Advertisement

Cellular and Molecular Life Sciences

, Volume 75, Issue 5, pp 775–783 | Cite as

Control of HIV infection by IFN-α: implications for latency and a cure

  • Nollaig M. Bourke
  • Silvia Napoletano
  • Ciaran Bannan
  • Suaad Ahmed
  • Colm Bergin
  • Áine McKnight
  • Nigel J. Stevenson
Review

Abstract

Viral infections, including HIV, trigger the production of type I interferons (IFNs), which in turn, activate a signalling cascade that ultimately culminates with the expression of anti-viral proteins. Mounting evidence suggests that type I IFNs, in particular IFN-α, play a pivotal role in limiting acute HIV infection. Highly active anti-retroviral treatment reduces viral load and increases life expectancy in HIV positive patients; however, it fails to fully eliminate latent HIV reservoirs. To revisit HIV as a curable disease, this article reviews a body of literature that highlights type I IFNs as mediators in the control of HIV infection, with particular focus on the anti-HIV restriction factors induced and/or activated by IFN-α. In addition, we discuss the relevance of type I IFN treatment in the context of HIV latency reversal, novel therapeutic intervention strategies and the potential for full HIV clearance.

Keywords

HIV Interferon Latency Anti-viral JAK/STAT Cure 

Notes

Acknowledgements

Thanks to Ms. Orla Convery for editing this manuscript.

References

  1. 1.
    Schoggins JW, Rice CM (2011) Interferon-stimulated genes and their antiviral effector functions. Curr Opin Virol 1:519–525CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hertzog PJ, Bourke NM, de Weerd NA, Mangan NE (2016) New interferons A2. In: Ratcliffe MJH (ed) Encyclopedia of immunobiology. Academic Press, Oxford, pp 501–508CrossRefGoogle Scholar
  3. 3.
    Hardy GA, Sieg S, Rodriguez B, Anthony D, Asaad R, Jiang W, Mudd J, Schacker T, Funderburg NT, Pilch-Cooper HA et al (2013) Interferon-α is the primary plasma type-I IFN in HIV-1 infection and correlates with immune activation and disease markers. PLoS One 8:e56527CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Cha L, Berry CM, Nolan D, Castley A, Fernandez S, French MA (2014) Interferon-alpha, immune activation and immune dysfunction in treated HIV infection. Clin Transl Immunol 3:e10CrossRefGoogle Scholar
  5. 5.
    Gürtler C, Bowie AG (2013) Innate immune detection of microbial nucleic acids. Trends Microbiol 21:413–420CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384CrossRefPubMedGoogle Scholar
  7. 7.
    Beignon AS, McKenna K, Skoberne M, Manches O, DaSilva I, Kavanagh DG, Larsson M, Gorelick RJ, Lifson JD, Bhardwaj N (2005) Endocytosis of HIV-1 activates plasmacytoid dendritic cells via Toll-like receptor–viral RNA interactions. J Clin Investig 115:3265–3275CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lo CC, Schwartz JA, Johnson DJ, Yu M, Aidarus N, Mujib S, Benko E, Hyrcza M, Kovacs C, Ostrowski MA (2012) HIV delays IFN-α production from human plasmacytoid dendritic cells and is associated with SYK phosphorylation. PLoS One 7:e37052CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Nascimbeni M, Perié L, Chorro L, Diocou S, Kreitmann L, Louis S, Garderet L, Fabiani B, Berger A, Schmitz J et al (2009) Plasmacytoid dendritic cells accumulate in spleens from chronically HIV-infected patients but barely participate in interferon-alpha expression. Blood 113:6112–6119CrossRefPubMedGoogle Scholar
  10. 10.
    Jakobsen MR, Bak RO, Andersen A, Berg RK, Jensen SB, Tengchuan J, Laustsen A, Hansen K, Ostergaard L, Fitzgerald KA et al (2013) IFI16 senses DNA forms of the lentiviral replication cycle and controls HIV-1 replication. Proc Natl Acad Sci USA 110:E4571–E4580CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Monroe KM, Yang Z, Johnson JR, Geng X, Doitsh G, Krogan NJ, Greene WC (2014) IFI16 DNA sensor is required for death of lymphoid CD4 T cells abortively infected with HIV. Science 343:428–432CrossRefPubMedGoogle Scholar
  12. 12.
    Yan N, Regalado-Magdos AD, Stiggelbout B, Lee-Kirsch MA, Lieberman J (2010) The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat Immunol 11:1005–1013CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Gao D, Wu J, Wu YT, Du F, Aroh C, Yan N, Sun L, Chen ZJ (2013) Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 341:903–906CrossRefPubMedGoogle Scholar
  14. 14.
    de Weerd NA, Vivian JP, Nguyen TK, Mangan NE, Gould JA, Braniff SJ, Zaker-Tabrizi L, Fung KY, Forster SC, Beddoe T et al (2013) Structural basis of a unique interferon-beta signaling axis mediated via the receptor IFNAR1. Nat Immunol 14:901–907CrossRefPubMedGoogle Scholar
  15. 15.
    de Weerd NA, Samarajiwa SA, Hertzog PJ (2007) Type I interferon receptors: biochemistry and biological functions. J Biol Chem 282:20053–20057CrossRefPubMedGoogle Scholar
  16. 16.
    Pestka S, Krause CD, Walter MR (2004) Interferons, interferon-like cytokines, and their receptors. Immunol Rev 202:8–32CrossRefPubMedGoogle Scholar
  17. 17.
    Schindler C, Plumlee C (2008) Inteferons pen the JAK-STAT pathway. Semin Cell Dev Biol 19:311–318CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Schindler C, Levy DE, Decker T (2007) JAK-STAT signaling: from interferons to cytokines. J Biol Chem 282:20059–20063CrossRefPubMedGoogle Scholar
  19. 19.
    Sadler AJ, Williams BRG (2008) Interferon-inducible antiviral effectors. Nat Rev Immunol 8:559–568CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Barré-Sinoussi F, Ross AL, Delfraissy JF (2013) Past, present and future: 30 years of HIV research. Nat Rev Microbiol 11:877–883CrossRefPubMedGoogle Scholar
  21. 21.
    Doyle T, Goujon C, Malim MH (2015) HIV-1 and interferons: who’s interfering with whom? Nat Rev Microbiol 13:403–413CrossRefPubMedGoogle Scholar
  22. 22.
    Kane M, Zang TM, Rihn SJ, Zhang F, Kueck T, Alim M, Schoggins J, Rice CM, Wilson SJ, Bieniasz PD (2016) Identification of interferon-stimulated genes with antiretroviral activity. Cell Host Microbe 20:392–405CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J (2004) The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 427:848–853CrossRefPubMedGoogle Scholar
  24. 24.
    Danielson CM, Cianci GC, Hope TJ (2012) Recruitment and dynamics of proteasome association with rhTRIM5alpha cytoplasmic complexes during HIV-1 infection. Traffic 13:1206–1217CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Rold CJ, Aiken C (2008) Proteasomal degradation of TRIM5alpha during retrovirus restriction. PLoS Pathog 4:e1000074CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Liu FL, Qiu YQ, Li H, Kuang YQ, Tang X, Cao G, Tang NL, Zheng YT (2011) An HIV-1 resistance polymorphism in TRIM5alpha gene among Chinese intravenous drug users. J Acquir Immune Defic Syndr 56:306–311CrossRefPubMedGoogle Scholar
  27. 27.
    Price H, Lacap P, Tuff J, Wachihi C, Kimani J, Ball TB, Luo M, Plummer FA (2010) A TRIM5alpha exon 2 polymorphism is associated with protection from HIV-1 infection in the Pumwani sex worker cohort. AIDS 24:1813–1821CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sewram S, Singh R, Kormuth E, Werner L, Mlisana K, Karim SS, Ndung’u T, Team CAIS (2009) Human TRIM5alpha expression levels and reduced susceptibility to HIV-1 infection. J Infect Dis 199:1657–1663CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    van Manen D, Rits MA, Beugeling C, van Dort K, Schuitemaker H, Kootstra NA (2008) The effect of Trim5 polymorphisms on the clinical course of HIV-1 infection. PLoS Pathog 4:e18CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ribeiro CM, Sarrami-Forooshani R, Setiawan LC, Zijlstra-Willems EM, van Hamme JL, Tigchelaar W, van der Wel NN, Kootstra NA, Gringhuis SI, Geijtenbeek TB (2016) Receptor usage dictates HIV-1 restriction by human TRIM5α in dendritic cell subsets. Nature 540:448–452CrossRefPubMedGoogle Scholar
  31. 31.
    Sheehy AM, Gaddis NC, Malim MH (2003) The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat Med 9:1404–1407CrossRefPubMedGoogle Scholar
  32. 32.
    Zheng YH, Irwin D, Kurosu T, Tokunaga K, Sata T, Peterlin BM (2004) Human APOBEC3F is another host factor that blocks human immunodeficiency virus type 1 replication. J Virol 78:6073–6076CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Goila-Gaur R, Strebel K (2008) HIV-1 Vif, APOBEC, and intrinsic immunity. Retrovirology 5:51CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Bishop KN, Verma M, Kim EY, Wolinsky SM, Malim MH (2008) APOBEC3G inhibits elongation of HIV-1 reverse transcripts. PLoS Pathog 4:e1000231CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Doehle BP, Schäfer A, Cullen BR (2005) Human APOBEC3B is a potent inhibitor of HIV-1 infectivity and is resistant to HIV-1 Vif. Virology 339:281–288CrossRefPubMedGoogle Scholar
  36. 36.
    Goldstone DC, Ennis-Adeniran V, Hedden JJ, Groom HC, Rice GI, Christodoulou E, Walker PA, Kelly G, Haire LF, Yap MW et al (2011) HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 480:379–382CrossRefPubMedGoogle Scholar
  37. 37.
    Lahouassa H, Daddacha W, Hofmann H, Ayinde D, Logue EC, Dragin L, Bloch N, Maudet C, Bertrand M, Gramberg T et al (2012) SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat Immunol 13:223–228CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Reinhard C, Bottinelli D, Kim B, Luban J (2014) Vpx rescue of HIV-1 from the antiviral state in mature dendritic cells is independent of the intracellular deoxynucleotide concentration. Retrovirology 11:12CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Cribier A, Descours B, Valadão AL, Laguette N, Benkirane M (2013) Phosphorylation of SAMHD1 by cyclin A2/CDK1 regulates its restriction activity toward HIV-1. Cell Rep 3:1036–1043CrossRefPubMedGoogle Scholar
  40. 40.
    Sze A, Olagnier D, Lin R, van Grevenynghe J, Hiscott J (2013) SAMHD1 host restriction factor: a link with innate immune sensing of retrovirus infection. J Mol Biol 425:4981–4994CrossRefPubMedGoogle Scholar
  41. 41.
    Goujon C, Moncorgé O, Bauby H, Doyle T, Ward CC, Schaller T, Hué S, Barclay WS, Schulz R, Malim MH (2013) Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection. Nature 502:559–562CrossRefPubMedGoogle Scholar
  42. 42.
    Kane M, Yadav SS, Bitzegeio J, Kutluay SB, Zang T, Wilson SJ, Schoggins JW, Rice CM, Yamashita M, Hatziioannou T, Bieniasz PD (2013) MX2 is an interferon-induced inhibitor of HIV-1 infection. Nature 502:563–566CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Liu Z, Pan Q, Ding S, Qian J, Xu F, Zhou J, Cen S, Guo F, Liang C (2013) The interferon-inducible MxB protein inhibits HIV-1 infection. Cell Host Microbe 14:398–410CrossRefPubMedGoogle Scholar
  44. 44.
    Dicks MD, Goujon C, Pollpeter D, Betancor G, Apolonia L, Bergeron JR, Malim MH (2015) Oligomerization requirements for MX2-mediated suppression of HIV-1 infection. J Virol 90:22–32CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Mavrommatis E, Fish EN, Platanias LC (2013) The schlafen family of proteins and their regulation by interferons. J Interferon Cytokine Res 33:206–210CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Jakobsen MR, Mogensen TH, Paludan SR (2013) Caught in translation: innate restriction of HIV mRNA translation by a schlafen family protein. Cell Res 23:320–322CrossRefPubMedGoogle Scholar
  47. 47.
    Li M, Kao E, Gao X, Sandig H, Limmer K, Pavon-Eternod M, Jones TE, Landry S, Pan T, Weitzman MD, David M (2012) Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11. Nature 491:125–128CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Douglas JL, Gustin JK, Viswanathan K, Mansouri M, Moses AV, Fruh K (2010) The great escape: viral strategies to counter BST-2/tetherin. PLoS Pathog 6:e1000913CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Miyagi E, Andrew AJ, Kao S, Strebel K (2009) Vpu enhances HIV-1 virus release in the absence of Bst-2 cell surface down-modulation and intracellular depletion. Proc Natl Acad Sci USA 106:2868–2873CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Neil SJ, Zang T, Bieniasz PD (2008) Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451:425–430CrossRefPubMedGoogle Scholar
  51. 51.
    Sauter D (2014) Counteraction of the multifunctional restriction factor tetherin. Front Microbiol 5:163CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Lu J, Pan Q, Rong L, He W, Liu SL, Liang C (2011) The IFITM proteins inhibit HIV-1 infection. J Virol 85:2126–2137CrossRefPubMedGoogle Scholar
  53. 53.
    Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P, Rice CM (2011) A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472:481–485CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Everitt AR, Clare S, Pertel T, John SP, Wash RS, Smith SE, Chin CR, Feeley EM, Sims JS, Adams DJ et al (2012) IFITM3 restricts the morbidity and mortality associated with influenza. Nature 484:519–523CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Compton AA, Bruel T, Porrot F, Mallet A, Sachse M, Euvrard M, Liang C, Casartelli N, Schwartz O (2014) IFITM proteins incorporated into HIV-1 virions impair viral fusion and spread. Cell Host Microbe 16:736–747CrossRefPubMedGoogle Scholar
  56. 56.
    Tartour K, Appourchaux R, Gaillard J, Nguyen XN, Durand S, Turpin J, Beaumont E, Roch E, Berger G, Mahieux R et al (2014) IFITM proteins are incorporated onto HIV-1 virion particles and negatively imprint their infectivity. Retrovirology 11:103CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Yu J, Li M, Wilkins J, Ding S, Swartz TH, Esposito AM, Zheng YM, Freed EO, Liang C, Chen BK, Liu SL (2015) IFITM proteins restrict HIV-1 infection by antagonizing the envelope glycoprotein. Cell Rep 13:145–156CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Foster TL, Wilson H, Iyer SS, Coss K, Doores K, Smith S, Kellam P, Finzi A, Borrow P, Hahn BH, Neil SJ (2016) Resistance of transmitted founder HIV-1 to IFITM-mediated restriction. Cell Host Microbe 20:429–442CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Stacey AR, Norris PJ, Qin L, Haygreen EA, Taylor E, Heitman J, Lebedeva M, DeCamp A, Li D, Grove D et al (2009) Induction of a striking systemic cytokine cascade prior to peak viremia in acute human immunodeficiency virus type 1 infection, in contrast to more modest and delayed responses in acute hepatitis B and C virus infections. J Virol 83:3719–3733CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    von Sydow M, Sönnerborg A, Gaines H, Strannegård O (1991) Interferon-alpha and tumor necrosis factor-alpha in serum of patients in various stages of HIV-1 infection. AIDS Res Hum Retroviruses 7:375–380CrossRefGoogle Scholar
  61. 61.
    Cheney KM, McKnight Á (2010) Interferon-alpha mediates restriction of human immunodeficiency virus type-1 replication in primary human macrophages at an early stage of replication. PLoS One 5:e13521CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Gendelman HE, Baca LM, Turpin J, Kalter DC, Hansen B, Orenstein JM, Dieffenbach CW, Friedman RM, Meltzer MS (1990) Regulation of HIV replication in infected monocytes by IFN-alpha. Mechanisms for viral restriction. J Immunol 145:2669–2676PubMedGoogle Scholar
  63. 63.
    Goujon C, Malim MH (2010) Characterization of the alpha interferon-induced postentry block to HIV-1 infection in primary human macrophages and T cells. J Virol 84:9254–9266CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Pitha PM (1994) Multiple effects of interferon on the replication of human immunodeficiency virus type 1. Antiviral Res 24:205–219CrossRefPubMedGoogle Scholar
  65. 65.
    Sandler NG, Bosinger SE, Estes JD, Zhu RT, Tharp GK, Boritz E, Levin D, Wijeyesinghe S, Makamdop KN, del Prete GQ et al (2014) Type I interferon responses in rhesus macaques prevent SIV infection and slow disease progression. Nature 511:601–605CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Cheng L, Yu H, Li G, Li F, Ma J, Li J, Chi L, Zhang L, Su L (2017) Type I interferons suppress viral replication but contribute to T cell depletion and dysfunction during chronic HIV-1 infection. JCI Insight 2(12):e94366CrossRefPubMedCentralGoogle Scholar
  67. 67.
    Zhen A, Rezek V, Youn C, Lam B, Chang N, Rick J, Carrillo M, Martin H, Kasparian S, Syed P et al (2017) Targeting type I interferon-mediated activation restores immune function in chronic HIV infection. J Clin Investig 127:260–268CrossRefPubMedGoogle Scholar
  68. 68.
    Sarasin-Filipowicz M, Oakeley EJ, Duong FH, Christen V, Terracciano L, Filipowicz W, Heim MH (2008) Interferon signaling and treatment outcome in chronic hepatitis C. Proc Natl Acad Sci USA 105:7034–7039CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Fenton-May AE, Dibben O, Emmerich T, Ding H, Pfafferott K, Aasa-Chapman MM, Pellegrino P, Williams I, Cohen MS, Gao F et al (2013) Relative resistance of HIV-1 founder viruses to control by interferon-alpha. Retrovirology 10:146CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Rasaiyaah J, Tan CP, Fletcher AJ, Price AJ, Blondeau C, Hilditch L, Jacques DA, Selwood DL, James LC, Noursadeghi M, Towers GJ (2013) HIV-1 evades innate immune recognition through specific cofactor recruitment. Nature 503:402–405CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Stevenson NJ, Bourke NM, Ryan EJ, Binder M, Fanning L, Johnston JA, Hegarty JE, Long A, O’Farrelly C (2013) Hepatitis C virus targets the interferon-α JAK/STAT pathway by promoting proteasomal degradation in immune cells and hepatocytes. FEBS Lett 587:1571–1578CrossRefPubMedGoogle Scholar
  72. 72.
    Elliott J, Lynch OT, Suessmuth Y, Qian P, Boyd CR, Burrows JF, Buick R, Stevenson NJ, Touzelet O, Gadina M et al (2007) Respiratory syncytial virus NS1 protein degrades STAT2 by using the Elongin-Cullin E3 ligase. J Virol 81:3428–3436CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Bergeron JR, Huthoff H, Veselkov DA, Beavil RL, Simpson PJ, Matthews SJ, Malim MH, Sanderson MR (2010) The SOCS-box of HIV-1 Vif interacts with ElonginBC by induced-folding to recruit its Cul5-containing ubiquitin ligase complex. PLoS Pathog 6:e1000925CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Sheehy AM, Gaddis NC, Choi JD, Malim MH (2002) Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418:646–650CrossRefPubMedGoogle Scholar
  75. 75.
    Van Damme N, Goff D, Katsura C, Jorgenson RL, Mitchell R, Johnson MC, Stephens EB, Guatelli J (2008) The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. Cell Host Microbe 3:245–252CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Mangeat B, Gers-Huber G, Lehmann M, Zufferey M, Luban J, Piguet V (2009) HIV-1 Vpu neutralizes the antiviral factor Tetherin/BST-2 by binding it and directing its beta-TrCP2-dependent degradation. PLoS Pathog 5:e1000574CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Alvarez RA, Hamlin RE, Monroe A, Moldt B, Hotta MT, Rodriguez Caprio G, Fierer DS, Simon V, Chen BK (2014) HIV-1 Vpu antagonism of tetherin inhibits antibody-dependent cellular cytotoxic responses by natural killer cells. J Virol 88:6031–6046CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Arias JF, Colomer-Lluch M, von Bredow B, Greene JM, MacDonald J, O’Connor DH, Serra-Moreno R, Evans DT (2016) Tetherin antagonism by HIV-1 group M Nef proteins. J Virol 90:10701–10714CrossRefPubMedCentralGoogle Scholar
  79. 79.
    Kluge SF, Mack K, Iyer SS, Pujol FM, Heigele A, Learn GH, Usmani SM, Sauter D, Joas S, Hotter D et al (2014) Nef proteins of epidemic HIV-1 group O strains antagonize human tetherin. Cell Host Microbe 16:639–650CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Hrecka K, Hao C, Gierszewska M, Swanson SK, Kesik-Brodacka M, Srivastava S, Florens L, Washburn MP, Skowronski J (2011) Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 474:658–661CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Luxon BA, Grace M, Brassard D, Bordens R (2002) Pegylated interferons for the treatment of chronic hepatitis C infection. Clin Ther 24:1363–1383CrossRefPubMedGoogle Scholar
  82. 82.
    Kovacs JA, Deyton L, Davey R, Falloon J, Zunich K, Lee D, Metcalf JA, Bigley JW, Sawyer LA, Zoon KC (1989) Combined zidovudine and interferon-alpha therapy in patients with Kaposi sarcoma and the acquired immunodeficiency syndrome (AIDS). Ann Intern Med 111:280–287CrossRefPubMedGoogle Scholar
  83. 83.
    Krown SE, Real FX, Cunningham-Rundles S, Myskowski PL, Koziner B, Fein S, Mittelman A, Oettgen HF, Safai B (1983) Preliminary observations on the effect of recombinant leukocyte A interferon in homosexual men with Kaposi’s sarcoma. N Engl J Med 308:1071–1076CrossRefPubMedGoogle Scholar
  84. 84.
    Shepherd FA, Beaulieu R, Gelmon K, Thuot CA, Sawka C, Read S, Singer J (1998) Prospective randomized trial of two dose levels of interferon alfa with zidovudine for the treatment of Kaposi’s sarcoma associated with human immunodeficiency virus infection: a Canadian HIV Clinical Trials Network study. J Clin Oncol 16:1736–1742CrossRefPubMedGoogle Scholar
  85. 85.
    Asmuth DM, Murphy RL, Rosenkranz SL, Lertora JJ, Kottilil S, Cramer Y, Chan ES, Schooley RT, Rinaldo CR, Thielman N et al (2010) Safety, tolerability, and mechanisms of antiretroviral activity of pegylated interferon Alfa-2a in HIV-1-monoinfected participants: a phase II clinical trial. J Infect Dis 201:1686–1696CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Emilie D, Burgard M, Lascoux-Combe C, Laughlin M, Krzysiek R, Pignon C, Rudent A, Molina JM, Livrozet JM, Souala F et al (2001) Early control of HIV replication in primary HIV-1 infection treated with antiretroviral drugs and pegylated IFN alpha: results from the Primoferon A (ANRS 086) Study. AIDS 15:1435–1437CrossRefPubMedGoogle Scholar
  87. 87.
    Utay NS, Douek DC (2016) Interferons and HIV infection: the good, the bad, and the ugly. Pathog Immun 1:107–116CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Ambrus JL, Bardos TJ, Dembinski W, Chadha KC (2004) New approaches to the treatment of AIDS with special reference to overcoming interferon resistance. J Med 35:201–209PubMedGoogle Scholar
  89. 89.
    Finzi D, Hermankova M, Pierson T, Carruth LM, Buck C, Chaisson RE, Quinn TC, Chadwick K, Margolick J, Brookmeyer R et al (1997) Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278:1295–1300CrossRefPubMedGoogle Scholar
  90. 90.
    Chun TW, Stuyver L, Mizell SB, Ehler LA, Mican JA, Baseler M, Lloyd AL, Nowak MA, Fauci AS (1997) Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc Natl Acad Sci USA 94:13193–13197CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Hill AL, Rosenbloom DI, Fu F, Nowak MA, Siliciano RF (2014) Predicting the outcomes of treatment to eradicate the latent reservoir for HIV-1. Proc Natl Acad Sci USA 111:13475–13480CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Pinkevych M, Cromer D, Tolstrup M, Grimm AJ, Cooper DA, Lewin SR, Søgaard OS, Rasmussen TA, Kent SJ, Kelleher AD, Davenport MP (2015) HIV reactivation from latency after treatment interruption occurs on average every 5–8 days-implications for HIV remission. PLoS Pathog 11:e1005000CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Margolis DM, Garcia JV, Hazuda DJ, Haynes BF (2016) Latency reversal and viral clearance to cure HIV-1. Science 353:6517CrossRefGoogle Scholar
  94. 94.
    Rasmussen TA, Tolstrup M, Søgaard OS (2016) Reversal of latency as part of a cure for HIV-1. Trends Microbiol 24:90–97CrossRefPubMedGoogle Scholar
  95. 95.
    Azzoni L, Foulkes AS, Papasavvas E, Mexas AM, Lynn KM, Mounzer K, Tebas P, Jacobson JM, Frank I, Busch MP et al (2013) Pegylated Interferon alfa-2a monotherapy results in suppression of HIV type 1 replication and decreased cell-associated HIV DNA integration. J Infect Dis 207:213–222CrossRefPubMedGoogle Scholar
  96. 96.
    Sun H, Buzon MJ, Shaw A, Berg RK, Yu XG, Ferrando-Martinez S, Leal M, Ruiz-Mateos E, Lichterfeld M (2014) Hepatitis C therapy with interferon-α and ribavirin reduces CD4 T-cell-associated HIV-1 DNA in HIV-1/hepatitis C virus-coinfected patients. J Infect Dis 209:1315–1320CrossRefPubMedGoogle Scholar
  97. 97.
    Li P, Kaiser P, Lampiris HW, Kim P, Yukl SA, Havlir DV, Greene WC, Wong JK (2016) Stimulating the RIG-I pathway to kill cells in the latent HIV reservoir following viral reactivation. Nat Med 22:807–811CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of MedicineTrinity Translational Medicine Institute, Trinity College DublinDublinIreland
  2. 2.Department of Medical GerontologyMercer’s Institute for Successful Ageing, St. James HospitalDublinIreland
  3. 3.School of Biochemistry and ImmunologyTrinity College DublinDublinIreland
  4. 4.Department of Genito Urinary Medicine and Infectious DiseasesSt. James’s HospitalDublinIreland
  5. 5.Blizard Institute School of Medicine and DentistryQueen Mary University of LondonLondonUK

Personalised recommendations