Supplement Fig. 2. Multiple sequence alignments of the dimerization interface for each of the 24 GTases. As the residue numbers are not sequential, they are detailed below each alignment (PPTX 2466 kb)


  1. 1.
    Hennet T, Cabalzar J (2015) Congenital disorders of glycosylation: a concise chart of glycocalyx dysfunction. Trends Biochem Sci 40:377–384CrossRefPubMedGoogle Scholar
  2. 2.
    Chang SC, Yang WV (2016) Hyperglycemia, tumorigenesis, and chronic inflammation. Crit Rev Oncol Hematol 108:146–153CrossRefPubMedGoogle Scholar
  3. 3.
    Vajaria BN, Patel PS (2017) Glycosylation: a hallmark of cancer? Glycoconj J 34:147–156CrossRefPubMedGoogle Scholar
  4. 4.
    Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495CrossRefPubMedGoogle Scholar
  5. 5.
    Hassinen A, Rivinoja A, Kauppila A, Kellokumpu S (2010) Golgi N-glycosyltransferases form both homo- and heterodimeric enzyme complexes in live cells. J Biol Chem 285:17771–17777CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hassinen A et al (2011) Functional organization of Golgi N- and O-glycosylation pathways involves pH-dependent complex formation that is impaired in cancer cells. J Biol Chem 286:38329–38340CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kellokumpu S, Hassinen A, Glumoff T (2016) Glycosyltransferase complexes in eukaryotes: long-known, prevalent but still unrecognized. Cell Mol Life Sci 73:305–325CrossRefPubMedGoogle Scholar
  8. 8.
    Engel BD et al (2015) In situ structural analysis of Golgi intracisternal protein arrays. Proc Natl Acad Sci USA 112:11264–11269CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ahnert SE, Marsh JA, Hernandez H, Robinson CV, Teichmann SA (2015) Principles of assembly reveal a periodic table of protein complexes. Science 350:aaa2245CrossRefPubMedGoogle Scholar
  10. 10.
    Keskin O, Tuncbag N, Gursoy A (2016) Predicting protein–protein interactions from the molecular to the proteome level. Chem Rev 116:4884–4909CrossRefPubMedGoogle Scholar
  11. 11.
    Bahadur RP, Zacharias M (2008) The interface of protein–protein complexes: analysis of contacts and prediction of interactions. Cell Mol Life Sci 65:1059–1072CrossRefPubMedGoogle Scholar
  12. 12.
    Berman HM et al (2002) The protein data bank. Acta Crystallogr D Biol Crystallogr 58:899–907CrossRefPubMedGoogle Scholar
  13. 13.
    Hashimoto K, Madej T, Bryant SH, Panchenko AR (2010) Functional states of homooligomers: insights from the evolution of glycosyltransferases. J Mol Biol 399:196–206CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Henrissat B, Sulzenbacher G, Bourne Y (2008) Glycosyltransferases, glycoside hydrolases: surprise, surprise! Curr Opin Struct Biol 18:527–533CrossRefPubMedGoogle Scholar
  15. 15.
    Breton C, Fournel-Gigleux S, Palcic MM (2012) Recent structures, evolution and mechanisms of glycosyltransferases. Curr Opin Struct Biol 22:540–549CrossRefPubMedGoogle Scholar
  16. 16.
    Lairson LL, Henrissat B, Davies GJ, Withers SG (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77:521–555CrossRefPubMedGoogle Scholar
  17. 17.
    Breton C, Bettler E, Joziasse DH, Geremia RA, Imberty A (1998) Sequence–function relationships of prokaryotic and eukaryotic galactosyltransferases. J Biochem 123:1000–1009CrossRefPubMedGoogle Scholar
  18. 18.
    Breton C, Imberty A (1999) Structure/function studies of glycosyltransferases. Curr Opin Struct Biol 9:563–571CrossRefPubMedGoogle Scholar
  19. 19.
    Breton C, Snajdrova L, Jeanneau C, Koca J, Imberty A (2006) Structures and mechanisms of glycosyltransferases. Glycobiology 16:29R–37RCrossRefPubMedGoogle Scholar
  20. 20.
    Lesk AM (1995) Systematic representation of protein folding patterns. J Mol Graph 13:159–164CrossRefPubMedGoogle Scholar
  21. 21.
    Krissinel E (2015) Stock-based detection of protein oligomeric states in jsPISA. Nucleic Acids Res 43:W314–W319CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Bernauer J, Bahadur RP, Rodier F, Janin J, Poupon A (2008) DiMoVo: a Voronoi tessellation-based method for discriminating crystallographic and biological protein-protein interactions. Bioinformatics 24:652–658CrossRefPubMedGoogle Scholar
  23. 23.
    Duarte JM, Srebniak A, Scharer MA, Capitani G (2012) Protein interface classification by evolutionary analysis. BMC Bioinf 13:334-2105-13-334CrossRefGoogle Scholar
  24. 24.
    Faure G, Andreani J, Guerois R (2012) InterEvol database: exploring the structure and evolution of protein complex interfaces. Nucleic Acids Res 40:D847–D856CrossRefPubMedGoogle Scholar
  25. 25.
    Tone Y et al (2008) 2-O-Phosphorylation of xylose and 6-O-sulfation of galactose in the protein linkage region of glycosaminoglycans influence the glucuronyltransferase-I activity involved in the linkage region synthesis. J Biol Chem 283:16801–16807CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kakuda S et al (2004) Structural basis for acceptor substrate recognition of a human glucuronyltransferase, GlcAT-P, an enzyme critical in the biosynthesis of the carbohydrate epitope HNK-1. J Biol Chem 279:22693–22703CrossRefPubMedGoogle Scholar
  27. 27.
    Shiba T et al (2006) Crystal structure of GlcAT-S, a human glucuronyltransferase, involved in the biosynthesis of the HNK-1 carbohydrate epitope. Proteins 65:499–508CrossRefPubMedGoogle Scholar
  28. 28.
    Pedersen LC et al (2000) Heparan/chondroitin sulfate biosynthesis. Structure and mechanism of human glucuronyltransferase I. J Biol Chem 275:34580–34585CrossRefPubMedGoogle Scholar
  29. 29.
    Terayama K et al (1998) Purification and characterization of a glucuronyltransferase involved in the biosynthesis of the HNK-1 epitope on glycoproteins from rat brain. J Biol Chem 273:30295–30300CrossRefPubMedGoogle Scholar
  30. 30.
    Jessell TM, Hynes MA, Dodd J (1990) Carbohydrates and carbohydrate-binding proteins in the nervous system. Annu Rev Neurosci 13:227–255CrossRefPubMedGoogle Scholar
  31. 31.
    Pitcher J, Smythe C, Campbell DG, Cohen P (1987) Identification of the 38-kDa subunit of rabbit skeletal muscle glycogen synthase as glycogenin. Eur J Biochem 169:497–502CrossRefPubMedGoogle Scholar
  32. 32.
    Gibbons BJ, Roach PJ, Hurley TD (2002) Crystal structure of the autocatalytic initiator of glycogen biosynthesis, glycogenin. J Mol Biol 319:463–477CrossRefPubMedGoogle Scholar
  33. 33.
    Chaikuad A et al (2011) Conformational plasticity of glycogenin and its maltosaccharide substrate during glycogen biogenesis. Proc Natl Acad Sci USA 108:21028–21033CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Nilsson J et al (2014) LC-MS/MS characterization of combined glycogenin-1 and glycogenin-2 enzymatic activities reveals their self-glucosylation preferences. Biochim Biophys Acta 1844:398–405CrossRefPubMedGoogle Scholar
  35. 35.
    Mu J, Roach PJ (1998) Characterization of human glycogenin-2, a self-glucosylating initiator of liver glycogen metabolism. J Biol Chem 273:34850–34856CrossRefPubMedGoogle Scholar
  36. 36.
    Janin J, Chothia C (1990) The structure of protein–protein recognition sites. J Biol Chem 265:16027–16030PubMedGoogle Scholar
  37. 37.
    Issoglio FM, Carrizo ME, Romero JM, Curtino JA (2012) Mechanisms of monomeric and dimeric glycogenin autoglucosylation. J Biol Chem 287:1955–1961CrossRefPubMedGoogle Scholar
  38. 38.
    Sethi MK et al (2012) Molecular cloning of a xylosyltransferase that transfers the second xylose to O-glucosylated epidermal growth factor repeats of notch. J Biol Chem 287:2739–2748CrossRefPubMedGoogle Scholar
  39. 39.
    Yu H et al (2015) Notch-modifying xylosyltransferase structures support an SNi-like retaining mechanism. Nat Chem Biol 11:847–854CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Pak JE et al (2006) X-ray crystal structure of leukocyte type core 2 beta1,6-N-acetylglucosaminyltransferase. Evidence for a convergence of metal ion-independent glycosyltransferase mechanism. J Biol Chem 281:26693–26701CrossRefPubMedGoogle Scholar
  41. 41.
    Pedersen LC et al (2003) Crystal structure of an alpha 1,4-N-acetylhexosaminyltransferase (EXTL2), a member of the exostosin gene family involved in heparan sulfate biosynthesis. J Biol Chem 278:14420–14428CrossRefPubMedGoogle Scholar
  42. 42.
    Ghirardello M et al (2016) Glycomimetics targeting glycosyltransferases: synthetic, computational and structural studies of less-polar conjugates. Chemistry 22:7215–7224CrossRefPubMedGoogle Scholar
  43. 43.
    El-Battari A et al (2003) Different glycosyltransferases are differentially processed for secretion, dimerization, and autoglycosylation. Glycobiology 13:941–953CrossRefPubMedGoogle Scholar
  44. 44.
    Lira-Navarrete E et al (2015) Dynamic interplay between catalytic and lectin domains of GalNAc-transferases modulates protein O-glycosylation. Nat Commun 6:6937CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Fritz TA, Raman J, Tabak LA (2006) Dynamic association between the catalytic and lectin domains of human UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferase-2. J Biol Chem 281:8613–8619CrossRefPubMedGoogle Scholar
  46. 46.
    Jorgensen R et al (2014) Structures of a human blood group glycosyltransferase in complex with a photo-activatable UDP-Gal derivative reveal two different binding conformations. Acta Crystallogr Funct Struct Biol Commun 70:1015–1021CrossRefGoogle Scholar
  47. 47.
    Jorgensen R, Grimm LL, Sindhuwinata N, Peters T, Palcic MM (2012) A glycosyltransferase inhibitor from a molecular fragment library simultaneously interferes with metal ion and substrate binding. Angew Chem Int Ed Engl 51:4171–4175CrossRefPubMedGoogle Scholar
  48. 48.
    Schuman B et al (2010) Cysteine-to-serine mutants dramatically reorder the active site of human ABO(H) blood group B glycosyltransferase without affecting activity: structural insights into cooperative substrate binding. J Mol Biol 402:399–411CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Lee HJ et al (2005) Structural basis for the inactivity of human blood group O2 glycosyltransferase. J Biol Chem 280:525–529CrossRefPubMedGoogle Scholar
  50. 50.
    Foley DA, Swartzentruber KG, Colley KJ (2009) Identification of sequences in the polysialyltransferases ST8Sia II and ST8Sia IV that are required for the protein-specific polysialylation of the neural cell adhesion molecule. NCAM J Biol Chem 284:15505–15516CrossRefPubMedGoogle Scholar
  51. 51.
    Volkers G et al (2015) Structure of human ST8SiaIII sialyltransferase provides insight into cell-surface polysialylation. Nat Struct Mol Biol 22:627–635CrossRefPubMedGoogle Scholar
  52. 52.
    Audry M et al (2011) Current trends in the structure-activity relationships of sialyltransferases. Glycobiology 21:716–726CrossRefPubMedGoogle Scholar
  53. 53.
    Rao F et al (2009) Structural insight into mammalian sialyltransferases. Nat Struct Biol 16:1186–1188CrossRefGoogle Scholar
  54. 54.
    Kuhn B et al (2013) The structure of human alpha-2,6-sialyltransferase reveals the binding mode of complex glycans. Acta Cryst D 69:1826–1838CrossRefGoogle Scholar
  55. 55.
    Saliba M et al (2015) Probing the acceptor active site organization of the human recombinant beta1,4-galactosyltransferase 7 and design of xyloside-based inhibitors. J Biol Chem 290:7658–7670CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Tsutsui Y, Ramakrishnan B, Qasba PK (2013) Crystal structures of beta-1,4-galactosyltransferase 7 enzyme reveal conformational changes and substrate binding. J Biol Chem 288:31963–31970CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Daligault F et al (2009) Thermodynamic insights into the structural basis governing the donor substrate recognition by human beta1,4-galactosyltransferase 7. Biochem J 418:605–614CrossRefPubMedGoogle Scholar
  58. 58.
    Rath VL et al (2000) Activation of human liver glycogen phosphorylase by alteration of the secondary structure and packing of the catalytic core. Mol Cell 6:139–148CrossRefPubMedGoogle Scholar
  59. 59.
    Mathieu C et al (2016) Insights into brain glycogen metabolism: the structure of human brain glycogen phosphorylase. J Biol Chem 291:18072–18083CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Leonidas DD et al (1992) Control of phosphorylase b conformation by a modified cofactor: crystallographic studies on R-state glycogen phosphorylase reconstituted with pyridoxal 5′-diphosphate. Protein Sci 1:1112–1122CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Lukacs CM et al (2006) The crystal structure of human muscle glycogen phosphorylase a with bound glucose and AMP: an intermediate conformation with T-state and R-state features. Proteins 63:1123–1126CrossRefPubMedGoogle Scholar
  62. 62.
    Lin K, Rath VL, Dai SC, Fletterick RJ, Hwang PK (1996) A protein phosphorylation switch at the conserved allosteric site in GP. Science 273:1539–1542CrossRefPubMedGoogle Scholar
  63. 63.
    Lin K, Hwang PK, Fletterick RJ (1997) Distinct phosphorylation signals converge at the catalytic center in glycogen phosphorylases. Structure 5:1511–1523CrossRefPubMedGoogle Scholar
  64. 64.
    Birch AM et al (2007) Development of potent, orally active 1-substituted-3,4-dihydro-2-quinolone glycogen phosphorylase inhibitors. Bioorg Med Chem Lett 17:394–399CrossRefPubMedGoogle Scholar
  65. 65.
    Thomson SA et al (2009) Anthranilimide based glycogen phosphorylase inhibitors for the treatment of type 2 diabetes. Part 3: X-ray crystallographic characterization, core and urea optimization and in vivo efficacy. Bioorg Med Chem Lett 19:1177–1182CrossRefPubMedGoogle Scholar
  66. 66.
    Rath VL et al (2000) Human liver glycogen phosphorylase inhibitors bind at a new allosteric site. Chem Biol 7:677–682CrossRefPubMedGoogle Scholar
  67. 67.
    O’Neill EC et al (2014) Sugar-coated sensor chip and nanoparticle surfaces for the in vitro enzymatic synthesis of starch-like materials. Chem Sci 5:341–350CrossRefGoogle Scholar
  68. 68.
    Baskaran S, Roach PJ, DePaoli-Roach AA, Hurley TD (2010) Structural basis for glucose-6-phosphate activation of glycogen synthase. Proc Natl Acad Sci USA 107:17563–17568CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Zheng Y, Anderson S, Zhang Y, Garavito RM (2011) The structure of sucrose synthase-1 from Arabidopsis thaliana and its functional implications. J Biol Chem 286:36108–36118CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Hardin SC, Duncan KA, Huber SC (2006) Determination of structural requirements and probable regulatory effectors for membrane association of maize sucrose synthase 1. Plant Physiol 141:1106–1119CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Chen CI et al (2012) Structure of human POFUT2: insights into thrombospondin type 1 repeat fold and O-fucosylation. EMBO J 31:3183–3197CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Lira-Navarrete E et al (2011) Structural insights into the mechanism of protein O-fucosylation. PLoS One 6:e25365CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Lazarus MB, Nam Y, Jiang J, Sliz P, Walker S (2011) Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature 469:564–567CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Jinek M et al (2004) The superhelical TPR-repeat domain of O-linked GlcNAc transferase exhibits structural similarities to importin alpha. Nat Struct Mol Biol 11:1001–1007CrossRefPubMedGoogle Scholar
  75. 75.
    Bahadur RP, Chakrabarti P, Rodier F, Janin J (2003) Dissecting subunit interfaces in homodimeric proteins. Proteins 53:708–719CrossRefPubMedGoogle Scholar
  76. 76.
    Altenhoff AM et al (2015) The OMA orthology database in 2015: function predictions, better plant support, synteny view and other improvements. Nucleic Acids Res 44:D27–D38Google Scholar
  77. 77.
    Lemmon MA, Treutlein HR, Adams PD, Brunger AT, Engelman DM (1994) A dimerization motif for transmembrane alpha-helices. Nat Struct Biol 1:157–163CrossRefPubMedGoogle Scholar
  78. 78.
    Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372:774–797CrossRefPubMedGoogle Scholar
  79. 79.
    Krissinel E (2010) Crystal contacts as nature’s docking solutions. J Comput Chem 31:133–143CrossRefPubMedGoogle Scholar
  80. 80.
    Noffz C, Keppler-Ross S, Dean N (2009) Hetero-oligomeric interactions between early glycosyltransferases of the dolichol cycle. Glycobiology 19:472–478CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Ramakrishnan B, Gasba PK (2001) Crystal structure of lactose synthase reveals a large conformational change in its catalytic component, the β1,4-galactosyltransferase-I. J Mol Biol 310:205–218CrossRefPubMedGoogle Scholar
  82. 82.
    Moncrieffe MC et al (2012) Structure of the glycosyltransferase EryCIII in complex with its activating P450 Homologue EryCII. J Mol Biol 415:92–101CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of Biochemistry and Molecular MedicineUniversity of OuluOuluFinland

Personalised recommendations