Skip to main content

Advertisement

Log in

Gene therapy for chondral and osteochondral regeneration: is the future now?

  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Gene therapy might represent a promising strategy for chondral and osteochondral defects repair by balancing the management of temporary joint mechanical incompetence with altered metabolic and inflammatory homeostasis. This review analysed preclinical and clinical studies on gene therapy for the repair of articular cartilage defects performed over the last 10 years, focussing on expression vectors (non-viral and viral), type of genes delivered and gene therapy procedures (direct or indirect). Plasmids (non-viral expression vectors) and adenovirus (viral vectors) were the most employed vectors in preclinical studies. Genes delivered encoded mainly for growth factors, followed by transcription factors, anti-inflammatory cytokines and, less frequently, by cell signalling proteins, matrix proteins and receptors. Direct injection of the expression vector was used less than indirect injection of cells, with or without scaffolds, transduced with genes of interest and then implanted into the lesion site. Clinical trials (phases I, II or III) on safety, biological activity, efficacy, toxicity or bio-distribution employed adenovirus viral vectors to deliver growth factors or anti-inflammatory cytokines, for the treatment of osteoarthritis or degenerative arthritis, and tumour necrosis factor receptor or interferon for the treatment of inflammatory arthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ACI:

Autologous chondrocytes implantation

ACPC:

Articular cartilage progenitor cells

ADSCs:

Adipose derived mesenchymal stem cells

BMP:

Bone morphogenetic protein

BMSCs:

Bone Marrow Derived Mesenchymal Stem Cells

bPEI-HA:

Branched poly(ethylenimine)-hyaluronic acid

CIA:

Collagen induced arthritis

COLL I:

Collagen I

COLL II:

Collagen II

Col2a1:

Collagen 2 alpha 1

COMP:

Cartilage oligomeric matrix protein

DBM:

Demineralized bone matrix

DCBM:

Decalcified cortical bone matrix

DRP:

DNase-resistant particles

ECM:

Extracellular matrix

FBs:

Fibroblasts

FGF-2:

Fibroblast growth factor 2

FLS:

Fibroblast-like synoviocytes

GAG:

Glycosaminoglycans

GDF-5:

Growth and differentiation factor 5

GFs:

Growth factor

GMP:

Good manufacture practice

HIV:

Human immunodeficiency virus

IFN-β:

Interferon-β

IGF-1:

Insulin-like growth factor 1

iHH:

Indian hedgehog homolog

IKDC:

International Knee Documentation Committee

IL10:

Interleukin 10

IL1ra:

Interleukin 1 receptor antagonist

MACI:

Matrix-induced autologous chondrocytes implantation

MDSCs:

Muscle-derived stem cells

MMP:

Metalloproteinase

MSCs:

MESENCHYMAL Stem cells

OA:

Osteoarthritis

PGA:

Polyglycolic acid

PLA:

Polylactic acid

PLGA:

Poly(lactic-co-glycolide)

PU:

Polyurethane

RA:

Rheumatoid arthritis

rAAV:

Recombinant adeno-associated viral vector

RUNX2:

Runt-related transcription factor 2

scAAV:

Self-complementary AAV

sFlt-1:

Soluble Fms-related tyrosine kinase 1

SOX:

Sex-determining Region Y -related High Mobility Group box

TCP:

Tricalcium phosphate

TFs:

Transcription factors

TGF-β:

Transforming growth factor β

TNFR:Fc:

Human tumor necrosis factor receptor immunoglobulin (IgG1) Fc fusion

VAS:

Visual analogue scale

VEGF:

Vascular endothelial growth factor

ZNF145:

Zinc-finger protein 145

References

  1. Rey-Rico A, Frisch J, Venkatesan JK, Schmitt G, Rial-Hermida I, Taboada P et al (2016) PEO-PPO-PEO carriers for rAAV-mediated transduction of human articular chondrocytes in vitro and in a human osteochondral defect model. ACS Appl Mater Interfaces 8:20600–20613

    Article  CAS  PubMed  Google Scholar 

  2. Frisch J, Orth P, Venkatesan JK, Rey-Rico A, Schmitt G, Kohn D et al (2017) Genetic modification of human peripheral blood aspirates using recombinant adeno-associated viral vectors for articular cartilage repair with a focus on chondrogenic transforming growth factor-β gene delivery. Stem Cells Transl Med 6:249–260

    Article  CAS  PubMed  Google Scholar 

  3. Hunziker EB (2002) Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr Cartil 10:432–463

    Article  CAS  PubMed  Google Scholar 

  4. Veronesi F, Giavaresi G, Tschon M, Borsari V, Nicoli Aldini N, Fini M (2013) Clinical use of bone marrow, bone marrow concentrate, and expanded bone marrow mesenchymal stem cells in cartilage disease. Stem Cells Dev 22:181–192

    Article  CAS  PubMed  Google Scholar 

  5. Ondrésik M, Azevedo Maia FR, da Silva Morais A, Gertrudes AC, Dias Bacelar AH, Correia C et al (2016) Management of knee osteoarthritis. Current status and future trends. Biotechnol Bioeng (epub ahead of print)

  6. Heiligenstein S, Cucchiarini M, Laschke MW, Bohle RM, Kohn D, Menger MD et al (2011) Evaluation of nonbiomedical and biomedical grade alginates for the transplantation of genetically modified articular chondrocytes to cartilage defects in a large animal model in vivo. J Gene Med 13:230–242

    Article  CAS  PubMed  Google Scholar 

  7. Shui W, Yin L, Luo J, Li R, Zhang W, Zhang J et al (2013) Characterization of chondrocyte scaffold carriers for cell-based gene therapy in articular cartilage repair. J Biomed Mater Res A 101:3542–3550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Shi S, Chan AG, Mercer S, Eckert GJ, Trippel SB (2014) Endogenous versus exogenous growth factor regulation of articular chondrocytes. J Orthop Res 32:54–60

    Article  CAS  PubMed  Google Scholar 

  9. Li KC, Hu YC (2015) Cartilage tissue engineering: recent advances and perspectives from gene regulation/therapy. Adv Healthc Mater 4:948–968

    Article  CAS  PubMed  Google Scholar 

  10. Hardee CL, Arévalo-Soliz LM, Hornstein BD, Zechiedrich L (2017) Advances in non-viral DNA vectors for gene therapy. Genes (Basel) 8:65

    Article  CAS  Google Scholar 

  11. Ohashi S, Kubo T, Kishida T, Ikeda T, Takahashi K, Arai Y et al (2002) Successful genetic transduction in vivo into synovium by means of electroporation. Biochem Biophys Res Commun 293:1530–1535

    Article  CAS  PubMed  Google Scholar 

  12. Khoury M, Bigey P, Louis-Plence P, Noel D, Rhinn H, Scherman D et al (2006) A comparative study on intra-articular versus systemic gene electrotransfer in experimental arthritis. J Gene Med 8:1027–1036

    Article  CAS  PubMed  Google Scholar 

  13. Nishida K, Doita M, Takada T, Kakutani K, Miyamoto H, Shimomura T et al (2006) Sustained transgene expression in intervertebral disc cells in vivo mediated by microbubble-enhanced ultrasound gene therapy. Spine (Phila Pa 1976) 31:1415–1419

    Article  Google Scholar 

  14. Li B, Li F, Ma L, Yang J, Wang C, Wang D et al (2014) Poly(lactide-co-glycolide)/fibrin gel construct as a 3D model to evaluate gene therapy of cartilage in vivo. Mol Pharm 11:2062–2070

    Article  CAS  PubMed  Google Scholar 

  15. Zhang SK, Liu Y, Song ZM, Fu CF, Xu XX (2007) Green fluorescent protein as marker in chondrocytes overexpressing human insulin-like growth factor-1 for repair of articular cartilage defects in rabbits. Chin J Traumatol 10:10–17

    PubMed  Google Scholar 

  16. Orth P, Kaul G, Cucchiarini M, Zurakowski D, Menger MD, Kohn D et al (2011) Transplanted articular chondrocytes co-overexpressing IGF-I and FGF-2 stimulate cartilage repair in vivo. Knee Surg Sports Traumatol Arthrosc 19:2119–2130

    Article  PubMed  Google Scholar 

  17. Leng P, Ding CR, Zhang HN, Wang YZ (2012) Reconstruct large osteochondral defects of the knee with hIGF-1 gene enhanced Mosaicplasty. Knee 19:804–811

    Article  PubMed  Google Scholar 

  18. Madry H, Orth P, Kaul G, Zurakowski D, Menger MD, Kohn D et al (2010) Acceleration of articular cartilage repair by combined gene transfer of human insulin-like growth factor I and fibroblast growth factor-2 in vivo. Arch Orthop Trauma Surg 130:1311–1322

    Article  PubMed  Google Scholar 

  19. Alcorn JL, Merritt TM, Farach-Carson MC, Wang HH, Hecht JT (2009) Ribozyme-mediated reduction of wild-type and mutant cartilage oligomeric matrix protein (COMP) mRNA and protein. RNA 15:686–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shi S, Mercer S, Eckert GJ, Trippel SB (2012) Regulation of articular chondrocyte aggrecan and collagen gene expression by multiple growth factor gene transfer. J Orthop Res 30:1026–1031

    Article  CAS  PubMed  Google Scholar 

  21. Kaul G, Cucchiarini M, Arntzen D, Zurakowski D, Menger MD, Kohn D et al (2006) Local stimulation of articular cartilage repair by transplantation of encapsulated chondrocytes overexpressing human fibroblast growth factor 2 (FGF-2) in vivo. J Gene Med 8:100–111

    Article  CAS  PubMed  Google Scholar 

  22. Di Cesare PE, Frenkel SR, Carlson CS, Fang C, Liu C (2006) Regional gene therapy for full-thickness articular cartilage lesions using naked DNA with a collagen matrix. J Orthop Res 24:1118–1127

    Article  PubMed  CAS  Google Scholar 

  23. Capito RM, Spector M (2007) Collagen scaffolds for nonviral IGF-1 gene delivery in articular cartilage tissue engineering. Gene Ther 14:721–732

    Article  CAS  PubMed  Google Scholar 

  24. Needham CJ, Shah SR, Dahlin RL, Kinard LA, Lam J, Watson BM et al (2014) Osteochondral tissue regeneration through polymeric delivery of DNA encoding for the SOX trio and RUNX2. Acta Biomater 10:4103–4112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. An C, Cheng Y, Yuan Q, Li J (2010) IGF-1 and BMP-2 induces differentiation of adipose-derived mesenchymal stem cells into chondrocytes-like cells. Ann Biomed Eng 38:1647–1654

    Article  PubMed  Google Scholar 

  26. Guo X, Zheng Q, Yang S, Shao Z, Yuan Q, Pan Z et al (2006) Repair of full-thickness articular cartilage defects by cultured mesenchymal stem cells transfected with the transforming growth factor beta1 gene. Biomed Mater 1:206–215

    Article  CAS  PubMed  Google Scholar 

  27. He CX, Zhang TY, Miao PH, Hu ZJ, Han M, Tabata Y et al (2012) TGF-beta1 gene-engineered mesenchymal stem cells induce rat cartilage regeneration using nonviral gene vector. Biotechnol Appl Biochem 59:163–169

    Article  CAS  PubMed  Google Scholar 

  28. Raimondi L, De Luca A, Amodio N, Manno M, Raccosta S, Taverna S, Bellavia D, Naselli F, Fontana S, Schillaci O, Giardino R, Fini M, Tassone P, Santoro A, De Leo G, Giavaresi G, Alessandro R (2015) Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation. Oncotarget 6:13772–13789

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tkach M, Théry C (2016) Communication by Extracellular Vesicles: where We Are and Where We Need to Go. Cell 164:1226–1232

    Article  CAS  PubMed  Google Scholar 

  30. Zappulli V, Friis KP, Fitzpatrick Z, Maguire CA, Breakefield XO (2016) Extracellular vesicles and intercellular communication within the nervous system. J Clin Invest 126:1198–1207

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhang S, Chu WC, Lai RC, Lim SK, Hui JH, Toh WS (2016) Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthritis Cartil 24:2135–2140

    Article  CAS  Google Scholar 

  32. Xu JF, Yang GH, Pan XH, Zhang SJ, Zhao C, Qiu BS, Gu HF, Hong JF, Cao L, Chen Y et al (2014) Altered microrna expression profile in exosomes during osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. PLoS One 9:e114627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Cui Y, Luan J, Li H, Zhou X, Han J (2016) Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microrna expression. FEBS Lett 590:185–192

    Article  CAS  PubMed  Google Scholar 

  34. Ekstrom K, Omar O, Graneli C, Wang X, Vazirisani F, Thomsen P (2013) Monocyte exosomes stimulate the osteogenic gene expression of mesenchymal stem cells. PLoS One 8:e75227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Tian T, Zhu YL, Zhou YY, Liang GF, Wang YY, Hu FH, Xiao ZD (2014) Exosome uptake through clathrin-mediated endocytosis and macropinocytosis and mediating miR-21 delivery. J Biol Chem 289:22258–22267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vader P, Mol EA, Pasterkamp G, Schiffelers RM (2016) Extracellular vesicles for drug delivery. Adv Drug Deliv Rev 106:148–156

    Article  CAS  PubMed  Google Scholar 

  37. Bellavia D, Raimondo S, Calabrese G, Forte S, Cristaldi M, Patinella A, Memeo L, Manno M, Raccosta S, Diana P, Cirrincione G, Giavaresi G, Monteleone F, Fontana S, De Leo G, Alessandro R (2017) Interleukin 3- receptor targeted exosomes inhibit in vitro and in vivo chronic myelogenous leukemia cell growth. Theranostics 7:1333–1345

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lamichhane TN, Sokic S, Schardt JS, Raiker RS, Lin JW, Jay SM (2015) Emerging roles for extracellular vesicles in tissue engineering and regenerative medicine. Tissue Eng Part B Rev 21:45–54

    Article  CAS  PubMed  Google Scholar 

  39. Ames RS, Lu Q (2009) Viral-mediated gene delivery for cell-based assays in drug discovery. Expert Opin Drug Discov 4:243–256

    Article  CAS  PubMed  Google Scholar 

  40. Pagnotto MR, Wang Z, Karpie JC, Ferretti M, Xiao X, Chu CR (2007) Adeno-associated viral gene transfer of transforming growth factor beta 1 to human mesenchymal stem cells improves cartilage repair. Gene Ther 14:804–813

    Article  CAS  PubMed  Google Scholar 

  41. Ivkovic A, Pascher A, Hudetz D, Maticic D, Jelic M, Dickinson S et al (2010) Articular cartilage repair by genetically modified bone marrow aspirate in sheep. Gene Ther 17:779–789

    Article  CAS  PubMed  Google Scholar 

  42. Xia W, Jin YQ, Kretlow JD, Liu W, Ding W, Sun H et al (2009) Adenoviral transduction of hTGF-beta1 enhances the chondrogenesis of bone marrow derived stromal cells. Biotechnol Lett 31:639–646

    Article  CAS  PubMed  Google Scholar 

  43. Garza-Veloz I, Romero-Diaz VJ, Martinez-Fierro ML, Marino-Martinez IA, Gonzalez-Rodriguez M, Martinez-Rodriguez HG et al (2013) Analyses of chondrogenic induction of adipose mesenchymal stem cells by combined co-stimulation mediated by adenoviral gene transfer. Arthritis Res Ther 15:R80

    Article  PubMed  PubMed Central  Google Scholar 

  44. Goodrich LR, Hidaka C, Robbins PD, Evans CH, Nixon AJ (2007) Genetic modification of chondrocytes with insulin-like growth factor-1 enhances cartilage healing in an equine model. J Bone Jt Surg Br 89:672–685

    Article  CAS  Google Scholar 

  45. Park J, Gelse K, Frank S, von der Mark K, Aigner T, Schneider H (2006) Transgene-activated mesenchymal cells for articular cartilage repair: a comparison of primary bone marrow-, perichondrium/periosteum- and fat-derived cells. J Gene Med 8:112–125

    Article  CAS  PubMed  Google Scholar 

  46. Wang X, Li Y, Han R, He C, Wang G, Wang J et al (2014) Demineralized bone matrix combined bone marrow mesenchymal stem cells, bone morphogenetic protein-2 and transforming growth factor-β3 gene promoted pig cartilage defect repair. PLoS One 9:e116061 (erratum in: PLoS One 2015; 10:e0125948. Pei, Mei (corrected to Pei, Ming)]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Neumann AJ, Gardner OF, Williams R, Alini M, Archer CW, Stoddart MJ (2015) Human Articular Cartilage Progenitor Cells Are Responsive to Mechanical Stimulation and Adenoviral-Mediated Overexpression of Bone-Morphogenetic Protein 2. PLoS One 10:e0136229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Evans CH, Liu FJ, Glatt V, Hoyland JA, Kirker-Head C, Walsh A et al (2009) Use of genetically modified muscle and fat grafts to repair defects in bone and cartilage. Eur Cell Mater 18:96–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Feng G, Wan Y, Balian G, Laurencin CT, Li X (2008) Adenovirus-mediated expression of growth and differentiation factor-5 promotes chondrogenesis of adipose stem cells. Growth Factors 26:132–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Goodrich LR, Brower-Toland BD, Warnick L, Robbins PD, Evans CH, Nixon AJ (2006) Direct adenovirus-mediated IGF-I gene transduction of synovium induces persisting synovial fluid IGF-I ligand elevations. Gene Ther 13:1253–1262

    Article  CAS  PubMed  Google Scholar 

  51. Menendez MI, Clark DJ, Carlton M, Flanigan DC, Jia G, Sammet S et al (2011) Direct delayed human adenoviral BMP-2 or BMP-6 gene therapy for bone and cartilage regeneration in a pony osteochondral model. Osteoarthr Cartil 19:1066–1075

    Article  CAS  PubMed  Google Scholar 

  52. Zhang X, Zheng Z, Liu P, Ma Y, Lin L, Lang N et al (2008) The synergistic effects of microfracture, perforated decalcified cortical bone matrix and adenovirus-bone morphogenetic protein-4 in cartilage defect repair. Biomaterials 29:4616–4629

    Article  CAS  PubMed  Google Scholar 

  53. Steinert AF, Weissenberger M, Kunz M, Gilbert F, Ghivizzani SC, Göbel S et al (2012) Indian hedgehog gene transfer is a chondrogenic inducer of human mesenchymal stem cells. Arthritis Res Ther 14:R168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cao L, Yang F, Liu G, Yu D, Li H, Fan Q et al (2011) The promotion of cartilage defect repair using adenovirus mediated Sox9 gene transfer of rabbit bone marrow mesenchymal stem cells. Biomaterials 32:3910–3920

    Article  CAS  PubMed  Google Scholar 

  55. Sieker JT, Kunz M, Weißenberger M, Gilbert F, Frey S, Rudert M et al (2015) Direct bone morphogenetic protein 2 and Indian hedgehog gene transfer for articular cartilage repair using bone marrow coagulates. Osteoarthr Cartil 23:433–442

    Article  CAS  PubMed  Google Scholar 

  56. Knedla A, Riepl B, Lefèvre S, Kistella S, Grifka J, Straub RH et al (2009) The therapeutic use of osmotic minipumps in the severe combined immunodeficiency (SCID) mouse model for rheumatoid arthritis. Ann Rheum Dis 68:124–129

    Article  CAS  PubMed  Google Scholar 

  57. Morisset S, Frisbie DD, Robbins PD, Nixon AJ, McIlwraith CW (2007) IL-1ra/IGF-1 gene therapy modulates repair of microfractured chondral defects. Clin Orthop Relat Res 462:221–228

    Article  PubMed  Google Scholar 

  58. Clément N, Grieger JC (2016) Manufacturing of recombinant adeno-associated viral vectors for clinical trials. Mol Ther Methods Clin Dev 3:16002

    Article  PubMed  PubMed Central  Google Scholar 

  59. Cucchiarini M, Orth P, Madry H (2013) Direct rAAV SOX9 administration for durable articular cartilage repair with delayed terminal differentiation and hypertrophy in vivo. J Mol Med (Berl) 91:625–636

    Article  CAS  Google Scholar 

  60. Kay JD, Gouze E, Oligino TJ, Gouze JN, Watson RS, Levings PP et al (2009) Intra-articular gene delivery and expression of interleukin-1Ra mediated by self-complementary adeno-associated virus. J Gene Med 11:605–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cucchiarini M, Madry H (2014) Overexpression of human IGF-I via direct rAAV-mediated gene transfer improves the early repair of articular cartilage defects in vivo. Gene Ther 21:811–819

    Article  CAS  PubMed  Google Scholar 

  62. Griffin DJ, Ortved KF, Nixon AJ, Bonassar LJ (2016) Mechanical properties and structure-function relationships in articular cartilage repaired using IGF-I gene-enhanced chondrocytes. J Orthop Res 34:149–153

    Article  CAS  PubMed  Google Scholar 

  63. Izal I, Acosta CA, Ripalda P, Zaratiegui M, Ruiz J, Forriol F (2008) IGF-1 gene therapy to protect articular cartilage in a rat model of joint damage. Arch Orthop Trauma Surg 128:239–247

    Article  PubMed  Google Scholar 

  64. Tao K, Frisch J, Rey-Rico A, Venkatesan JK, Schmitt G, Madry H et al (2016) Co-overexpression of TGF-β and SOX9 via rAAV gene transfer modulates the metabolic and chondrogenic activities of human bone marrow-derived mesenchymal stem cells. Stem Cell Res Ther 7:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Cucchiarini M, Ekici M, Schetting S, Kohn D, Madry H (2011) Metabolic activities and chondrogenic differentiation of human mesenchymal stem cells following recombinant adeno-associated virus-mediated gene transfer and overexpression of fibroblast growth factor 2. Tissue Eng Part A 17:1921–1933

    Article  CAS  PubMed  Google Scholar 

  66. Venkatesan JK, Ekici M, Madry H, Schmitt G, Kohn D, Cucchiarini M (2012) SOX9 gene transfer via safe, stable, replication-defective recombinant adeno-associated virus vectors as a novel, powerful tool to enhance the chondrogenic potential of human mesenchymal stem cells. Stem Cell Res Ther 3:22–36

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hur W, Cho ML, Yoon SK, Kim SY, Ju JH, Jhun JY et al (2006) Adenoviral delivery of IL-1 receptor antagonist abrogates disease activity during the development of autoimmune arthritis in IL-1 receptor antagonist-deficient mice. Immunol Lett 106:154–162

    Article  CAS  PubMed  Google Scholar 

  68. Goodrich LR, Grieger JC, Phillips JN, Khan N, Gray SJ, McIlwraith CW et al (2015) scAAV IL-1ra dosing trial in a large animal model and validation of long-term expression with repeat administration for osteoarthritis therapy. Gene Ther 22:536–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ueblacker P, Wagner B, Vogt S, Salzmann G, Wexel G, Krüger A et al (2007) In vivo analysis of retroviral gene transfer to chondrocytes within collagen scaffolds for the treatment of osteochondral defects. Biomaterials 28:4480–4487

    Article  CAS  PubMed  Google Scholar 

  70. Yoon HJ, Kim SB, Somaiya D, Noh MJ, Choi KB, Lim CL et al (2015) Type II collagen and glycosaminoglycan expression induction in primary human chondrocyte by TGF-β1. BMC Musculoskelet Disord 16:141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Kuroda R, Usas A, Kubo S, Corsi K, Peng H, Rose T et al (2006) Cartilage repair using bone morphogenetic protein 4 and muscle-derived stem cells. Arthritis Rheum 54:433–442

    Article  CAS  PubMed  Google Scholar 

  72. Kubo S, Cooper GM, Matsumoto T, Phillippi JA, Corsi KA, Usas A et al (2009) Blocking vascular endothelial growth factor with soluble Flt-1 improves the chondrogenic potential of mouse skeletal muscle-derived stem cells. Arthritis Rheum 60:155–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lee JM, Im GI (2012) SOX trio-co-transduced adipose stem cells in fibrin gel to enhance cartilage repair and delay the progression of osteoarthritis in the rat. Biomaterials 33:2016–2024

    Article  CAS  PubMed  Google Scholar 

  74. Li H, Lu A, Tang Y, Beckman S, Nakayama N, Poddar M, Hogan MV, Huard J (2016) The superior regenerative potential of muscle-derived stem cells for articular cartilage repair is attributed to high cell survival and chondrogenic potential. Mol Ther Methods Clin Dev 3:16065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Matsumoto T, Cooper GM, Gharaibeh B, Meszaros LB, Li G, Usas A, Fu FH, Huard J (2009) Cartilage repair in a rat model of osteoarthritis through intraarticular transplantation of muscle-derived stem cells expressing bone morphogenetic protein 4 and soluble Flt-1. Arthritis Rheum 60:1390–1405

    Article  PubMed  PubMed Central  Google Scholar 

  76. Wübbenhorst D, Dumler K, Wagner B, Wexel G, Imhoff A, Gansbacher B et al (2010) Tetracycline-regulated bone morphogenetic protein 2 gene expression in lentivirally transduced primary rabbit chondrocytes for treatment of cartilage defects. Arthritis Rheum 62:2037–2046

    PubMed  Google Scholar 

  77. Liu TM, Guo XM, Tan HS, Hui JH, Lim B, Lee EH (2011) Zinc-finger protein 145, acting as an upstream regulator of SOX9, improves the differentiation potential of human mesenchymal stem cells for cartilage regeneration and repair. Arthritis Rheum 63:2711–2720

    Article  CAS  PubMed  Google Scholar 

  78. Vermeij EA, Broeren MG, Bennink MB, Arntz OJ, Gjertsson I, van Lent PL et al (2015) Disease-regulated local IL-10 gene therapy diminishes synovitis and cartilage proteoglycan depletion in experimental arthritis. Ann Rheum Dis 74:2084–2091

    Article  CAS  PubMed  Google Scholar 

  79. Liang W, Zhu C, Liu F, Cui W, Wang Q, Chen Z et al (2015) Integrin β1 gene therapy enhances in vitro creation of tissue-engineered cartilage under periodic mechanical stress. Cell Physiol Biochem 37:1301–1314

    Article  CAS  PubMed  Google Scholar 

  80. Gouze E, Pawliuk R, Pilapil C, Gouze JN, Fleet C, Palmer GD et al (2002) In vivo gene delivery to synovium by lentiviral vectors. Mol Ther 5:397–404

    Article  CAS  PubMed  Google Scholar 

  81. Noh MJ, Copeland RO, Yi Y, Choi KB, Meschter C, Hwang S et al (2010) Pre-clinical studies of retrovirally transduced human chondrocytes expressing transforming growth factor-beta-1 (TG-C). Cytotherapy 12:384–393

    Article  CAS  PubMed  Google Scholar 

  82. Lu CH, Yeh TS, Yeh CL, Fang YH, Sung LY, Lin SY et al (2014) Regenerating cartilages by engineered ASCs: prolonged TGF-β3/BMP-6 expression improved articular cartilage formation and restored zonal structure. Mol Ther 22:186–195

    Article  CAS  PubMed  Google Scholar 

  83. Chen HC, Chang YH, Chuang CK, Lin CY, Sung LY, Wang YH et al (2009) The repair of osteochondral defects using baculovirus-mediated gene transfer with de-differentiated chondrocytes in bioreactor culture. Biomaterials 30:674–681

    Article  CAS  PubMed  Google Scholar 

  84. Guo T, Zeng X, Hong H, Diao H, Wangrui R, Zhao J et al (2006) Gene-activated matrices for cartilage defect reparation. Int J Artif Organs 29:612–621

    CAS  PubMed  Google Scholar 

  85. Ham O, Lee CY, Song BW, Lee SY, Kim R, Park JH et al (2014) Upregulation of miR-23b enhances the autologous therapeutic potential for degenerative arthritis by targeting PRKACB in synovial fluid-derived mesenchymal stem cells from patients. Mol Cells 37:449–456

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Liang Y, Duan L, Xiong J, Zhu W, Liu Q, Wang D et al (2016) E2 regulates MMP-13 via targeting miR-140 in IL-1β-induced extracellular matrix degradation in human chondrocytes. Arthritis Res Ther 18:105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Chen Z, Shi H, Sun S, Xu H, Cao D, Luo J (2016) MicroRNA-181b suppresses TAG via target IRS2 and regulating multiple genes in the Hippo pathway. Exp Cell Res 348:66–74

    Article  CAS  PubMed  Google Scholar 

  88. Song J, Lee M, Kim D, Han J, Chun CH, Jin EJ (2013) MicroRNA-181b regulates articular chondrocytes differentiation and cartilage integrity. Biochem Biophys Res Commun 431:210–214

    Article  CAS  PubMed  Google Scholar 

  89. Lolli A, Narcisi R, Lambertini E, Penolazzi L, Angelozzi M, Kops N et al (2016) Silencing of anti-chondrogenic MicroRNA-221 in human mesenchymal stem cells promotes cartilage repair in vivo. Stem Cells 34:1801–1811

    Article  CAS  PubMed  Google Scholar 

  90. Kim D, Song J, Jin EJ (2010) MicroRNA-221 regulates chondrogenic differentiation through promoting proteosomal degradation of slug by targeting Mdm2. J Biol Chem 285:26900–26907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Martinez-Sanchez A, Dudek KA, Murphy CL (2012) Regulation of human chondrocyte function through direct inhibition of cartilage master regulator SOX9 by microRNA-145 (miRNA-145). J Biol Chem 287:916–924

    Article  CAS  PubMed  Google Scholar 

  92. Lin X, Wu L, Zhang Z, Yang R, Guan Q, Hou X et al (2014) MiR-335-5p promotes chondrogenesis in mouse mesenchymal stem cells and is regulated through two positive feedback loops. J Bone Miner Res 29:1575–1585

    Article  CAS  PubMed  Google Scholar 

  93. Montemurro T, Viganò M, Budelli S, Montelatici E, Lavazza C, Marino L et al (2015) How we make cell therapy in Italy. Drug Des Devel Ther 9:4825–4834

    PubMed  PubMed Central  Google Scholar 

  94. Ha CW, Noh MJ, Choi KB, Lee KH (2012) Initial phase I safety of retrovirally transduced human chondrocytes expressing transforming growth factor-beta-1 in degenerative arthritis patients. Cytotherapy 14:247–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cherian JJ, Parvizi J, Bramlet D, Lee KH, Romness DW, Mont MA (2015) Preliminary results of a phase II randomized study to determine the efficacy and safety of genetically engineered allogeneic human chondrocytes expressing TGF-β1 in patients with grade 3 chronic degenerative joint disease of the knee. Osteoarthr Cartil 23:2109–2118

    Article  CAS  PubMed  Google Scholar 

  96. Collins NJ, Misra D, Felson DT, Crossley KM, Roos EM (2011) Measures of knee function: International Knee Documentation Committee (IKDC), Subjective Knee Evaluation Form, Knee Injury and Osteoarthritis Outcome Score (KOOS), Knee Injury and Osteoarthritis Outcome Score Physical Function Short Form (KOOS-PS), Knee Outcome Survey Activities of Daily Living Scale (KOS-ADL), Lysholm Knee Scoring Scale, Oxford Knee Score (OKS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Activity Rating Scale (ARS), and Tegner Activity Score (TAS). Arthritis Care Res (Hoboken) 63:S208–S228

    Article  Google Scholar 

  97. Wang G, Evans CH, Benson JM, Hutt JA, Seagrave J, Wilder JA et al (2016) Safety and biodistribution assessment of sc-rAAV2.5IL-1Ra administered via intra-articular injection in a mono-iodoacetate-induced osteoarthritis rat model. Mol Ther Methods Clin Dev 3:15052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Mease PJ, Hobbs K, Chalmers A, El-Gabalawy H, Bookman A, Keystone E et al (2009) Local delivery of a recombinant adenoassociated vector containing a tumour necrosis factor alpha antagonist gene in inflammatory arthritis: a phase 1 dose-escalation safety and tolerability study. Ann Rheum Dis 68:1247–1254

    Article  CAS  PubMed  Google Scholar 

  99. Aalbers CJ, Bevaart L, Loiler S, de Cortie K, Wright JF, Mingozzi F et al (2015) Preclinical potency and biodistribution studies of an AAV 5 vector expressing human interferon-β (ART-I02) for local treatment of patients with rheumatoid arthritis. PLoS One 10:e0130612

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Bevaart L, Aalbers CJ, Vierboom MP, Broekstra N, Kondova I, Breedveld E et al (2015) Safety, biodistribution, and efficacy of an AAV-5 vector encoding human interferon-beta (ART-I02) delivered via intra-articular injection in rhesus monkeys with collagen-induced arthritis. Hum Gene Ther Clin Dev 26:103–112

    Article  CAS  PubMed  Google Scholar 

  101. Somoza RA, Welter JF, Correa D, Caplan AI (2014) Chondrogenic differentiation of mesenchymal stem cells: challenges and unfulfilled expectations. Tissue Eng Part B Rev 20:596–608

    Article  PubMed  PubMed Central  Google Scholar 

  102. Frank KM, Hogarth DK, Miller JL, Mandal S, Mease PJ, Samulski RJ et al (2009) Investigation of the cause of death in a gene-therapy trial. N Engl J Med 361:161–169

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study has been developed with the contribution of the National Operational Programme for Research and Competitiveness 2007–2013—PONa03_00011 “Potenziamento strutturale di una rete di eccellenza per la ricerca clinica sulla terapia personalizzata in oncologia e in medicina rigenerativa”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Bellavia.

Ethics declarations

Conflict of interest

All authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellavia, D., Veronesi, F., Carina, V. et al. Gene therapy for chondral and osteochondral regeneration: is the future now?. Cell. Mol. Life Sci. 75, 649–667 (2018). https://doi.org/10.1007/s00018-017-2637-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2637-3

Keywords

Navigation