Skip to main content

Advertisement

Log in

Secretogranin III: a diabetic retinopathy-selective angiogenic factor

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Secretogranin III (Scg3) is a member of the granin protein family that regulates the biogenesis of secretory granules. Scg3 was recently discovered as an angiogenic factor, expanding its functional role to extrinsic regulation. Unlike many other known angiogenic factors, the pro-angiogenic actions of Scg3 are restricted to pathological conditions. Among thousands of quantified endothelial ligands, Scg3 has the highest binding activity ratio to diabetic vs. healthy mouse retinas and lowest background binding to normal vessels. In contrast, vascular endothelial growth factor binds to and stimulates angiogenesis of both diabetic and control vasculature. Consistent with its role in pathological angiogenesis, Scg3-neutralizing antibodies alleviate retinal vascular leakage in mouse models of diabetic retinopathy and retinal neovascularization in oxygen-induced retinopathy mice. This review summarizes our current knowledge of Scg3 as a regulatory protein of secretory granules, highlights its new role as a highly disease-selective angiogenic factor, and envisions Scg3 inhibitors as “selective angiogenesis blockers” for targeted therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CgA:

Chromogranin A

CCR3:

C-C chemokine receptor type 3

CPE:

Carboxypeptidase E

CNV:

Choroidal neovascularization

DCG:

Dense core secretory granule

DR:

Diabetic retinopathy

HRP-3:

Hepatoma-derived growth factor-related protein 3

mAb:

Monoclonal antibody

OIR:

Oxygen-induced retinopathy

OPD:

Open reading frame

NGS:

Next-generation DNA sequencing

PDR:

Proliferative diabetic retinopathy

RNV:

Retinal neovascularization

ROP:

Retinopathy of prematurity

ROS:

Reactive oxygen species

Scg3:

Secretogranin III

TGN:

Trans-Golgi network

VEGF:

Vascular endothelial growth factor

VEGFR:

VEGF receptor

VGF:

Nerve growth factor inducible protein

References

  1. Ottiger HP, Battenberg EF, Tsou AP, Bloom FE, Sutcliffe JG (1990) 1B1075: a brain- and pituitary-specific mRNA that encodes a novel chromogranin/secretogranin-like component of intracellular vesicles. J Neurosci 10(9):3135–3147

    CAS  PubMed  Google Scholar 

  2. Dopazo A, Lovenberg TW, Danielson PE, Ottiger HP, Sutcliffe JG (1993) Primary structure of mouse secretogranin III and its absence from deficient mice. J Mol Neurosci 4(4):225–233. doi:10.1007/BF02821554

    Article  CAS  PubMed  Google Scholar 

  3. LeBlanc ME, Wang W, Chen X, Caberoy NB, Guo F, Shen C et al (2017) Secretogranin III as a disease-associated ligand for antiangiogenic therapy of diabetic retinopathy. J Exp Med 214(4):1029–1047. doi:10.1084/jem.20161802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Taupenot L, Harper KL, O’Connor DT (2003) The chromogranin-secretogranin family. N Engl J Med 348(12):1134–1149. doi:10.1056/NEJMra021405

    Article  CAS  PubMed  Google Scholar 

  5. Helle KB (2004) The granin family of uniquely acidic proteins of the diffuse neuroendocrine system: comparative and functional aspects. Biol Rev Camb Philos Soc 79(4):769–794

    Article  PubMed  Google Scholar 

  6. Bartolomucci A, Possenti R, Mahata SK, Fischer-Colbrie R, Loh YP, Salton SR (2011) The extended granin family: structure, function, and biomedical implications. Endocr Rev 32(6):755–797. doi:10.1210/er.2010-0027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Helle KB, Corti A (2015) Chromogranin A: a paradoxical player in angiogenesis and vascular biology. Cell Mol Life Sci 72(2):339–348. doi:10.1007/s00018-014-1750-9

    Article  CAS  PubMed  Google Scholar 

  8. Winkler H, Westhead E (1980) The molecular organization of adrenal chromaffin granules. Neuroscience 5(11):1803–1823

    Article  CAS  PubMed  Google Scholar 

  9. Helle KB (2000) The chromogranins. Historical perspectives. Adv Exp Med Biol 482:3–20. doi:10.1007/0-306-46837-9_1

    Article  CAS  PubMed  Google Scholar 

  10. Winkler H, Fischer-Colbrie R (1992) The chromogranins A and B: the first 25 years and future perspectives. Neuroscience 49(3):497–528

    Article  CAS  PubMed  Google Scholar 

  11. O’Connor DT, Frigon RP (1984) Chromogranin A, the major catecholamine storage vesicle soluble protein. Multiple size forms, subcellular storage, and regional distribution in chromaffin and nervous tissue elucidated by radioimmunoassay. J Biol Chem 259(5):3237–3247

    PubMed  Google Scholar 

  12. Hosaka M, Watanabe T (2010) Secretogranin III: a bridge between core hormone aggregates and the secretory granule membrane. Endocr J 57(4):275–286

    Article  CAS  PubMed  Google Scholar 

  13. Neuhold N, Ullrich R (1993) Secretogranin IV immunoreactivity in medullary thyroid carcinoma: an immunohistochemical study of 62 cases. Virchows Arch A Pathol Anat Histopathol 423(2):85–89

    Article  CAS  PubMed  Google Scholar 

  14. Kelly RB (1985) Pathways of protein secretion in eukaryotes. Science 230(4721):25–32

    Article  CAS  PubMed  Google Scholar 

  15. D’Amico MA, Ghinassi B, Izzicupo P, Manzoli L, Di Baldassarre A (2014) Biological function and clinical relevance of chromogranin A and derived peptides. Endocr Connect 3(2):R45–R54. doi:10.1530/EC-14-0027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Lorenz K, Troger J, Gramlich O, Grus F, Hattmannstorfer R, Fischer-Colbrie R et al (2011) PE-11, a peptide derived from chromogranin B, in the rat eye. Peptides 32(6):1201–1206. doi:10.1016/j.peptides.2011.03.011

    Article  CAS  PubMed  Google Scholar 

  17. Strub JM, Garcia-Sablone P, Lonning K, Taupenot L, Hubert P, Van Dorsselaer A et al (1995) Processing of chromogranin B in bovine adrenal medulla. Identification of secretolytin, the endogenous C-terminal fragment of residues 614–626 with antibacterial activity. Eur J Biochem 229(2):356–368

    Article  CAS  PubMed  Google Scholar 

  18. Flanagan T, Taylor L, Poulter L, Viveros OH, Diliberto EJ Jr (1990) A novel 1745-dalton pyroglutamyl peptide derived from chromogranin B is in the bovine adrenomedullary chromaffin vesicle. Cell Mol Neurobiol 10(4):507–523

    Article  CAS  PubMed  Google Scholar 

  19. Kirchmair R, Egger M, Walter DH, Eisterer W, Niederwanger A, Woell E et al (2004) Secretoneurin, an angiogenic neuropeptide, induces postnatal vasculogenesis. Circulation 110(9):1121–1127. doi:10.1161/01.CIR.0000139884.81390.56

    Article  CAS  PubMed  Google Scholar 

  20. Holthuis JC, Jansen EJ, Martens GJ (1996) Secretogranin III is a sulfated protein undergoing proteolytic processing in the regulated secretory pathway. J Biol Chem 271(30):17755–17760

    Article  CAS  PubMed  Google Scholar 

  21. Dowling P, Shields W, Rani S, Meleady P, Henry M, Jeppesen P et al (2008) Proteomic analysis of conditioned media from glucose responsive and glucose non-responsive phenotypes reveals a panel of secreted proteins associated with beta cell dysfunction. Electrophoresis 29(20):4141–4149

    Article  CAS  PubMed  Google Scholar 

  22. Rong YP, Liu F, Zeng LC, Ma WJ, Wei DZ, Han ZG (2002) Cloning and characterization of a novel human secretory protein: secretogranin III. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 34(4):411–417

    CAS  Google Scholar 

  23. Sanchez-Margalet V, Calvo JR, Goberna R (1992) Glucogenolytic and hyperglycemic effect of 33–49 C-terminal fragment of pancreastatin in the rat in vivo. Horm Metab Res 24(10):455–457

    Article  CAS  PubMed  Google Scholar 

  24. Tatemoto K, Efendic S, Mutt V, Makk G, Feistner GJ, Barchas JD (1986) Pancreastatin, a novel pancreatic peptide that inhibits insulin secretion. Nature 324(6096):476–478. doi:10.1038/324476a0

    Article  CAS  PubMed  Google Scholar 

  25. Gonzalez-Yanes C, Sanchez-Margalet V (2000) Pancreastatin modulates insulin signaling in rat adipocytes: mechanisms of cross-talk. Diabetes 49(8):1288–1294

    Article  CAS  PubMed  Google Scholar 

  26. Gayen JR, Saberi M, Schenk S, Biswas N, Vaingankar SM, Cheung WW et al (2009) A novel pathway of insulin sensitivity in chromogranin A null mice: a crucial role for pancreastatin in glucose homeostasis. J Biol Chem 284(42):28498–28509. doi:10.1074/jbc.M109.020636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. O’Connor DT, Cadman PE, Smiley C, Salem RM, Rao F, Smith J et al (2005) Pancreastatin: multiple actions on human intermediary metabolism in vivo, variation in disease, and naturally occurring functional genetic polymorphism. J Clin Endocrinol Metab 90(9):5414–5425. doi:10.1210/jc.2005-0408

    Article  PubMed  CAS  Google Scholar 

  28. Mahata SK, O’Connor DT, Mahata M, Yoo SH, Taupenot L, Wu H et al (1997) Novel autocrine feedback control of catecholamine release. A discrete chromogranin a fragment is a noncompetitive nicotinic cholinergic antagonist. J Clin Investig 100(6):1623–1633. doi:10.1172/JCI119686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kennedy BP, Mahata SK, O’Connor DT, Ziegler MG (1998) Mechanism of cardiovascular actions of the chromogranin A fragment catestatin in vivo. Peptides 19(7):1241–1248

    Article  CAS  PubMed  Google Scholar 

  30. Egger M, Beer AG, Theurl M, Schgoer W, Hotter B, Tatarczyk T et al (2008) Monocyte migration: a novel effect and signaling pathways of catestatin. Eur J Pharmacol 598(1–3):104–111. doi:10.1016/j.ejphar.2008.09.016

    Article  CAS  PubMed  Google Scholar 

  31. Aslam R, Atindehou M, Lavaux T, Haikel Y, Schneider F, Metz-Boutigue MH (2012) Chromogranin A-derived peptides are involved in innate immunity. Curr Med Chem 19(24):4115–4123

    Article  CAS  PubMed  Google Scholar 

  32. O’Connor DT, Kailasam MT, Kennedy BP, Ziegler MG, Yanaihara N, Parmer RJ (2002) Early decline in the catecholamine release-inhibitory peptide catestatin in humans at genetic risk of hypertension. J Hypertens 20(7):1335–1345

    Article  PubMed  Google Scholar 

  33. Takiyyuddin MA, Parmer RJ, Kailasam MT, Cervenka JH, Kennedy B, Ziegler MG et al (1995) Chromogranin A in human hypertension. Influence of heredity. Hypertension 26(1):213–220

    Article  CAS  PubMed  Google Scholar 

  34. You ZB, Saria A, Fischer-Colbrie R, Terenius L, Goiny M, Herrera-Marschitz M (1996) Effects of secretogranin II-derived peptides on the release of neurotransmitters monitored in the basal ganglia of the rat with in vivo microdialysis. Naunyn Schmiedebergs Arch Pharmacol 354(6):717–724

    Article  CAS  PubMed  Google Scholar 

  35. Zhao E, Basak A, Wong AO, Ko W, Chen A, Lopez GC et al (2009) The secretogranin II-derived peptide secretoneurin stimulates luteinizing hormone secretion from gonadotrophs. Endocrinology 150(5):2273–2282. doi:10.1210/en.2008-1060

    Article  CAS  PubMed  Google Scholar 

  36. Fischer-Colbrie R, Laslop A, Kirchmair R (1995) Secretogranin II: molecular properties, regulation of biosynthesis and processing to the neuropeptide secretoneurin. Prog Neurobiol 46(1):49–70

    Article  CAS  PubMed  Google Scholar 

  37. Storch MK, Fischer-Colbrie R, Smith T, Rinner WA, Hickey WF, Cuzner ML et al (1996) Co-localization of secretoneurin immunoreactivity and macrophage infiltration in the lesions of experimental autoimmune encephalomyelitis. Neuroscience 71(3):885–893

    Article  CAS  PubMed  Google Scholar 

  38. Hahm S, Mizuno TM, Wu TJ, Wisor JP, Priest CA, Kozak CA et al (1999) Targeted deletion of the Vgf gene indicates that the encoded secretory peptide precursor plays a novel role in the regulation of energy balance. Neuron 23(3):537–548

    Article  CAS  PubMed  Google Scholar 

  39. Watson E, Fargali S, Okamoto H, Sadahiro M, Gordon RE, Chakraborty T et al (2009) Analysis of knockout mice suggests a role for VGF in the control of fat storage and energy expenditure. BMC Physiol 9:19. doi:10.1186/1472-6793-9-19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Watson E, Hahm S, Mizuno TM, Windsor J, Montgomery C, Scherer PE et al (2005) VGF ablation blocks the development of hyperinsulinemia and hyperglycemia in several mouse models of obesity. Endocrinology 146(12):5151–5163. doi:10.1210/en.2005-0588

    Article  CAS  PubMed  Google Scholar 

  41. Bartolomucci A, La Corte G, Possenti R, Locatelli V, Rigamonti AE, Torsello A et al (2006) TLQP-21, a VGF-derived peptide, increases energy expenditure and prevents the early phase of diet-induced obesity. Proc Natl Acad Sci USA 103(39):14584–14589. doi:10.1073/pnas.0606102103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bartolomucci A, Bresciani E, Bulgarelli I, Rigamonti AE, Pascucci T, Levi A et al (2009) Chronic intracerebroventricular injection of TLQP-21 prevents high fat diet induced weight gain in fast weight-gaining mice. Genes Nutr 4(1):49–57. doi:10.1007/s12263-009-0110-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sibilia V, Pagani F, Bulgarelli I, Tulipano G, Possenti R, Guidobono F (2012) Characterization of the mechanisms involved in the gastric antisecretory effect of TLQP-21, a vgf-derived peptide, in rats. Amino Acids 42(4):1261–1268. doi:10.1007/s00726-010-0818-6

    Article  CAS  PubMed  Google Scholar 

  44. Severini C, La Corte G, Improta G, Broccardo M, Agostini S, Petrella C et al (2009) In vitro and in vivo pharmacological role of TLQP-21, a VGF-derived peptide, in the regulation of rat gastric motor functions. Br J Pharmacol 157(6):984–993. doi:10.1111/j.1476-5381.2009.00192.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sibilia V, Pagani F, Bulgarelli I, Mrak E, Broccardo M, Improta G et al (2010) TLQP-21, a VGF-derived peptide, prevents ethanol-induced gastric lesions: insights into its mode of action. Neuroendocrinology 92(3):189–197. doi:10.1159/000319791

    Article  CAS  PubMed  Google Scholar 

  46. Bozdagi O, Rich E, Tronel S, Sadahiro M, Patterson K, Shapiro ML et al (2008) The neurotrophin-inducible gene Vgf regulates hippocampal function and behavior through a brain-derived neurotrophic factor-dependent mechanism. J Neurosci 28(39):9857–9869. doi:10.1523/JNEUROSCI.3145-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Toshinai K, Yamaguchi H, Kageyama H, Matsuo T, Koshinaka K, Sasaki K et al (2010) Neuroendocrine regulatory peptide-2 regulates feeding behavior via the orexin system in the hypothalamus. Am J Physiol Endocrinol Metab 299(3):E394–E401. doi:10.1152/ajpendo.00768.2009

    Article  CAS  PubMed  Google Scholar 

  48. Yamaguchi H, Sasaki K, Satomi Y, Shimbara T, Kageyama H, Mondal MS et al (2007) Peptidomic identification and biological validation of neuroendocrine regulatory peptide-1 and -2. J Biol Chem 282(36):26354–26360. doi:10.1074/jbc.M701665200

    Article  CAS  PubMed  Google Scholar 

  49. Ferri GL, Levi A, Possenti R (1992) A novel neuroendocrine gene product: selective VGF8a gene expression and immuno-localisation of the VGF protein in endocrine and neuronal populations. Brain Res Mol Brain Res 13(1–2):139–143

    Article  CAS  PubMed  Google Scholar 

  50. Moss A, Ingram R, Koch S, Theodorou A, Low L, Baccei M et al (2008) Origins, actions and dynamic expression patterns of the neuropeptide VGF in rat peripheral and central sensory neurones following peripheral nerve injury. Mol Pain 4:62. doi:10.1186/1744-8069-4-62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Costigan M, Befort K, Karchewski L, Griffin RS, D’Urso D, Allchorne A et al (2002) Replicate high-density rat genome oligonucleotide microarrays reveal hundreds of regulated genes in the dorsal root ganglion after peripheral nerve injury. BMC Neurosci 3:16

    Article  PubMed  PubMed Central  Google Scholar 

  52. Riedl MS, Braun PD, Kitto KF, Roiko SA, Anderson LB, Honda CN et al (2009) Proteomic analysis uncovers novel actions of the neurosecretory protein VGF in nociceptive processing. J Neurosci 29(42):13377–13388. doi:10.1523/JNEUROSCI.1127-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rizzi R, Bartolomucci A, Moles A, D’Amato F, Sacerdote P, Levi A et al (2008) The VGF-derived peptide TLQP-21: a new modulatory peptide for inflammatory pain. Neurosci Lett 441(1):129–133. doi:10.1016/j.neulet.2008.06.018

    Article  CAS  PubMed  Google Scholar 

  54. Hunsberger JG, Newton SS, Bennett AH, Duman CH, Russell DS, Salton SR et al (2007) Antidepressant actions of the exercise-regulated gene VGF. Nat Med 13(12):1476–1482. doi:10.1038/nm1669

    Article  CAS  PubMed  Google Scholar 

  55. Thakker-Varia S, Krol JJ, Nettleton J, Bilimoria PM, Bangasser DA, Shors TJ et al (2007) The neuropeptide VGF produces antidepressant-like behavioral effects and enhances proliferation in the hippocampus. J Neurosci 27(45):12156–12167. doi:10.1523/JNEUROSCI.1898-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Succu S, Cocco C, Mascia MS, Melis T, Melis MR, Possenti R et al (2004) Pro-VGF-derived peptides induce penile erection in male rats: possible involvement of oxytocin. Eur J Neurosci 20(11):3035–3040. doi:10.1111/j.1460-9568.2004.03781.x

    Article  PubMed  Google Scholar 

  57. Succu S, Mascia MS, Melis T, Sanna F, Melis MR, Possenti R et al (2005) Pro-VGF-derived peptides induce penile erection in male rats: involvement of paraventricular nitric oxide. Neuropharmacology 49(7):1017–1025. doi:10.1016/j.neuropharm.2005.05.015

    Article  CAS  PubMed  Google Scholar 

  58. Lee SN, Lindberg I (2008) 7B2 prevents unfolding and aggregation of prohormone convertase 2. Endocrinology 149(8):4116–4127. doi:10.1210/en.2008-0064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Qian Y, Devi LA, Mzhavia N, Munzer S, Seidah NG, Fricker LD (2000) The C-terminal region of proSAAS is a potent inhibitor of prohormone convertase 1. J Biol Chem 275(31):23596–23601. doi:10.1074/jbc.M001583200

    Article  CAS  PubMed  Google Scholar 

  60. Holthuis JC, Martens GJ (1996) The neuroendocrine proteins secretogranin II and III are regionally conserved and coordinately expressed with proopiomelanocortin in Xenopus intermediate pituitary. J Neurochem 66(6):2248–2256

    Article  CAS  PubMed  Google Scholar 

  61. Hosaka M, Watanabe T, Sakai Y, Uchiyama Y, Takeuchi T (2002) Identification of a chromogranin A domain that mediates binding to secretogranin III and targeting to secretory granules in pituitary cells and pancreatic beta-cells. Mol Biol Cell 13(10):3388–3399. doi:10.1091/mbc.02-03-0040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hosaka M, Suda M, Sakai Y, Izumi T, Watanabe T, Takeuchi T (2004) Secretogranin III binds to cholesterol in the secretory granule membrane as an adapter for chromogranin A. J Biol Chem 279(5):3627–3634. doi:10.1074/jbc.M310104200 PubMed PMID: 14597614

    Article  CAS  PubMed  Google Scholar 

  63. Hosaka M, Watanabe T, Sakai Y, Kato T, Takeuchi T (2005) Interaction between secretogranin III and carboxypeptidase E facilitates prohormone sorting within secretory granules. J Cell Sci 118(Pt 20):4785–4795. doi:10.1242/jcs.02608

    Article  CAS  PubMed  Google Scholar 

  64. Tanabe A, Yanagiya T, Iida A, Saito S, Sekine A, Takahashi A et al (2007) Functional single-nucleotide polymorphisms in the secretogranin III (SCG3) gene that form secretory granules with appetite-related neuropeptides are associated with obesity. J Clin Endocrinol Metab 92(3):1145–1154. doi:10.1210/jc.2006-1808

    Article  CAS  PubMed  Google Scholar 

  65. Kingsley DM, Rinchik EM, Russell LB, Ottiger HP, Sutcliffe JG, Copeland NG et al (1990) Genetic ablation of a mouse gene expressed specifically in brain. EMBO J 9(2):395–399

    CAS  PubMed  PubMed Central  Google Scholar 

  66. LeBlanc ME, Wang W, Caberoy NB, Chen X, Guo F, Alvarado G et al (2015) Hepatoma-derived growth factor-related protein-3 is a novel angiogenic factor. PLoS One 10(5):e0127904

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Guo F, Ding Y, Caberoy N, Alvarado G, Wang F, Chen R et al (2015) ABCF1 extrinsically regulates retinal pigment epithelial cell phagocytosis. Mol Biol Cell 26(12):2311–2320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ding Y, Caberoy NB, Guo F, LeBlanc ME, Zhang C, Wang W et al (2015) Reticulocalbin-1 facilitates microglial phagocytosis. PLoS One 10(5):e0126993

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Tota B, Angelone T, Cerra MC (2014) The surging role of chromogranin A in cardiovascular homeostasis. Front Chem 2:64. doi:10.3389/fchem.2014.00064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Crippa L, Bianco M, Colombo B, Gasparri AM, Ferrero E, Loh YP et al (2013) A new chromogranin A-dependent angiogenic switch activated by thrombin. Blood 121(2):392–402. doi:10.1182/blood-2012-05-430314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ferrero E, Scabini S, Magni E, Foglieni C, Belloni D, Colombo B et al (2004) Chromogranin A protects vessels against tumor necrosis factor alpha-induced vascular leakage. FASEB J 18(3):554–556. doi:10.1096/fj.03-0922fje

    CAS  PubMed  Google Scholar 

  72. Blois A, Srebro B, Mandala M, Corti A, Helle KB, Serck-Hanssen G (2006) The chromogranin A peptide vasostatin-I inhibits gap formation and signal transduction mediated by inflammatory agents in cultured bovine pulmonary and coronary arterial endothelial cells. Regul Pept 135(1–2):78–84. doi:10.1016/j.regpep.2006.04.007

    Article  CAS  PubMed  Google Scholar 

  73. Theurl M, Schgoer W, Albrecht K, Jeschke J, Egger M, Beer AG et al (2010) The neuropeptide catestatin acts as a novel angiogenic cytokine via a basic fibroblast growth factor-dependent mechanism. Circ Res 107(11):1326–1335. doi:10.1161/CIRCRESAHA.110.219493

    Article  CAS  PubMed  Google Scholar 

  74. Ji L, Pei ZQ, Ma DF, Zhang J, Su JS, Gao XD et al (2012) Prognostic value of circulating catestatin levels for in-hospital heart failure in patients with acute myocardial infarction. Zhonghua Xin Xue Guan Bing Za Zhi 40(11):914–919

    CAS  PubMed  Google Scholar 

  75. Meng L, Wang J, Ding WH, Han P, Yang Y, Qi LT et al (1050) Plasma catestatin level in patients with acute myocardial infarction and its correlation with ventricular remodelling. Postgrad Med J 2013(89):193–196. doi:10.1136/postgradmedj-2012-131060

    Google Scholar 

  76. Kirchmair R, Gander R, Egger M, Hanley A, Silver M, Ritsch A et al (2004) The neuropeptide secretoneurin acts as a direct angiogenic cytokine in vitro and in vivo. Circulation 109(6):777–783

    Article  CAS  PubMed  Google Scholar 

  77. Albrecht-Schgoer K, Schgoer W, Holfeld J, Theurl M, Wiedemann D, Steger C et al (2012) The angiogenic factor secretoneurin induces coronary angiogenesis in a model of myocardial infarction by stimulation of vascular endothelial growth factor signaling in endothelial cells. Circulation 126(21):2491–2501. doi:10.1161/CIRCULATIONAHA.111.076950

    Article  CAS  PubMed  Google Scholar 

  78. Yau JW, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T et al (2012) Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35(3):556–564

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wong TY, Cheung CM, Larsen M, Sharma S, Simo R (2016) Diabetic retinopathy. Nat Rev Dis Primers 2:16012. doi:10.1038/nrdp.2016.12

    Article  PubMed  Google Scholar 

  80. Suzuma K, Takahara N, Suzuma I, Isshiki K, Ueki K, Leitges M et al (2002) Characterization of protein kinase C beta isoform’s action on retinoblastoma protein phosphorylation, vascular endothelial growth factor-induced endothelial cell proliferation, and retinal neovascularization. Proc Natl Acad Sci USA 99(2):721–726. doi:10.1073/pnas.022644499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Geraldes P, Hiraoka-Yamamoto J, Matsumoto M, Clermont A, Leitges M, Marette A et al (2009) Activation of PKC-delta and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy. Nat Med 15(11):1298–1306. doi:10.1038/nm.2052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ohshiro Y, Ma RC, Yasuda Y, Hiraoka-Yamamoto J, Clermont AC, Isshiki K et al (2006) Reduction of diabetes-induced oxidative stress, fibrotic cytokine expression, and renal dysfunction in protein kinase Cbeta-null mice. Diabetes 55(11):3112–3120. doi:10.2337/db06-0895

    Article  CAS  PubMed  Google Scholar 

  83. Harja E, Chang JS, Lu Y, Leitges M, Zou YS, Schmidt AM et al (2009) Mice deficient in PKCbeta and apolipoprotein E display decreased atherosclerosis. FASEB J 23(4):1081–1091. doi:10.1096/fj.08-120345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Aiello LP, Bursell SE, Clermont A, Duh E, Ishii H, Takagi C et al (1997) Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective beta-isoform-selective inhibitor. Diabetes 46(9):1473–1480

    Article  CAS  PubMed  Google Scholar 

  85. Ishii H, Jirousek MR, Koya D, Takagi C, Xia P, Clermont A et al (1996) Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor. Science 272(5262):728–731

    Article  CAS  PubMed  Google Scholar 

  86. Aiello LP, Vignati L, Sheetz MJ, Zhi X, Girach A, Davis MD et al (2011) Oral protein kinase c beta inhibition using ruboxistaurin: efficacy, safety, and causes of vision loss among 813 patients (1,392 eyes) with diabetic retinopathy in the Protein Kinase C beta Inhibitor-Diabetic Retinopathy Study and the Protein Kinase C beta Inhibitor-Diabetic Retinopathy Study 2. Retina 31(10):2084–2094. doi:10.1097/IAE.0b013e3182111669

    Article  CAS  PubMed  Google Scholar 

  87. Tuttle KR, Bakris GL, Toto RD, McGill JB, Hu K, Anderson PW (2005) The effect of ruboxistaurin on nephropathy in type 2 diabetes. Diabetes Care 28(11):2686–2690

    Article  CAS  PubMed  Google Scholar 

  88. Yan SF, Ramasamy R, Schmidt AM (2010) The RAGE axis: a fundamental mechanism signaling danger to the vulnerable vasculature. Circ Res 106(5):842–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yamamoto Y, Kato I, Doi T, Yonekura H, Ohashi S, Takeuchi M et al (2001) Development and prevention of advanced diabetic nephropathy in RAGE-overexpressing mice. J Clin Investig 108(2):261–268. doi:10.1172/JCI11771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Park L, Raman KG, Lee KJ, Lu Y, Ferran LJ Jr, Chow WS et al (1998) Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts. Nat Med 4(9):1025–1031

    Article  CAS  PubMed  Google Scholar 

  91. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414(6865):813–820. doi:10.1038/414813a

    Article  CAS  PubMed  Google Scholar 

  92. Xu Y, Zhang Z, Hu J, Stillman IE, Leopold JA, Handy DE et al (2010) Glucose-6-phosphate dehydrogenase-deficient mice have increased renal oxidative stress and increased albuminuria. FASEB J. 24(2):609–616. doi:10.1096/fj.09-135731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107(9):1058–1070. doi:10.1161/CIRCRESAHA.110.223545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lassegue B, San Martin A, Griendling KK (2012) Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res 110(10):1364–1390. doi:10.1161/CIRCRESAHA.111.243972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Breton-Romero R, Lamas S (2014) Hydrogen peroxide signaling in vascular endothelial cells. Redox Biol 2:529–534. doi:10.1016/j.redox.2014.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sukriti S, Tauseef M, Yazbeck P, Mehta D (2014) Mechanisms regulating endothelial permeability. Pulm Circ 4(4):535–551. doi:10.1086/677356

    Article  PubMed  PubMed Central  Google Scholar 

  97. Lee YJ, Jung SH, Kim SH, Kim MS, Lee S, Hwang J et al (2016) Essential role of transglutaminase 2 in vascular endothelial growth factor-induced vascular leakage in the retina of diabetic mice. Diabetes 65(8):2414–2428. doi:10.2337/db15-1594

    Article  CAS  PubMed  Google Scholar 

  98. Chen XL, Nam JO, Jean C, Lawson C, Walsh CT, Goka E et al (2012) VEGF-induced vascular permeability is mediated by FAK. Dev Cell 22(1):146–157. doi:10.1016/j.devcel.2011.11.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cerani A, Tetreault N, Menard C, Lapalme E, Patel C, Sitaras N et al (2013) Neuron-derived semaphorin 3A is an early inducer of vascular permeability in diabetic retinopathy via neuropilin-1. Cell Metab 18(4):505–518. doi:10.1016/j.cmet.2013.09.003

    Article  CAS  PubMed  Google Scholar 

  100. Diabetes Control Complications Trial/Epidemiology of Diabetes Interventions Complications Research Group, Lachin JM, Genuth S, Cleary P, Davis MD, Nathan DM (2000) Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. N Engl J Med 342(6):381–389. doi:10.1056/NEJM200002103420603

    Article  Google Scholar 

  101. Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ et al (2005) Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 353(25):2643–2653. doi:10.1056/NEJMoa052187

    Article  PubMed  Google Scholar 

  102. Brasacchio D, Okabe J, Tikellis C, Balcerczyk A, George P, Baker EK et al (2009) Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes 58(5):1229–1236. doi:10.2337/db08-1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kowluru RA (2017) Diabetic retinopathy, metabolic memory and epigenetic modifications. Vis Res. doi:10.1016/j.visres.2017.02.011

    PubMed  Google Scholar 

  104. Keating ST, Plutzky J, El-Osta A (2016) Epigenetic changes in diabetes and cardiovascular risk. Circ Res 118(11):1706–1722. doi:10.1161/CIRCRESAHA.116.306819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhong Q, Kowluru RA (2010) Role of histone acetylation in the development of diabetic retinopathy and the metabolic memory phenomenon. J Cell Biochem 110(6):1306–1313. doi:10.1002/jcb.22644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kadiyala CS, Zheng L, Du Y, Yohannes E, Kao HY, Miyagi M et al (2012) Acetylation of retinal histones in diabetes increases inflammatory proteins: effects of minocycline and manipulation of histone acetyltransferase (HAT) and histone deacetylase (HDAC). J Biol Chem 287(31):25869–25880. doi:10.1074/jbc.M112.375204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Stefanini MO, Wu FT, Mac Gabhann F, Popel AS (2009) The presence of VEGF receptors on the luminal surface of endothelial cells affects VEGF distribution and VEGF signaling. PLoS Comput Biol 5(12):e1000622. doi:10.1371/journal.pcbi.1000622

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Holash J, Davis S, Papadopoulos N, Croll SD, Ho L, Russell M et al (2002) VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci USA 99(17):11393–11398. doi:10.1073/pnas.172398299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Stewart MW (2016) Treatment of diabetic retinopathy: recent advances and unresolved challenges. World J Diabetes 7(16):333–341. doi:10.4239/wjd.v7.i16.333

    Article  PubMed  PubMed Central  Google Scholar 

  110. Diabetic Retinopathy Clinical Research Network, Wells JA, Glassman AR, Ayala AR, Jampol LM, Aiello LP et al (2015) Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. N Engl J Med 372(13):1193–1203

    Article  CAS  Google Scholar 

  111. Wang W, LeBlanc ME, Chen X, Chen P, Ji Y, Brewer M et al (2017) Pathogenic role and therapeutic potential of pleiotrophin in mouse models of ocular vascular disease. Angiogenesis. doi:10.1007/s10456-017-9557-6

    Google Scholar 

  112. Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, Shah ST et al (1994) Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 331(22):1480–1487. doi:10.1056/NEJM199412013312203

    Article  CAS  PubMed  Google Scholar 

  113. Matsunaga N, Chikaraishi Y, Izuta H, Ogata N, Shimazawa M, Matsumura M et al (2008) Role of soluble vascular endothelial growth factor receptor-1 in the vitreous in proliferative diabetic retinopathy. Ophthalmology 115(11):1916–1922. doi:10.1016/j.ophtha.2008.06.025

    Article  PubMed  Google Scholar 

  114. Takeda A, Baffi JZ, Kleinman ME, Cho WG, Nozaki M, Yamada K et al (2009) CCR3 is a target for age-related macular degeneration diagnosis and therapy. Nature 460(7252):225–230. doi:10.1038/nature08151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Nagai N, Ju M, Izumi-Nagai K, Robbie SJ, Bainbridge JW, Gale DC et al (2015) Novel CCR3 antagonists are effective mono- and combination inhibitors of choroidal neovascular growth and vascular permeability. Am J Pathol 185(9):2534–2549. doi:10.1016/j.ajpath.2015.04.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Li Y, Huang D, Xia X, Wang Z, Luo L, Wen R (2011) CCR3 and choroidal neovascularization. PLoS One 6(2):e17106. doi:10.1371/journal.pone.0017106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Murphy K (2017) Janeway’s immunobiology, 9th edn. GS Garland Science, Taylor & Francis Group, New York

    Google Scholar 

  118. Humbles AA, Lu B, Friend DS, Okinaga S, Lora J, Al-Garawi A et al (2002) The murine CCR3 receptor regulates both the role of eosinophils and mast cells in allergen-induced airway inflammation and hyperresponsiveness. Proc Natl Acad Sci USA. 99(3):1479–1484. doi:10.1073/pnas.261462598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. ClinicalTrial.gov. GW824575 first time in human (ClinicalTrials.gov Identifier: NCT01551771). https://clinicaltrials.gov/ct2/show/NCT01551771?term=age-related+macular+degeneration+AND+CCR3&rank=1

  120. Seaman S, Stevens J, Yang MY, Logsdon D, Graff-Cherry C, St Croix B (2007) Genes that distinguish physiological and pathological angiogenesis. Cancer Cell 11(6):539–554. doi:10.1016/j.ccr.2007.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Al-Hilal TA, Chung SW, Choi JU, Alam F, Park J, Kim SW et al (2016) Targeting prion-like protein doppel selectively suppresses tumor angiogenesis. J Clin Investig 126(4):1251–1266. doi:10.1172/JCI83427

    Article  PubMed  PubMed Central  Google Scholar 

  122. Lam JD, Oh DJ, Wong LL, Amarnani D, Park-Windhol C, Sanchez AV et al (2017) Identification of RUNX1 as a mediator of aberrant retinal angiogenesis. Diabetes. doi:10.2337/db16-1035

    PubMed Central  Google Scholar 

  123. Hellstrom A, Smith LE, Dammann O (2013) Retinopathy of prematurity. Lancet 382(9902):1445–1457. doi:10.1016/S0140-6736(13)60178-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Lepore D, Quinn GE, Molle F, Baldascino A, Orazi L, Sammartino M et al (2014) Intravitreal bevacizumab versus laser treatment in type 1 retinopathy of prematurity: report on fluorescein angiographic findings. Ophthalmology 121(11):2212–2219. doi:10.1016/j.ophtha.2014.05.015

    Article  PubMed  Google Scholar 

  125. Lutty GA, McLeod DS, Bhutto I, Wiegand SJ (2011) Effect of VEGF trap on normal retinal vascular development and oxygen-induced retinopathy in the dog. Investig Ophthalmol Vis Sci 52(7):4039–4047. doi:10.1167/iovs.10-6798

    Article  CAS  Google Scholar 

  126. Tokunaga CC, Mitton KP, Dailey W, Massoll C, Roumayah K, Guzman E et al (2014) Effects of anti-VEGF treatment on the recovery of the developing retina following oxygen-induced retinopathy. Investig Ophthalmol Vis Sci 55(3):1884–1892. doi:10.1167/iovs.13-13397

    Article  CAS  Google Scholar 

  127. Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS et al (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380(6573):439–442. doi:10.1038/380439a0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health (NIH) R21EY027065 (WL), NIH Center Core Grant P30-EY014801, and an RPB unrestricted grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Webster, K.A., LeBlanc, M.E. et al. Secretogranin III: a diabetic retinopathy-selective angiogenic factor. Cell. Mol. Life Sci. 75, 635–647 (2018). https://doi.org/10.1007/s00018-017-2635-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2635-5

Keywords

Navigation