Abstract
Gene therapy might represent a promising strategy for chondral and osteochondral defects repair by balancing the management of temporary joint mechanical incompetence with altered metabolic and inflammatory homeostasis. This review analysed preclinical and clinical studies on gene therapy for the repair of articular cartilage defects performed over the last 10 years, focussing on expression vectors (non-viral and viral), type of genes delivered and gene therapy procedures (direct or indirect). Plasmids (non-viral expression vectors) and adenovirus (viral vectors) were the most employed vectors in preclinical studies. Genes delivered encoded mainly for growth factors, followed by transcription factors, anti-inflammatory cytokines and, less frequently, by cell signalling proteins, matrix proteins and receptors. Direct injection of the expression vector was used less than indirect injection of cells, with or without scaffolds, transduced with genes of interest and then implanted into the lesion site. Clinical trials (phases I, II or III) on safety, biological activity, efficacy, toxicity or bio-distribution employed adenovirus viral vectors to deliver growth factors or anti-inflammatory cytokines, for the treatment of osteoarthritis or degenerative arthritis, and tumour necrosis factor receptor or interferon for the treatment of inflammatory arthritis.
Similar content being viewed by others
Abbreviations
- ACI:
-
Autologous chondrocytes implantation
- ACPC:
-
Articular cartilage progenitor cells
- ADSCs:
-
Adipose derived mesenchymal stem cells
- BMP:
-
Bone morphogenetic protein
- BMSCs:
-
Bone Marrow Derived Mesenchymal Stem Cells
- bPEI-HA:
-
Branched poly(ethylenimine)-hyaluronic acid
- CIA:
-
Collagen induced arthritis
- COLL I:
-
Collagen I
- COLL II:
-
Collagen II
- Col2a1:
-
Collagen 2 alpha 1
- COMP:
-
Cartilage oligomeric matrix protein
- DBM:
-
Demineralized bone matrix
- DCBM:
-
Decalcified cortical bone matrix
- DRP:
-
DNase-resistant particles
- ECM:
-
Extracellular matrix
- FBs:
-
Fibroblasts
- FGF-2:
-
Fibroblast growth factor 2
- FLS:
-
Fibroblast-like synoviocytes
- GAG:
-
Glycosaminoglycans
- GDF-5:
-
Growth and differentiation factor 5
- GFs:
-
Growth factor
- GMP:
-
Good manufacture practice
- HIV:
-
Human immunodeficiency virus
- IFN-β:
-
Interferon-β
- IGF-1:
-
Insulin-like growth factor 1
- iHH:
-
Indian hedgehog homolog
- IKDC:
-
International Knee Documentation Committee
- IL10:
-
Interleukin 10
- IL1ra:
-
Interleukin 1 receptor antagonist
- MACI:
-
Matrix-induced autologous chondrocytes implantation
- MDSCs:
-
Muscle-derived stem cells
- MMP:
-
Metalloproteinase
- MSCs:
-
MESENCHYMAL Stem cells
- OA:
-
Osteoarthritis
- PGA:
-
Polyglycolic acid
- PLA:
-
Polylactic acid
- PLGA:
-
Poly(lactic-co-glycolide)
- PU:
-
Polyurethane
- RA:
-
Rheumatoid arthritis
- rAAV:
-
Recombinant adeno-associated viral vector
- RUNX2:
-
Runt-related transcription factor 2
- scAAV:
-
Self-complementary AAV
- sFlt-1:
-
Soluble Fms-related tyrosine kinase 1
- SOX:
-
Sex-determining Region Y -related High Mobility Group box
- TCP:
-
Tricalcium phosphate
- TFs:
-
Transcription factors
- TGF-β:
-
Transforming growth factor β
- TNFR:Fc:
-
Human tumor necrosis factor receptor immunoglobulin (IgG1) Fc fusion
- VAS:
-
Visual analogue scale
- VEGF:
-
Vascular endothelial growth factor
- ZNF145:
-
Zinc-finger protein 145
References
Rey-Rico A, Frisch J, Venkatesan JK, Schmitt G, Rial-Hermida I, Taboada P et al (2016) PEO-PPO-PEO carriers for rAAV-mediated transduction of human articular chondrocytes in vitro and in a human osteochondral defect model. ACS Appl Mater Interfaces 8:20600–20613
Frisch J, Orth P, Venkatesan JK, Rey-Rico A, Schmitt G, Kohn D et al (2017) Genetic modification of human peripheral blood aspirates using recombinant adeno-associated viral vectors for articular cartilage repair with a focus on chondrogenic transforming growth factor-β gene delivery. Stem Cells Transl Med 6:249–260
Hunziker EB (2002) Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr Cartil 10:432–463
Veronesi F, Giavaresi G, Tschon M, Borsari V, Nicoli Aldini N, Fini M (2013) Clinical use of bone marrow, bone marrow concentrate, and expanded bone marrow mesenchymal stem cells in cartilage disease. Stem Cells Dev 22:181–192
Ondrésik M, Azevedo Maia FR, da Silva Morais A, Gertrudes AC, Dias Bacelar AH, Correia C et al (2016) Management of knee osteoarthritis. Current status and future trends. Biotechnol Bioeng (epub ahead of print)
Heiligenstein S, Cucchiarini M, Laschke MW, Bohle RM, Kohn D, Menger MD et al (2011) Evaluation of nonbiomedical and biomedical grade alginates for the transplantation of genetically modified articular chondrocytes to cartilage defects in a large animal model in vivo. J Gene Med 13:230–242
Shui W, Yin L, Luo J, Li R, Zhang W, Zhang J et al (2013) Characterization of chondrocyte scaffold carriers for cell-based gene therapy in articular cartilage repair. J Biomed Mater Res A 101:3542–3550
Shi S, Chan AG, Mercer S, Eckert GJ, Trippel SB (2014) Endogenous versus exogenous growth factor regulation of articular chondrocytes. J Orthop Res 32:54–60
Li KC, Hu YC (2015) Cartilage tissue engineering: recent advances and perspectives from gene regulation/therapy. Adv Healthc Mater 4:948–968
Hardee CL, Arévalo-Soliz LM, Hornstein BD, Zechiedrich L (2017) Advances in non-viral DNA vectors for gene therapy. Genes (Basel) 8:65
Ohashi S, Kubo T, Kishida T, Ikeda T, Takahashi K, Arai Y et al (2002) Successful genetic transduction in vivo into synovium by means of electroporation. Biochem Biophys Res Commun 293:1530–1535
Khoury M, Bigey P, Louis-Plence P, Noel D, Rhinn H, Scherman D et al (2006) A comparative study on intra-articular versus systemic gene electrotransfer in experimental arthritis. J Gene Med 8:1027–1036
Nishida K, Doita M, Takada T, Kakutani K, Miyamoto H, Shimomura T et al (2006) Sustained transgene expression in intervertebral disc cells in vivo mediated by microbubble-enhanced ultrasound gene therapy. Spine (Phila Pa 1976) 31:1415–1419
Li B, Li F, Ma L, Yang J, Wang C, Wang D et al (2014) Poly(lactide-co-glycolide)/fibrin gel construct as a 3D model to evaluate gene therapy of cartilage in vivo. Mol Pharm 11:2062–2070
Zhang SK, Liu Y, Song ZM, Fu CF, Xu XX (2007) Green fluorescent protein as marker in chondrocytes overexpressing human insulin-like growth factor-1 for repair of articular cartilage defects in rabbits. Chin J Traumatol 10:10–17
Orth P, Kaul G, Cucchiarini M, Zurakowski D, Menger MD, Kohn D et al (2011) Transplanted articular chondrocytes co-overexpressing IGF-I and FGF-2 stimulate cartilage repair in vivo. Knee Surg Sports Traumatol Arthrosc 19:2119–2130
Leng P, Ding CR, Zhang HN, Wang YZ (2012) Reconstruct large osteochondral defects of the knee with hIGF-1 gene enhanced Mosaicplasty. Knee 19:804–811
Madry H, Orth P, Kaul G, Zurakowski D, Menger MD, Kohn D et al (2010) Acceleration of articular cartilage repair by combined gene transfer of human insulin-like growth factor I and fibroblast growth factor-2 in vivo. Arch Orthop Trauma Surg 130:1311–1322
Alcorn JL, Merritt TM, Farach-Carson MC, Wang HH, Hecht JT (2009) Ribozyme-mediated reduction of wild-type and mutant cartilage oligomeric matrix protein (COMP) mRNA and protein. RNA 15:686–695
Shi S, Mercer S, Eckert GJ, Trippel SB (2012) Regulation of articular chondrocyte aggrecan and collagen gene expression by multiple growth factor gene transfer. J Orthop Res 30:1026–1031
Kaul G, Cucchiarini M, Arntzen D, Zurakowski D, Menger MD, Kohn D et al (2006) Local stimulation of articular cartilage repair by transplantation of encapsulated chondrocytes overexpressing human fibroblast growth factor 2 (FGF-2) in vivo. J Gene Med 8:100–111
Di Cesare PE, Frenkel SR, Carlson CS, Fang C, Liu C (2006) Regional gene therapy for full-thickness articular cartilage lesions using naked DNA with a collagen matrix. J Orthop Res 24:1118–1127
Capito RM, Spector M (2007) Collagen scaffolds for nonviral IGF-1 gene delivery in articular cartilage tissue engineering. Gene Ther 14:721–732
Needham CJ, Shah SR, Dahlin RL, Kinard LA, Lam J, Watson BM et al (2014) Osteochondral tissue regeneration through polymeric delivery of DNA encoding for the SOX trio and RUNX2. Acta Biomater 10:4103–4112
An C, Cheng Y, Yuan Q, Li J (2010) IGF-1 and BMP-2 induces differentiation of adipose-derived mesenchymal stem cells into chondrocytes-like cells. Ann Biomed Eng 38:1647–1654
Guo X, Zheng Q, Yang S, Shao Z, Yuan Q, Pan Z et al (2006) Repair of full-thickness articular cartilage defects by cultured mesenchymal stem cells transfected with the transforming growth factor beta1 gene. Biomed Mater 1:206–215
He CX, Zhang TY, Miao PH, Hu ZJ, Han M, Tabata Y et al (2012) TGF-beta1 gene-engineered mesenchymal stem cells induce rat cartilage regeneration using nonviral gene vector. Biotechnol Appl Biochem 59:163–169
Raimondi L, De Luca A, Amodio N, Manno M, Raccosta S, Taverna S, Bellavia D, Naselli F, Fontana S, Schillaci O, Giardino R, Fini M, Tassone P, Santoro A, De Leo G, Giavaresi G, Alessandro R (2015) Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation. Oncotarget 6:13772–13789
Tkach M, Théry C (2016) Communication by Extracellular Vesicles: where We Are and Where We Need to Go. Cell 164:1226–1232
Zappulli V, Friis KP, Fitzpatrick Z, Maguire CA, Breakefield XO (2016) Extracellular vesicles and intercellular communication within the nervous system. J Clin Invest 126:1198–1207
Zhang S, Chu WC, Lai RC, Lim SK, Hui JH, Toh WS (2016) Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthritis Cartil 24:2135–2140
Xu JF, Yang GH, Pan XH, Zhang SJ, Zhao C, Qiu BS, Gu HF, Hong JF, Cao L, Chen Y et al (2014) Altered microrna expression profile in exosomes during osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. PLoS One 9:e114627
Cui Y, Luan J, Li H, Zhou X, Han J (2016) Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microrna expression. FEBS Lett 590:185–192
Ekstrom K, Omar O, Graneli C, Wang X, Vazirisani F, Thomsen P (2013) Monocyte exosomes stimulate the osteogenic gene expression of mesenchymal stem cells. PLoS One 8:e75227
Tian T, Zhu YL, Zhou YY, Liang GF, Wang YY, Hu FH, Xiao ZD (2014) Exosome uptake through clathrin-mediated endocytosis and macropinocytosis and mediating miR-21 delivery. J Biol Chem 289:22258–22267
Vader P, Mol EA, Pasterkamp G, Schiffelers RM (2016) Extracellular vesicles for drug delivery. Adv Drug Deliv Rev 106:148–156
Bellavia D, Raimondo S, Calabrese G, Forte S, Cristaldi M, Patinella A, Memeo L, Manno M, Raccosta S, Diana P, Cirrincione G, Giavaresi G, Monteleone F, Fontana S, De Leo G, Alessandro R (2017) Interleukin 3- receptor targeted exosomes inhibit in vitro and in vivo chronic myelogenous leukemia cell growth. Theranostics 7:1333–1345
Lamichhane TN, Sokic S, Schardt JS, Raiker RS, Lin JW, Jay SM (2015) Emerging roles for extracellular vesicles in tissue engineering and regenerative medicine. Tissue Eng Part B Rev 21:45–54
Ames RS, Lu Q (2009) Viral-mediated gene delivery for cell-based assays in drug discovery. Expert Opin Drug Discov 4:243–256
Pagnotto MR, Wang Z, Karpie JC, Ferretti M, Xiao X, Chu CR (2007) Adeno-associated viral gene transfer of transforming growth factor beta 1 to human mesenchymal stem cells improves cartilage repair. Gene Ther 14:804–813
Ivkovic A, Pascher A, Hudetz D, Maticic D, Jelic M, Dickinson S et al (2010) Articular cartilage repair by genetically modified bone marrow aspirate in sheep. Gene Ther 17:779–789
Xia W, Jin YQ, Kretlow JD, Liu W, Ding W, Sun H et al (2009) Adenoviral transduction of hTGF-beta1 enhances the chondrogenesis of bone marrow derived stromal cells. Biotechnol Lett 31:639–646
Garza-Veloz I, Romero-Diaz VJ, Martinez-Fierro ML, Marino-Martinez IA, Gonzalez-Rodriguez M, Martinez-Rodriguez HG et al (2013) Analyses of chondrogenic induction of adipose mesenchymal stem cells by combined co-stimulation mediated by adenoviral gene transfer. Arthritis Res Ther 15:R80
Goodrich LR, Hidaka C, Robbins PD, Evans CH, Nixon AJ (2007) Genetic modification of chondrocytes with insulin-like growth factor-1 enhances cartilage healing in an equine model. J Bone Jt Surg Br 89:672–685
Park J, Gelse K, Frank S, von der Mark K, Aigner T, Schneider H (2006) Transgene-activated mesenchymal cells for articular cartilage repair: a comparison of primary bone marrow-, perichondrium/periosteum- and fat-derived cells. J Gene Med 8:112–125
Wang X, Li Y, Han R, He C, Wang G, Wang J et al (2014) Demineralized bone matrix combined bone marrow mesenchymal stem cells, bone morphogenetic protein-2 and transforming growth factor-β3 gene promoted pig cartilage defect repair. PLoS One 9:e116061 (erratum in: PLoS One 2015; 10:e0125948. Pei, Mei (corrected to Pei, Ming)]
Neumann AJ, Gardner OF, Williams R, Alini M, Archer CW, Stoddart MJ (2015) Human Articular Cartilage Progenitor Cells Are Responsive to Mechanical Stimulation and Adenoviral-Mediated Overexpression of Bone-Morphogenetic Protein 2. PLoS One 10:e0136229
Evans CH, Liu FJ, Glatt V, Hoyland JA, Kirker-Head C, Walsh A et al (2009) Use of genetically modified muscle and fat grafts to repair defects in bone and cartilage. Eur Cell Mater 18:96–111
Feng G, Wan Y, Balian G, Laurencin CT, Li X (2008) Adenovirus-mediated expression of growth and differentiation factor-5 promotes chondrogenesis of adipose stem cells. Growth Factors 26:132–142
Goodrich LR, Brower-Toland BD, Warnick L, Robbins PD, Evans CH, Nixon AJ (2006) Direct adenovirus-mediated IGF-I gene transduction of synovium induces persisting synovial fluid IGF-I ligand elevations. Gene Ther 13:1253–1262
Menendez MI, Clark DJ, Carlton M, Flanigan DC, Jia G, Sammet S et al (2011) Direct delayed human adenoviral BMP-2 or BMP-6 gene therapy for bone and cartilage regeneration in a pony osteochondral model. Osteoarthr Cartil 19:1066–1075
Zhang X, Zheng Z, Liu P, Ma Y, Lin L, Lang N et al (2008) The synergistic effects of microfracture, perforated decalcified cortical bone matrix and adenovirus-bone morphogenetic protein-4 in cartilage defect repair. Biomaterials 29:4616–4629
Steinert AF, Weissenberger M, Kunz M, Gilbert F, Ghivizzani SC, Göbel S et al (2012) Indian hedgehog gene transfer is a chondrogenic inducer of human mesenchymal stem cells. Arthritis Res Ther 14:R168
Cao L, Yang F, Liu G, Yu D, Li H, Fan Q et al (2011) The promotion of cartilage defect repair using adenovirus mediated Sox9 gene transfer of rabbit bone marrow mesenchymal stem cells. Biomaterials 32:3910–3920
Sieker JT, Kunz M, Weißenberger M, Gilbert F, Frey S, Rudert M et al (2015) Direct bone morphogenetic protein 2 and Indian hedgehog gene transfer for articular cartilage repair using bone marrow coagulates. Osteoarthr Cartil 23:433–442
Knedla A, Riepl B, Lefèvre S, Kistella S, Grifka J, Straub RH et al (2009) The therapeutic use of osmotic minipumps in the severe combined immunodeficiency (SCID) mouse model for rheumatoid arthritis. Ann Rheum Dis 68:124–129
Morisset S, Frisbie DD, Robbins PD, Nixon AJ, McIlwraith CW (2007) IL-1ra/IGF-1 gene therapy modulates repair of microfractured chondral defects. Clin Orthop Relat Res 462:221–228
Clément N, Grieger JC (2016) Manufacturing of recombinant adeno-associated viral vectors for clinical trials. Mol Ther Methods Clin Dev 3:16002
Cucchiarini M, Orth P, Madry H (2013) Direct rAAV SOX9 administration for durable articular cartilage repair with delayed terminal differentiation and hypertrophy in vivo. J Mol Med (Berl) 91:625–636
Kay JD, Gouze E, Oligino TJ, Gouze JN, Watson RS, Levings PP et al (2009) Intra-articular gene delivery and expression of interleukin-1Ra mediated by self-complementary adeno-associated virus. J Gene Med 11:605–614
Cucchiarini M, Madry H (2014) Overexpression of human IGF-I via direct rAAV-mediated gene transfer improves the early repair of articular cartilage defects in vivo. Gene Ther 21:811–819
Griffin DJ, Ortved KF, Nixon AJ, Bonassar LJ (2016) Mechanical properties and structure-function relationships in articular cartilage repaired using IGF-I gene-enhanced chondrocytes. J Orthop Res 34:149–153
Izal I, Acosta CA, Ripalda P, Zaratiegui M, Ruiz J, Forriol F (2008) IGF-1 gene therapy to protect articular cartilage in a rat model of joint damage. Arch Orthop Trauma Surg 128:239–247
Tao K, Frisch J, Rey-Rico A, Venkatesan JK, Schmitt G, Madry H et al (2016) Co-overexpression of TGF-β and SOX9 via rAAV gene transfer modulates the metabolic and chondrogenic activities of human bone marrow-derived mesenchymal stem cells. Stem Cell Res Ther 7:20
Cucchiarini M, Ekici M, Schetting S, Kohn D, Madry H (2011) Metabolic activities and chondrogenic differentiation of human mesenchymal stem cells following recombinant adeno-associated virus-mediated gene transfer and overexpression of fibroblast growth factor 2. Tissue Eng Part A 17:1921–1933
Venkatesan JK, Ekici M, Madry H, Schmitt G, Kohn D, Cucchiarini M (2012) SOX9 gene transfer via safe, stable, replication-defective recombinant adeno-associated virus vectors as a novel, powerful tool to enhance the chondrogenic potential of human mesenchymal stem cells. Stem Cell Res Ther 3:22–36
Hur W, Cho ML, Yoon SK, Kim SY, Ju JH, Jhun JY et al (2006) Adenoviral delivery of IL-1 receptor antagonist abrogates disease activity during the development of autoimmune arthritis in IL-1 receptor antagonist-deficient mice. Immunol Lett 106:154–162
Goodrich LR, Grieger JC, Phillips JN, Khan N, Gray SJ, McIlwraith CW et al (2015) scAAV IL-1ra dosing trial in a large animal model and validation of long-term expression with repeat administration for osteoarthritis therapy. Gene Ther 22:536–545
Ueblacker P, Wagner B, Vogt S, Salzmann G, Wexel G, Krüger A et al (2007) In vivo analysis of retroviral gene transfer to chondrocytes within collagen scaffolds for the treatment of osteochondral defects. Biomaterials 28:4480–4487
Yoon HJ, Kim SB, Somaiya D, Noh MJ, Choi KB, Lim CL et al (2015) Type II collagen and glycosaminoglycan expression induction in primary human chondrocyte by TGF-β1. BMC Musculoskelet Disord 16:141
Kuroda R, Usas A, Kubo S, Corsi K, Peng H, Rose T et al (2006) Cartilage repair using bone morphogenetic protein 4 and muscle-derived stem cells. Arthritis Rheum 54:433–442
Kubo S, Cooper GM, Matsumoto T, Phillippi JA, Corsi KA, Usas A et al (2009) Blocking vascular endothelial growth factor with soluble Flt-1 improves the chondrogenic potential of mouse skeletal muscle-derived stem cells. Arthritis Rheum 60:155–165
Lee JM, Im GI (2012) SOX trio-co-transduced adipose stem cells in fibrin gel to enhance cartilage repair and delay the progression of osteoarthritis in the rat. Biomaterials 33:2016–2024
Li H, Lu A, Tang Y, Beckman S, Nakayama N, Poddar M, Hogan MV, Huard J (2016) The superior regenerative potential of muscle-derived stem cells for articular cartilage repair is attributed to high cell survival and chondrogenic potential. Mol Ther Methods Clin Dev 3:16065
Matsumoto T, Cooper GM, Gharaibeh B, Meszaros LB, Li G, Usas A, Fu FH, Huard J (2009) Cartilage repair in a rat model of osteoarthritis through intraarticular transplantation of muscle-derived stem cells expressing bone morphogenetic protein 4 and soluble Flt-1. Arthritis Rheum 60:1390–1405
Wübbenhorst D, Dumler K, Wagner B, Wexel G, Imhoff A, Gansbacher B et al (2010) Tetracycline-regulated bone morphogenetic protein 2 gene expression in lentivirally transduced primary rabbit chondrocytes for treatment of cartilage defects. Arthritis Rheum 62:2037–2046
Liu TM, Guo XM, Tan HS, Hui JH, Lim B, Lee EH (2011) Zinc-finger protein 145, acting as an upstream regulator of SOX9, improves the differentiation potential of human mesenchymal stem cells for cartilage regeneration and repair. Arthritis Rheum 63:2711–2720
Vermeij EA, Broeren MG, Bennink MB, Arntz OJ, Gjertsson I, van Lent PL et al (2015) Disease-regulated local IL-10 gene therapy diminishes synovitis and cartilage proteoglycan depletion in experimental arthritis. Ann Rheum Dis 74:2084–2091
Liang W, Zhu C, Liu F, Cui W, Wang Q, Chen Z et al (2015) Integrin β1 gene therapy enhances in vitro creation of tissue-engineered cartilage under periodic mechanical stress. Cell Physiol Biochem 37:1301–1314
Gouze E, Pawliuk R, Pilapil C, Gouze JN, Fleet C, Palmer GD et al (2002) In vivo gene delivery to synovium by lentiviral vectors. Mol Ther 5:397–404
Noh MJ, Copeland RO, Yi Y, Choi KB, Meschter C, Hwang S et al (2010) Pre-clinical studies of retrovirally transduced human chondrocytes expressing transforming growth factor-beta-1 (TG-C). Cytotherapy 12:384–393
Lu CH, Yeh TS, Yeh CL, Fang YH, Sung LY, Lin SY et al (2014) Regenerating cartilages by engineered ASCs: prolonged TGF-β3/BMP-6 expression improved articular cartilage formation and restored zonal structure. Mol Ther 22:186–195
Chen HC, Chang YH, Chuang CK, Lin CY, Sung LY, Wang YH et al (2009) The repair of osteochondral defects using baculovirus-mediated gene transfer with de-differentiated chondrocytes in bioreactor culture. Biomaterials 30:674–681
Guo T, Zeng X, Hong H, Diao H, Wangrui R, Zhao J et al (2006) Gene-activated matrices for cartilage defect reparation. Int J Artif Organs 29:612–621
Ham O, Lee CY, Song BW, Lee SY, Kim R, Park JH et al (2014) Upregulation of miR-23b enhances the autologous therapeutic potential for degenerative arthritis by targeting PRKACB in synovial fluid-derived mesenchymal stem cells from patients. Mol Cells 37:449–456
Liang Y, Duan L, Xiong J, Zhu W, Liu Q, Wang D et al (2016) E2 regulates MMP-13 via targeting miR-140 in IL-1β-induced extracellular matrix degradation in human chondrocytes. Arthritis Res Ther 18:105
Chen Z, Shi H, Sun S, Xu H, Cao D, Luo J (2016) MicroRNA-181b suppresses TAG via target IRS2 and regulating multiple genes in the Hippo pathway. Exp Cell Res 348:66–74
Song J, Lee M, Kim D, Han J, Chun CH, Jin EJ (2013) MicroRNA-181b regulates articular chondrocytes differentiation and cartilage integrity. Biochem Biophys Res Commun 431:210–214
Lolli A, Narcisi R, Lambertini E, Penolazzi L, Angelozzi M, Kops N et al (2016) Silencing of anti-chondrogenic MicroRNA-221 in human mesenchymal stem cells promotes cartilage repair in vivo. Stem Cells 34:1801–1811
Kim D, Song J, Jin EJ (2010) MicroRNA-221 regulates chondrogenic differentiation through promoting proteosomal degradation of slug by targeting Mdm2. J Biol Chem 285:26900–26907
Martinez-Sanchez A, Dudek KA, Murphy CL (2012) Regulation of human chondrocyte function through direct inhibition of cartilage master regulator SOX9 by microRNA-145 (miRNA-145). J Biol Chem 287:916–924
Lin X, Wu L, Zhang Z, Yang R, Guan Q, Hou X et al (2014) MiR-335-5p promotes chondrogenesis in mouse mesenchymal stem cells and is regulated through two positive feedback loops. J Bone Miner Res 29:1575–1585
Montemurro T, Viganò M, Budelli S, Montelatici E, Lavazza C, Marino L et al (2015) How we make cell therapy in Italy. Drug Des Devel Ther 9:4825–4834
Ha CW, Noh MJ, Choi KB, Lee KH (2012) Initial phase I safety of retrovirally transduced human chondrocytes expressing transforming growth factor-beta-1 in degenerative arthritis patients. Cytotherapy 14:247–256
Cherian JJ, Parvizi J, Bramlet D, Lee KH, Romness DW, Mont MA (2015) Preliminary results of a phase II randomized study to determine the efficacy and safety of genetically engineered allogeneic human chondrocytes expressing TGF-β1 in patients with grade 3 chronic degenerative joint disease of the knee. Osteoarthr Cartil 23:2109–2118
Collins NJ, Misra D, Felson DT, Crossley KM, Roos EM (2011) Measures of knee function: International Knee Documentation Committee (IKDC), Subjective Knee Evaluation Form, Knee Injury and Osteoarthritis Outcome Score (KOOS), Knee Injury and Osteoarthritis Outcome Score Physical Function Short Form (KOOS-PS), Knee Outcome Survey Activities of Daily Living Scale (KOS-ADL), Lysholm Knee Scoring Scale, Oxford Knee Score (OKS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Activity Rating Scale (ARS), and Tegner Activity Score (TAS). Arthritis Care Res (Hoboken) 63:S208–S228
Wang G, Evans CH, Benson JM, Hutt JA, Seagrave J, Wilder JA et al (2016) Safety and biodistribution assessment of sc-rAAV2.5IL-1Ra administered via intra-articular injection in a mono-iodoacetate-induced osteoarthritis rat model. Mol Ther Methods Clin Dev 3:15052
Mease PJ, Hobbs K, Chalmers A, El-Gabalawy H, Bookman A, Keystone E et al (2009) Local delivery of a recombinant adenoassociated vector containing a tumour necrosis factor alpha antagonist gene in inflammatory arthritis: a phase 1 dose-escalation safety and tolerability study. Ann Rheum Dis 68:1247–1254
Aalbers CJ, Bevaart L, Loiler S, de Cortie K, Wright JF, Mingozzi F et al (2015) Preclinical potency and biodistribution studies of an AAV 5 vector expressing human interferon-β (ART-I02) for local treatment of patients with rheumatoid arthritis. PLoS One 10:e0130612
Bevaart L, Aalbers CJ, Vierboom MP, Broekstra N, Kondova I, Breedveld E et al (2015) Safety, biodistribution, and efficacy of an AAV-5 vector encoding human interferon-beta (ART-I02) delivered via intra-articular injection in rhesus monkeys with collagen-induced arthritis. Hum Gene Ther Clin Dev 26:103–112
Somoza RA, Welter JF, Correa D, Caplan AI (2014) Chondrogenic differentiation of mesenchymal stem cells: challenges and unfulfilled expectations. Tissue Eng Part B Rev 20:596–608
Frank KM, Hogarth DK, Miller JL, Mandal S, Mease PJ, Samulski RJ et al (2009) Investigation of the cause of death in a gene-therapy trial. N Engl J Med 361:161–169
Acknowledgements
This study has been developed with the contribution of the National Operational Programme for Research and Competitiveness 2007–2013—PONa03_00011 “Potenziamento strutturale di una rete di eccellenza per la ricerca clinica sulla terapia personalizzata in oncologia e in medicina rigenerativa”.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
All authors have no conflict of interest.
Rights and permissions
About this article
Cite this article
Bellavia, D., Veronesi, F., Carina, V. et al. Gene therapy for chondral and osteochondral regeneration: is the future now?. Cell. Mol. Life Sci. 75, 649–667 (2018). https://doi.org/10.1007/s00018-017-2637-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00018-017-2637-3